MA 311 : Analysis in \mathbb{R}^{n}

Problem Set 1

Due date: 21/08/09 before 2 PM

Q 1) Let $A \subseteq \mathbb{R}$ be bounded above and $c \in \mathbb{R}$. Define the sets $c+A$ and $c A$ by

$$
\begin{aligned}
c+A & =\{c+a: a \in A\} \\
c A & =\{c a: a \in A\}
\end{aligned}
$$

(a) Show that $\sup (c+A)=c+\sup A$.
(b) If $c \geq 0$, then $\sup (c A)=c \sup A$.
(c) What can you say about $\sup (c A)$ if $c<0$?

Q 2) Compute, without proofs, $\sup A$ and $\inf A$ for the following sets :
(a) $A=\left\{n \in \mathbb{N}: n^{2}<10\right\}$
(b) $A=\{n /(2 n+1): n \in \mathbb{N}\}$

Q 3) If $\left(b_{n}\right) \rightarrow b$ prove that $\left(\left|b_{n}\right|\right) \rightarrow|b|$. Is the converse true?
Q 4) Staring from the monotone convergence theorem, prove the nested interval property.

Hint : Look at the proof of NIP that we discussed in class and see whether you can figure out how to use the monotone convergence theorem there.

Q 5) Starting from the nested interval property, prove the monotone convergence theorem.

Hint : $\left(a_{n}\right)$ is bounded by b. Consider $I_{0}=\left[a_{0}, b_{0}\right]$ with $a_{0}=a_{1}-1$ and $b_{0}=b$. Repeatedly bisect the interval, ensuring that at any stage you choose the half that narrows down to the limit.

