MA 311 : Analysis in \mathbb{R}^n

Problem Set 1

Due date : 21/08/09 before 2 PM

Q 1) Let $A \subseteq \mathbb{R}$ be bounded above and $c \in \mathbb{R}$. Define the sets c + A and cA by

$$c + A = \{c + a : a \in A\}$$

 $cA = \{ca : a \in A\}.$

(a) Show that $\sup (c + A) = c + \sup A$.

(b) If $c \ge 0$, then $\sup (cA) = c \sup A$.

(c) What can you say about $\sup (cA)$ if c < 0?

 \mathbf{Q} 2) Compute, without proofs, sup A and inf A for the following sets :

(a)
$$A = \{n \in \mathbb{N} : n^2 < 10\}$$

(b) $A = \{n/(2n+1) : n \in \mathbb{N}\}$

Q 3) If $(b_n) \to b$ prove that $(|b_n|) \to |b|$. Is the converse true?

Q 4) Staring from the monotone convergence theorem, prove the nested interval property.

Hint : Look at the proof of NIP that we discussed in class and see whether you can figure out how to use the monotone convergence theorem there.

Q 5) Starting from the nested interval property, prove the monotone convergence theorem.

Hint: (a_n) is bounded by b. Consider $I_0 = [a_0, b_0]$ with $a_0 = a_1 - 1$ and $b_0 = b$. Repeatedly bisect the interval, ensuring that at any stage you choose the half that narrows down to the limit.