MA311 : Analysis in \mathbb{R}^{n}

Problem set 5

Due Date : 10/11/09 before 2PM
Q 1) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x|y|}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq 0 \\ 0 & (x, y)=0\end{cases}
$$

Show that f is not differentiable at the origin.
Q 2) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that $|f(x)|<|x|^{2}$. Show that f is differentiable at 0 .
Q 3) Two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are called equal up to the nth order at $a \in \mathbb{R}$ if

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-g(a+h)}{h^{n}}=0
$$

(a) Show that f is differentiable at a iff there is a function g of the form $g(x)=\alpha_{0}+\alpha_{1}(x-a)$ such that f and g are equal up to the first order at a.
(b) If $f^{\prime}(a), f^{\prime \prime}(a), \ldots, f^{(n)}(a)$ exist, show that f and the function g defined by

$$
g(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

are equal up to the nth order at a.
Q 4) Find the differential for the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
f(x, y)=\left(\sin (x y), \sin (x \sin y), x^{y}\right)
$$

Q 5) A function $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is bilinear if for $x, x_{1}, x_{2} \in \mathbb{R}^{n}, y, y_{1} y_{2} \in \mathbb{R}^{m}$ and $a \in \mathbb{R}$ we have

$$
\begin{aligned}
f(a x, y) & =a f(x, y)=f(x, a y) \\
f\left(x_{1}+x_{2}, y\right) & =f\left(x_{1}, y\right)+f\left(x_{2}, y\right) \\
f\left(x, y_{1}+y_{2}\right) & =f\left(x, y_{1}\right)+f\left(x, y_{2}\right)
\end{aligned}
$$

(a) Prove that if f is bilinear, then

$$
\lim _{(h, k) \rightarrow 0} \frac{|f(h, k)|}{|(h, k)|}=0
$$

(b) Prove that $\operatorname{Df}(a, b)(x, y)=f(a, y)+f(x, b)$.

