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The scattering of carriers by charged dislocations in semiconductors is studied within the

framework of the linearized Boltzmann transport theory with an emphasis on examining

consequences of the extreme anisotropy of the cylindrically symmetric scattering potential. A new

closed-form approximate expression for the carrier mobility valid for all temperatures is proposed.

The ratios of quantum and transport scattering times are evaluated after averaging over the

anisotropy in the relaxation time. The value of the Hall scattering factor computed for charged

dislocation scattering indicates that there may be a factor of two error in the experimental mobility

estimates using the Hall data. An expression for the resistivity tensor when the dislocations are

tilted with respect to the plane of transport is derived. Finally, an expression for the isotropic

relaxation time is derived when the dislocations are located within the sample with a uniform

angular distribution. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803121]

I. INTRODUCTION

Epitaxial growth of thin semiconductor films on sub-

strates which have a large lattice constant mismatch results in

the films being strained. Depending on the growth conditions

and the films’ thickness, this strain can either partially or fully

relax through a formation of various possible kinds of lattice

defects. Among these defects, edge dislocations are prominent

and have a pronounced effect on the mobility of carriers.1

While the theory for charged dislocation scattering was first

formulated to explain the low temperature mobility of plasti-

cally deformed semiconductors,2 interest in dislocation scat-

tering has revived in the last 15 years in context of GaN1,3–6

and InN8 which typically do not have lattice-matched sub-

strates. Indeed it is important in all epitaxially grown materi-

als9,10 on mismatched substrates, as well as bulk crystals

whose growth techniques have not yet been mastered.11

An edge dislocation is a row of dangling bonds formed by

an abruptly terminated plane somewhere inside the crystal.3

This local departure from tetragonal coordination produces

acceptor states in the energy gap, forming one dimensional

lines of charge. The effective screened electrostatic potential

energy, Uðx?Þ is thus cylindrically symmetric if the extent of

the edge dislocation is taken to be infinite1,12,13

Uðx?Þ ¼
Qe

2p�
K0ðx?=kÞ; (1)

where Q is the charge per unit length, K0 is the modified zer-

oth order Bessel function of the second kind, � ¼ �0�r is the

dielectric constant, k is the screening length, and x? is the

distance from the dislocation line in a perpendicular plane,

r ¼ f ðx?; h; zÞ. These one dimensional lines of charge have

detrimental effects on the transport properties of charge

carriers.

II. ISSUES ADDRESSED

The importance of the carrier scattering by charged

dislocations was established around the mid 1950s by the

systematic observation of reduced electron mobility in plasti-

cally deformed germanium.14 Specific aspects of the prob-

lem have been studied in numerous theoretical and

experimental papers over the past sixty years, but many of

the theoretical results related to the calculation of mobility

have been obtained in an ad hoc manner.

Given that there has been a revival of interest in this

problem in context of mismatched epitaxy of semicon-

ductors, here we have attempted a complete revisit of the

electron transport problem in presence of charged dislo-

cations within the linearized Boltzmann transport theory.

The aim of this work is to give a coherent and mathe-

matically consistent formulation and derive expressions

for the transport relaxation time, quantum scattering time,

mobility, Hall factor, resistivity tensor, and angular-

averaged mobility. Since expressions for some of these

quantities have of course also been derived previously in

literature, our results are mentioned in context of the old

results.

Specifically, the paper aims to address the following

issues:

(i) The scattering potential [Eq. (1)] is highly anisotropic

due to its cylindrical symmetry. It is known that the

relaxation time approximation for the solution of the

linearized Boltzmann equation is in general not valid

for anisotropic potentials. In context of the charged

dislocation scattering also, the extension of the relaxa-

tion time approach has been questioned.3,5,15 We will,

first of all, rigorously establish the existence of a

relaxation time for this problem.

(ii) We will next show that P€od€or’s expression for the

relaxation time2a)Electronic address: bhavtosh@iiserkol.ac.in
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s ¼ 8�2 m�2

Nde2Q2k
�h2

4m�2k2
þ v2

?

� �3=2

(2)

is indeed correct, despite an apparent inconsistency.

