
CHAPTER 1

Completeness of R

1.1. Completeness

R is an ordered Archimedean field ­ so is Q. What makes R special is that it is complete. To understand this
notion, we first need a couple of definitions :

Definition 1.1.1. Given an ordered set X and A ⊂ X, an element x ∈ X is called an upper bound of A if
x ≥ a, ∀a ∈ A.

A special kind of upper bound is

Definition 1.1.2. s ∈ X is called the least upper bound of A, denoted by l.u.b. A or sup A if

(i) s is an upper bound of A.

(ii) if x ∈ X is an upper bound of A, then x ≥ s.

Lemma 1.1.3. The least upper bound of a set A, if it exists, is unique.

Proof. Let s1 and s2 be two least upper bounds of A. Now since s1 is an upper bound of A (by (i) of definition
1.1.1) and s2 is a least upper bound, (ii) of definition 1.1.1 shows that s1 ≥ s2. Similarly since s2 is an upper bound
of A and s1 is a least upper bound, we have s2 ≥ s1. Thus s1 = s2. �

Axiom 1.1.4. Axiom of Completeness If A ⊂ R has an upper bound, then it has a least upper bound (sup A
may or may not be an element of A).

Problem 1.1.5. Prove that the bounded subset S ⊂ Q =
�
r ∈ Q : r2 < 2

�
has no least upper bound in Q. (Hence

Q is not complete!)

1.2. Density of Q in R

Theorem 1.2.1. (Archimedean property) (i) Given any number x ∈ R, ∃n ∈ N satisfying n > x.

(ii) Given any real number y > 0, ∃n ∈ N satisfying 1
n

< y.

Proof. (i) says that N is not bounded above. Assume to the contrary that it is. Then α = sup N will exist.
Since α − 1 is not an upper bound of N, there will be n ∈ N : α − 1 < n. Then α < n + 1. Since n + 1 ∈ N this
contradicts the fact that α is an upper bound.

(ii) follows from (i) by letting x = 1/y. �

The above property of N is so well known as to seem trivial. However, this leads to a very important fact about
how Q fits inside R.

Theorem 1.2.2. For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.

Proof. Let us assume 0 ≤ a < b ­ the other cases follow quickly from this one. We seek m, n ∈ N :

a <
m

n
< b

From theorem 1.2.1(ii) we can choose n ∈ N :
1

n
< b− a.

With this choice of n, we now choose m so that

m− 1 ≤ na < m.

This means that a < m

n
. It also means that a ≥ m

n
− 1

n
so that b = (b− a) + a > 1

n
+

�
m

n
− 1

n

�
= m

n
. �

3



1.4. SEQUENCE AND SUBSEQUENCE 4

This result is often expressed by saying that Q is dense in R.

Corollary 1.2.3. Given any two real numbers a < b, there exists an irrational number t satisfying a < t < b.

Proof. Use theorem 1.2.2 with a, b replaced by a−
√

2, b−
√

2. �

Thus the irrationals are also dense in R. In general, we define a set G ⊆ R to be dense in R if, given any two real
numbers a and b it is possible to find x ∈ G such that a < x < b.

1.3. Nested Interval Property (NIP)

Theorem 1.3.1. If I1, I2, . . . , In, . . . be a collection of nested closed intervals, I1 ⊇ I2 ⊇ . . . ⊇ In ⊇ . . . then

∩∞
n=1In �= ∅

Proof. Denote In by [an, bn]. Then I1 ⊇ I2 ⊇ . . . ⊇ In ⊇ . . . implies

a1 ≤ a2 ≤ . . . ≤ an ≤ . . . ≤ bn ≤ . . . ≤ b2 ≤ b1.

Consider the set A = {a1, a2, . . . , an, . . .}. Each of the bi is an upper bound of A. Since A ⊆ R has an upper
bound, it has a least upper bound, say s. Now, since s = sup A, it is an upper bound of a, s ≥ an . Again, bn is
an upper bound of A and s is the least upper bound. Thus bn ≥ s. So, an ≤ s ≤ bnand thus s ∈ In, ∀n. Thus
s ∈ ∩∞

n=1In. �

Corollary 1.3.2. If in the above diam In ≡ bn − an → 0, the intersection is the singleton set {s}.