In Eq. (2), v? is the component of electron velocity

perpendicular to the dislocation axis and Nd is the

number of dislocations per unit area, all assumed to

be parallel and independent. Only the perpendicular

component of the impinging electron’s velocity con-

tributes to scattering and the component parallel to

the dislocation is unaffected. Eq. (2) is finite when

v?!0, whereas in this limit, s should diverge. This

point gets clarified once one goes through a consistent

derivation of the relation time in Sec. III where we

break up the relaxation time into two components s?
and sz. s?, the component of the relaxation time per-

pendicular to dislocations does indeed correspond to

P€od€or’s expression whereas sz, the component paral-

lel to the dislocation axes is ill-defined.

(iii) The method of energy averaging employed by P€od€or

has been questioned.4 Due to this ambiguity, the ten-

sor nature of resistivity is not evident in the final

expression. In particular if the dislocations are tilted

at an angle with respect to the direction perpendicular

to the plane of transport, it is difficult to give anything

better than a rough estimate in the present theory.7

The effect of dislocation orientation is usually disre-

garded and l? is replaced by a scalar number.1

Nevertheless dislocation related anisotropy is some-

times seen in the transport properties.16

(iv) Quantum and classical scattering times were calculated

without averaging out the anisotropy in the problem.17

(v) There are corrections to the measured Hall mobility

due to the Hall scattering factor. This Hall factor is

shown to be very significant, even larger than 2 for a

non-degenerate electron gas.

(vi) In general, dislocations may not be all parallel. A naive

angular averaging over the resistivity tensor is equiva-

lent to the use of Matthiessen’s rule. We will derive a

new expression for angular-averaged relation time

sisoðkÞ, which has a different k dependence as com-

pared to the anisotropic relaxation time. Thus angular

averaging has the important experimental consequence

of changing the temperature dependence of mobility.

III. THEORETICAL FORMULATION

Let us start from the Boltzmann equation within the lin-

ear response regime.18 Then up to the first order in electric

field, the perturbed distribution function may symbolically

be written as fk ¼ f0k þ /k, where /k is deviation from an

equilibrium distribution in presence of a perturbing external

electric field F. In absence of a thermal gradient and a mag-

netic field, the linearized Boltzmann equation for carriers

described by spherical parabolic band reduces to

e�h

m�
F � k @f0k

@E
¼
X

k0
Wk;k0 ½/k0 � /k�: (3)

Wk;k0 is the transition rate between initial and final plane

wave states, k and k0, in presence of the scattering potential

given by Eq. (1). For scattering from charged dislocations,

the scattering rate is given by Wk;k0 ¼ dðkz � k0zÞdðk � k0Þ
gðjk? � k0?jÞ. gðjk? � k0?jÞ is the part depending on only a

function of in-plane momenta (shown below). Thus (a) colli-

sions are elastic, (b) the components of the incident elec-

tron’s momenta which are parallel and perpendicular to the

dislocation line are separately conserved, (c) no electric field

develops along the dislocation axis, i.e., F � k ¼ F? � k?.

This immediately implies that no relaxation time can be

defined along the direction parallel to the dislocations’ axis.

In other words, for time independent electric field, there is

no steady state solution to the Boltzmann equation if the col-

lision term is zero. Nevertheless, one may physically argue

that 1=sz ¼ 0. The argument is clear within the variational

formalism where one defines the sample resistivity in terms

of the Joule-heat dissipated due to a finite current (see

Appendix).18 With constraints (a)–(c) in mind, we shall

choose a /k which solves the linearized Boltzmann’s equa-

tion exactly. Ansatz

/k ¼ �
e�h

m�
s?ðk?ÞF? � k?

@f0k

@E
: (4)

Substituting /k in Eq. (3) yields

@f0k

@E
F? � k? ¼F? �

X
k0

Wk;k0

� @f0k

@E
s?ðk?Þk? �

@f0k0

@E
s?ðk0?Þk0?

� �
: (5)

From energy and perpendicular momentum conservation,

@f0k0

@E
s?ðk0?Þ ¼

@f0k

@E
s?ðk?Þ: (6)

Thus, the linearized Boltzmann equation is exactly solved if

1

s?ðk?Þ
¼
X

k0
Wk;k0 ð1� cos hÞ: (7)

Here, h is the angle between k?; k
0
? which lie on a circle par-

allel to the xy-plane since kz is independently conserved. The

wave vectors in the summation in Eq. (7) are three

dimensional.

Within the Born approximation

Wk;k0 ¼
2p
�h

dðEk � Ek0 Þ
1

LxLyLz

ð
dx Uðx?Þeiðk�k0Þ�x

� �2

: (8)

Here, Lz; Ly and Lx are the crystal dimensions over which the

plane wave electron states are normalized and the length of

the “infinite” dislocation has been limited to the size of the

crystal along the z direction. Uðx?Þ is already defined in

Eq. (1) and it does not depend on the z coordinate. So going

to cylindrical coordinates, the z integral is just a delta func-

tion. To take the normalization, assume a finite box of size

Lz along the z axis. Therefore,
Ð1
�1 dzeiðkz�kz

0Þz � Lzdkz; k0z .

With d2
kz; k0z
¼ dkz; k0z , we have
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Wk;k0 ¼
2p
�h

dðEk � Ek0 Þdkz; k0z

� Lz

LxLyLz

Qe

2p�

ð
dx?K0ðx?=kÞeiðk?�k0?Þ�x?

� �2

: (9)

The h integral in Eq. (9) is just the integral representation of

the zero-order modified Bessel function of first kind, J0;Ð 2p
0

dhexpðijk? � k0?jx?coshÞ ¼ 2pJ0ðjk? �k0?jx?Þ. Further

using the identity19
Ð1

0
y dy K�ðayÞJ�ðbyÞ ¼ b�

a�ða2þb2Þ, here

� ¼ 0, the Fourier transform in Eq. (9) becomes4

Uðjk? � k0?jÞ ¼
Qek2

�ð1þ jk? � k0?j
2k2Þ

: (10)

The energy conserving delta function, dðEk � Ek0 Þ
¼ ð@E=@kÞ�1dðk � k0Þ ¼ ð�h2k=m�Þ�1ðk=k?Þdðk? � k0?Þ due

to dkz; k0z in the summation. Thus, as previously claimed,

both the perpendicular and the parallel components of the

electron momenta are separately conserved. Since, Rk0?
!

LxLy=ð2pÞ2
Ð

dk0?, an overall factor of area remains in the de-

nominator after the primed momenta have been integrated

over. This simply means that the scattering due to a single

charged dislocation is ineffective in a large sample.20 When

there are many charged dislocations within this area which

are all parallel, one can simply replace ðLxLyÞ�1
by Nd the

dislocation density per unit area if the interference terms can

be neglected.

IV. RESULTS

A. Transport lifetime

From Eq. (7), the relaxation time in the direction per-

pendicular to the dislocation axis is

s?ðk?Þ ¼
�h3�2

Q2e2k4m�Nd

½1þ ð2k?kÞ2�3=2: (11)

This is exactly what P€od€or had derived [Eq. (2)] and k? ¼ 0

implies a finite s? even after our rederivation. While in three

dimensions an electron with k¼ 0 is unphysical (there is no

associated phase space), an electron with k? ¼ 0 and kz 6¼ 0

corresponds to a physical situation. The inconsistency in the

final formula results from the breakdown of the validity of

the assumed solution, /k ¼ 0 for k? ¼ 0 in Eq. (4). This

condition is outside the scope of the present scheme of the

solution, which is otherwise consistent.

The anisotropy in s necessitates a further angular aver-

aging for a comparison with any physical quantity associated

with a measurement which involves a thermodynamic distri-

bution of electrons. This transport scattering time is directly

connected to mobility, l ¼ ðe=mÞhhsii, where hhii denote an

energy average, (see below) over a distribution function of

appropriate degeneracy. In a fully degenerate system, using

Eq. (15), this simplifies to hhstrii ¼ ð3=4Þ
Ð p

0
sin3hs? dh.

B. Quantum scattering time

A quantum scattering time, sq
?ðk?Þ is, by definition, Eq.

(7), but without the ð1� cos hÞ factor and may be calculated

similarly. This was done by Jena and Mishra.17

sq
?ðk?Þ ¼

�h3�2

Q2e2k4m�Nd

½1þ ð2k?kÞ2�3=2

1þ 2ðk?kÞ2
: (12)

However, the angular dependence of sq
? must also to be aver-

aged out. The meaningful quantity is h1=sqi ¼ ð2=pÞ
Ð p=2

0

½sqðhÞ��1dh and is often connected to the finite amplitude

and width of the Shubnikov-de Haas or de Haas-van Alphen

oscillations. The quantum scattering time may be looked

upon as an effective “Dingle” temperature, TD � ð�h=2pkBÞ
h1=sqi.