1.4. Sequence and subsequence

Definition 1.4.1. A sequence in R is a function f whose domain is the set of natural numbers f : N → R.

We often denote a sequence by a1, a2, . . . or (an) where an = f (n) , ∀n ∈ N. A very important notion in the theory
of sequences is that of convergence :

Definition 1.4.2. A sequence (an) is defined to converge to a limit a, written as

lim
n→∞

an = a or (an) → a

if ∀� > 0,∃N ∈ N : n > N =⇒ |an − a| < �.

Exercise 1.4.3. Prove that the limit of a sequence, if it exists, is unique.

Definition 1.4.4. If a sequence does not converge, it is said to diverge.

Example 1.4.5. The sequence
�
1
n

�
= 1, 1

2
, 1
3
, . . . converges to 0, while the sequence

�
(−1)

n−1
�

= 1,−1, 1,−1, . . .

diverges.

Definition 1.4.6. Let (an) be a sequence of real numbers and n1 < n2 < . . . be an increasing sequence of natural
numbers. Then an1

, an2
, . . . is called a subsequence of (an) and is denoted by (ank

).

Theorem 1.4.7. If a sequence converges then every subsequence converges to the same limit.

Proof. Let (an) → a. This means that ∀� > 0, ∃N ∈ N : n > N =⇒ |an − a| < �. Since nk ≥ k (why?),
k > N =⇒ nk > N and then |ank

− a| < �. Thus (ank
) converges to a. �
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1.5. Monotone Convergence Theorem

Theorem 1.5.1. If the sequence (an) is monotone increasing and bounded above, then it is convergent.

Proof. The set {an} being bounded it has a least upper bound, say s, by the AoC. Since s is the least upper
bound, for � > 0 the number s − � is not an upper bound of A. This means that ∃N ∈ N such that aN > s − �.
Since (an) is increasing, an ≥ aN > s− � ∀n > N . Also an ≤ s < s + �, ∀n. This implies that ∀� > 0, ∃N ∈ N such
that n > N =⇒ |an − s| < �. Thus (an) converges to s. �

Corollary 1.5.2. A monotone decreasing sequence that is bounded below converges to a limit.

We had previously proven the nested interval property using the Axiom of Completeness. However, we could also
have used the monotone convergence theorem to prove it. Note that I1 ⊇ I2 ⊇ . . . ⊇ In ⊇ . . . implies

a1 ≤ a2 ≤ . . . ≤ an ≤ . . . ≤ bn ≤ . . . ≤ b2 ≤ b1.

Thus the sequence a1, a2, . . . is monotone increasing and bounded (each bn is an upper bound). Then by 1.5.1 it
converges to, say a. It is easy to see that this limit a is in each interval [an, bn] and thus, in their intersection.

Conversely, we can also use the NIP to prove MCT. If b is an upper bound of (an), start by considering the closed
interval I1 = [a1, b1] where b1 = b. Define c = a1+b1

2
. If ∃am > c, define I2 = [a2, b2] = [c, b1], otherwise define

I2 = [a2, b2] = [a1, c]. Continuing similarly, we can construct a nested sequence of closed intervals I1 ⊇ I2 ⊇ . . .
with diam In → 0. Corollary 1.3.2 implies that ∩∞

n=1In = {s}. It is not difficult to prove that (an) → s.

1.6. Bolzano­Weierstrass Theorem

Theorem 1.6.1. Every bounded sequence in R has a convergent subsequence.

Proof. Let M be a bound of the sequence (an), so that |an| < M for all n. Consider I0 = [−M, M ]. We will
construct a subsequence of (an) in the following manner :

Bisect the interval I0 into two closed intervals [−M, 0] and [0, M ] (note that we do not require these intervals to
be disjoint ­ just that theit union is I0 ). At least one of these is going to contain an infinite number of terms
of the sequence. Call it I1 and choose a term an1

∈ I1 (if both halves have an infinite number of terms of the
sequence let us decide to arbitrarily choose the first one) . Next bisect I1 similarly and name the half that contains
an infinite number of terms of I2 . Since I2 contains an infinite number of terms of (an), it will be possible to
choose an2

∈ I2 such that n2 > n1. Proceeding in this way we construct a subsequence an1
, an2

, . . . , ank
, . . . with

n1 < n2 < . . . < nk <, . . . as well as a sequence of nested closed intervals I1 ⊇ I2 ⊇ . . . ⊇ Ik ⊇ . . . such that
ank

∈ Ik. By corollary 1.3.2 the intersection ∩∞
k=1Ik contains a single element, say x. We now claim that the

subsequence (ank
) converges to x.

It is easy to see that for y, z ∈ Ik we have |y − z| ≤ M

2k−1 . Since ank
, x ∈ Ik it is easy to see that ∀� > 0,

∃K ∈ N : k > K =⇒ |ank
− x| < �. �

In the above, we have proved the Bolzano­Weierstrass theorem by using the nested interval property. We will now
outline an alternate proof using the monotone convergence theorem :

Proof. Let (an) be a bounded sequence. Since ∀m ∈ N the set Am = {an : n ≥ m} is bounded, we can define
another sequence (bm) by bm = sup Am. Again, Am+1 ⊆ Am =⇒ bm+1 ≤ bm . Thus (bm) is a monotone decreasing
bounded sequence and so by the monotone convergence theorem, it has a limit, say b.

We will now construct a subsequence of (an) that converges to b. Since (bm) → b we can find m1 ∈ N such that
|bm1

− b| < 1
2
. Since bm1

= sup Am1
, ∃n1 ≥ m1 : bm1

− 1
2
≤ an1

≤ bm1
. Thus

|an1
− b| ≤ |an1

− bm1
|+ |bm1

− b| <
1

2
+

1

2
= 1.

We can now find m2 > n1 : |bm2
− b| < 1

4
. Again, ∃n2 ≥ m2 : bm2

− 1
4

< an2
< bm2

and similarly we can show

that |an2
− b| < 1

2
. Proceeding like this, we can find n1 < n2 < n3 < . . . |ank

− b| < 1
k
∀k ∈ N (use mathematical

induction to prove rigorously that this can be done). This subsequence (ank
) obviously converges to b. �



1.8. DESCRIPTIONS OF COMPLETENESS 6

1.7. Cauchy convergence

Definition 1.7.1. Cauchy sequence : A sequence (an) in R is called a Cauchy sequence if ∀� > 0, ∃N ∈ N such
that m, n > N =⇒

|am − an| < �.

Note that the definition of a sequence being Cauchy, while being very similar to the definition of a sequence
converging, differs from it in that it refers only to the tail of the sequence itself and not to some (usually unknown)
limit.

Theorem 1.7.2. Every convergent sequence is a Cauchy sequence.

Proof. Let (an) → a. Then ∀� > 0,∃N ∈ N such that n > N =⇒ |am − a| < �

2
. Now, choose m, n > N .

Then

|am − an| ≤ |am − a|+ |an − a| <
�

2
+

�

2
= �

�

What makes the notion of a Cauchy sequence extremely important in R is that here the converse is also true ­ so
that Cauchy convergence (which is easier to test) can be used as a criterion for convergence. To prove this, let us
first prove the following lemma

Lemma 1.7.3. A Cauchy sequence is bounded.

Proof. Let (an) be a Cauchy sequence. Then ∃m ∈ N such that n > m =⇒ |an − am| < 1. Then ∀n > m
we have |an| ≤ |am| + |an − am| < |am| + 1. Thus |am| + 1 is an upper bound for the “tail” of the sequence. This
leaves out the first m terms, a1, a2, . . . , am. It is easy to see that

M = max {|a1| , |a2| , . . . , |am − 1| , |am|+ 1}

is an upper bound of (an). �

Now that we have a bounded sequence, we can use the Bolzano­Weierstrass theorem to prove

Theorem 1.7.4. Every Cauchy sequence in R is convergent.