Nevertheless, while comparing Shubnikov amplitudes,

the scattering rates are better calculated between Landau

wave functions and with a density of states at the Fermi level

modified by the magnetic field, as was done long back by

Vinokur for the essentially the same problem.21

Furthermore, literature on the connection between scat-

tering times for dislocations’ strain field and de Haas-van

Alphen oscillation amplitudes in metals was a subject of

lively debate sometime back. Many parallel interpretations

for level broadening have been suggested.22 Some semiclass-

ical arguments even favour a small angle cutoff. This fact

may be particularly important in two dimensions where it

could rescue the quantum scattering time from a diver-

gence17 in a simple and physically meaningful way, the

small angle cutoff hc (in radians) being inversely propor-

tional to the Landau level index n, hc ’ p=2n.23,24

Despite the preceding remarks, the concept of a quan-

tum scattering time finds a widespread use in literature (for

example, Refs. 24–26). Therefore, we have plotted the suit-

ably defined ratio h1=sqihhstrii of the transport and quantum

scattering times for a three dimensional degenerate carrier

gas in Fig. 1. The graph is plotted as a function of the dimen-

sionless parameter, kF=qTF. qTF is the simple wave vector in-

dependent Thomas-Fermi screening function. The largeness

of this ratio is often regarded as a measure of “anisotropy” of

scattering.27 The real space anisotropy of the dislocation

potential is different from the anisotropy in its Fourier trans-

form, which is more a measure of the effective range of the

potential. An additional averaging causes the transport to

FIG. 1. The ratio of dislocation scattering limited transport and quantum

scattering times for a degenerate electron gas.
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quantum scattering times ratio to be larger than what was

calculated by in Ref. 17.

C. Mobility

In calculating mobility, the averaging procedure

employed by P€od€or has been called “unspecified” and hence

it is worked out below.4 For dislocations along the z-axis,

the current and electric field directions coincide as long as

the measurement is done in the xy-plane. Then, jx ¼ nehhvxii
and hhvxii ¼ l?Fx, where

hhvxii ¼

X
k
ðf0k þ /kÞvxX
k
ðf0 þ /kÞ

¼

X
k
/kvxX
k
f0k

(13)

or

rxx ¼
e2�h2

m�2
2

ð2pÞ3
ð

k2
x �

@f0

@E

� �
s?ðk?Þd3k (14)

or

rxx ¼
�h5�2

2p2m�3Q2Ndk
4

ðp

0

dh sin3h

�
ð1

0

dkk4 � @f0

@E

� �
½1þ ð2kk sin hÞ2�3=2: (15)

The integrals must now be evaluated numerically. Eq. (15)

has the unpleasant feature of depending very strongly on

screening length and thus at low temperatures turns out to be

dependent on the model used for the temperature dependent

of carrier concentration and screening. A simple analytic

expression guessed by interpolating the two integrals (
Ð

dh
and

Ð
dk) between the two extremes cases, when the first

term is much smaller and when it is much larger than the sec-

ond term in square brackets in Eq. (15). This is significantly

better than P€od€or’s high temperature approximation

(kk sin h	 1).12 The relative percentage errors are plotted in

Fig. 2 as a function of the dimensionless parameter 8m�kBTk2

�h2 .

It can be seen that this approximation of the integral never

deviates from the numerically calculated exact answer by

more than 5%.

Assuming that the electrons are distributed according to

Maxwell-Boltzmann distribution,

l?’
2�h3�2

ep1=2m�2 Q2Ndk
4

p1=3þ 15p
8

� �2=3
8k2m�kBT

�h2

" #3=2

(16)

and when the carrier gas is fully degenerate

ldeg
? ’

3�h5�2

4m�3Q2Ndk
4
TF

½ð4=3Þ2=3þð5p=16Þ2=3
4k2

Fk2
TF�

3=2: (17)

D. Hall factor

In most experiments, it is not the drift but the Hall mo-

bility which is measured. Under the assumption that the scat-

tering rate does not alter in presence of a magnetic field, B

and when the magnetic field is aligned with the dislocations’

axis, only the in-plane relaxation time comes into the picture.

Using the same line of arguments, it is easy to again establish

its existence for arbitrarily strong non-quantizing magnetic

fields. Then, if jx ¼ rxxEx þ rxyEy, the Hall scattering factor

rH is defined as

rH ¼ n e
rxy

Br2
xx

; (18)

where the off-diagonal conductivity, rxy, for carriers with

parabolic energy dispersion which are distributed along iso-

tropic constant energy surfaces is

rxy ¼
e3B

�h2m�

ð
d3k

4p3
s2
?
@f0

@E

@E

@kx

� �2

1þ es?B

m�

� �2
" #�1

: (19)

From Eqs. (14), (19), and (18), the Hall scattering factor

for nondegenerate carriers at high temperatures (i.e.,
8m�kBTk2

�h2 	 1) approaches a value of 2.07, obtained by drop-

ping the second term in square brackets in Eq. (14). At lower

temperatures, its value is dependent on the model of carrier

density and screening but always smaller. The anisotropy in

scattering makes the value higher than the Hall factor for

ionized impurity scattering which is 1.93. We see that there

can even be a factor of two error in the mobility estimate if

the Hall mobility is equated to the drift mobility.

E. Effect of dislocation tilt

Assume that dislocations are all parallel, but now at a

longitude / and latitude h with respect to the z-axis while

the measurement is being done in the xy-plane. A unit vector

along this dislocation axis is d̂ ¼ x̂ sin h sin /þ ŷ sin h cos /
þ ẑ cos h. Because the electric field is developed only along

the direction perpendicular to the dislocations’ axis, F?
¼ qj? ¼ q½j� ðj � d̂Þd̂� which yields (with cos and sin

abbreviated to c and s)

FIG. 2. The relative percentage errors (
lexact�lapprox

lexact
� 100) in our formula and

P€od€or’s approximation with respect to the exact expression evaluated

numerically. The graphs are plotted as a function of dimensionless parame-

ter 8m�kBTk2

�h2 .
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q0 ¼ q

1� s2hs2/ �s2hs/c/ �chshs/

�s2hs/c/ 1� s2hc2/ �chshs/

�chshs/ �chshs/ 1� c2h

2
64

3
75: (20)

Negative sign in the off diagonals indicates the direction of

the electric field developed. Note that tensor q0 is symmetric,

as it should be, to be consistent with Onsager relations.

F. Angular distribution of dislocations

The extreme anisotropy of the resistivity tensor is usu-

ally not seen experimentally. An obvious reason for this that

all the dislocations are not parallel to each other. Let us con-

sider the simplest case where the dislocation lines are distrib-

uted with a uniform distribution over angles. One can, of

course, average over the angles appearing in Eq. (20).28 This

averaging over the angles in the rotated resistivity tensor

amounts the use of Matthiessen’s rule and will not change

the temperature dependence of mobility.

For a better approximation, we again start from the line-

arized Boltzmann equation, Eq. (3). In the present case, the

relaxation time must be isotropic and therefore let the Ansatz
for the distribution function be

/ðkÞ ¼ � �he

m

@f0k

@Ek
sisoðkÞk � F: (21)

We shall further assume incoherent scattering such that the

scattering rates due to different dislocation lines add. If the

scattering rate due to an ith dislocation is Wi
k;k0 , then the total

rate is
P

i Wi
k;k0 .

Without loss of generality, one can choose the electron

wave vector k to be along the z-axis, k ¼ kẑ. If the axis of

the ith dislocation, di is at an angle (h;/) with respect to the

z-axis, then the unit vector along the dislocation axis is given

by d̂
i ¼ sin h sin /x̂ þ sin h cos /ŷ þ cos hẑ. The component

of the wave vector perpendicular to the dislocation axis is

given by

ki
? ¼ k� ðk � diÞd̂ i

or

ki
?¼ k ½ð1� cos2hÞ ẑ � cos h sin h cos / ŷ

� cos h sin h sin / x̂�: (22)

Substituting back in the Boltzmann equation, we get

Fzkz ¼ �sisoðkÞF �
X

i

�ki
?

1

sðki
?Þ

� �
: (23)

Converting the sum into an integral,

Fzkz ¼ sisoðkÞ
1

4p
F �
ð

dXki
?

1

sðki
?Þ
: (24)

Since the averaging over the dislocation orientations is

equivalent to an averaging over the electron wave vectors,

the expression for the relaxation time becomes

1

sisoðkÞ
¼ Q2e2k4m�Nd

2�h3�2

ðp

0

dh
sin3 h

½1þ 4k2k2sin2 h�3=2
; (25)

where the / integral has been performed and we have noted

that
Ð 2p

0
d/ sin / ¼

Ð 2p
0

d/ cos / ¼ 0. From here on, it is

straightforward to calculate the isotropic mobility, although

it is best done numerically.29 Fig. 3 shows ratio of the per-

pendicular to the isotropic scattering times for a degenerate

electron gas as a function of the dimensionless ratio kf=qTF

where kF is the Fermi wave vector and qTF is the Fourier

transform of the (for example Thomas-Fermi) screening

length.

V. SUMMARY

In this paper, we attempted to comprehensively formu-

late the problem of electron transport in semiconductors in

presence of charged dislocations within the framework of the

conventional linearized Boltzmann transport theory with the

aim of filling gaps in the existing theory and to derive several

new results. We showed that a relaxation time can be defined

for scattering of carriers by charged dislocations. Difference

between quantum and classical scattering times was dis-

cussed and it was pointed out that the anisotropy necessitates

an appropriate angular averaging. A new approximate for-

mula for mobility was derived and it was shown to be within

5% of the exact result at all temperatures. The value of the

Hall scattering factor and the effect of dislocation tilt on

resistivity were determined. Finally, we derived a new

expression for the relaxation time when the angular orienta-

tion of dislocations is isotropic.

APPENDIX:VARIATIONAL CALCULATION OF
MOBILITY

As a consistency check, let us also consider another

method of calculating mobility that avoids the notion of a

relaxation time altogether. Following Ziman, one can

attempt a direct computation of resistivity using thermody-

namic arguments and the variational principle.18 In presence

of an external electric field, we can write an electron distri-

bution function fk that is shifted from its k¼ 0 mean value at

FIG. 3. The ratio of dislocation scattering limited transport and isotropic

scattering times for a degenerate electron gas.
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equilibrium as fk ¼ f0k � Uk
@f0k

@nk
. nk is the energy gained by

the electron from the applied electric field. Uk and /k of

Sec. III are obviously related, /k ¼ �Uk
@f0k

@nk
. The entropy

generated per unit time due to current j caused by the applied

electric field through the Joule heat dissipated in the material

on account of its finite resistivity is _S ¼ qj2=T. Using this

thermodynamic argument and the (approximate) expression

for entropy in terms of the (perturbed) distribution function,

one can write down an expression for resistivity in terms of

Uk and the scattering rates Wk;k0 .

q ¼ 2p3

kBT

X
k0

ð
dkWk;k0 ½Uk � U0k�

2f0k½1� f0k0 �ð
dkevkUk

@f0k

@nk

� �2
: (A1)

Wk;k0 are the same as those computed in Sec. III. According

to the variational principle, for any trial function Uk the

value of the ratio in Eq. (A1) will be greater than or equal to

the value of true resistivity, i.e., Eq. (A1) will yield an upper

bound of the true resistivity. Thus the computation of resis-

tivity within this framework involves guessing a form for the

Uk in terms of a variational parameter s and then determin-

ing the value of s that minimizes the resistivity computed via

Eq. (A1). Writing our trial function30

Uk ¼ �s0k � ûjkjs; (A2)

where û is a unit vector parallel to the applied electric field,

we find that Eq. (25) in the high temperature limit yields

q ¼ p3NdQ2k�h3

128m�ðKBTÞ3�2

Cðsþ 1Þ
Cððsþ 5Þ=2Þ : (A3)

In the above equation, q is minimum for s¼ 3. Hence, the

calculated mobility using variational principle in high tem-

perature limit is

lvar ¼
768

ffiffiffi
2
p

p3=2

ðKBTÞ3=2�2

m�1=2eNdQ2k
: (A4)

Comparing this with the high temperature limit of expression

for mobility computed in Eq. (15), we find that the two

expressions only differ by a numerical constant with

lvar ¼ 1:296 l?. Since the variational principle yields an

upper bound on the electrical resistivity, a lower resistivity

(high mobility) computed here is probably a better estimate

though the small difference in the multiplicative constants

appearing in the two expression is experimentally insignifi-

cant, especially because Nd is a never known that precisely.
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