Proof. Let (an) be Cauchy. Then since it is bounded, the Bolzano­Weierstrass theorem says that it must have
a convergent subsequence (ank

). Let a be the limit of this subsequence. We claim that a is also the limit of (an).

Since (an) is Cauchy, ∃N ∈ N such that m, n > N =⇒ |am − an| < �

2
. Again, since (ank

) → a, we can choose
nk > N such that |ank

− a| < �

2
. Now if n > nk we have

|an − a| ≤ |an − ank
|+ |ank

− a| <
�

2
+

�

2
= �

so that (an) → a. �

Apart from the fact that the Cauchy criterion is a convenient way of figuring out whether a given sequence is
converging, theorem 1.7.4 is an alternate way of characterising completeness.

1.8. Descriptions of Completeness

In the discussion so far, we had introduced the notion that R is complete by using the axiom of completeness. We
have seen several consequences of the AoC, which include the NIP, the MCT, BW and CC. So far the logical chain
of reasoning that we have seen can be summarised by

AoC






=⇒ NIP =⇒ BW =⇒ CC

⇑ ⇓ ��

=⇒ MCT

We can prove the equivalence between the AoC, the NIP and the MCT by proving

Proposition 1.8.1. The axiom of completeness can be derived from the nested interval property.



1.8. DESCRIPTIONS OF COMPLETENESS 7

Proof. Let b0 be an upper bound of the set A ⊆ R and let a0 ∈ R not be an upper bound of A. Consider
the closed interval I0 = [a0, b0]. Then I0 ∩ A �= ∅. Let c = a0+b0

2
. If ∃a ∈ A, a > c then set a1 = c, b1 = b0, else

set a1 = a0, b1 = c. This defines the closed interval I1 = [a1, b1] . Proceeding in this fashion, we can construct a
sequence of closed nested intervals I0 ⊆ I1 ⊆ I2 ⊆ . . . in which In = [an, bn] where an is not an upper bound of A
and bn is an upper bound of A. Then by NIP, theorem 1.3.1, and its corollary 1.3.2, ∩∞

n=1In = {s}. We will now
show that s is the least upper bound of A.

Let us first show that s is an upper bound of A. Assume that ∃a ∈ A, a > s. Since diam In → 0, ∃m ∈ N such that
diam Im < a− s. Since s ∈ Im, a /∈ Im and so a > bm. This is a contradiction, since bm is an upper bound of A.

Again, let l < s. We have to show that l can not be an upper bound of A. In this case, we use the fact that ∃m ∈ N

such that diam Im < s − l. Since s ∈ Im, l /∈ Im and so l < am. Since am ∈ A l can not be an upper bound of
A. �

Since we have now shown the equivalence of AoC, NIP and MCT ­ we now only need to show that CC implies any
of them and we have proven that all five of AoC,NIP, MCT, BW and CC are equivalent!

Proposition 1.8.2. CC implies MCT.

Proof. Let (an) be a monotone increasing sequence bounded above by b. We have to show that (an) is a
Cauchy sequence. Let us assume that it is not. Then ∃� > 0 such that ∀N ∈ N, ∃m, n > N : |am − an| > �. Since
(am) is monotone increasing, this means that ∀n ∈ N, ∃m > n : am − an > �. So, starting from n0 = 1, we see
that ∃n1 > n0 : an1

− an0
> �, ∃n2 > n1 : an2

− an1
> �, and so on. In this way we can build up a sequence

n0, n1, n2, . . . with the propert that ani+1
− ani

> �. This means that anr
− an0

> r�. By choosing r > b−a1

�
(by

theorem 1.2.1 this is always possible), we get

anr
− a1 > b− a1 =⇒ anr

> b

which contradicts the fact that (an) is bounded by b. So (an) is Cauchy and thus it converges. �

Problem 1.8.3. Starting from the Bolzano­Weierstrass theorem prove the nested interval property.


