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Why Statistics?

Need for Statistics

It is often said that the language of science is mathematics. It could
well be said that the language of experimental science is statistics. It is
through statistical concepts that we quantify the correspondence
between theoretical predictions and experimental observations.

Kyle Cranmer, 1503.07622
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Why Statistics?

Need for Statistics

... we quantify the correspondence between theoretical predictions
and experimental observations.

Positive outcome
Peak in invariant mass distribution
of two photons⇒

Higgs mass (in GeV) =
125.09± 0.21(stat.)± 0.11(syst.)
(ATLAS + CMS)

I Parameter estimation
I Hypothesis testing
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Why Statistics?

Need for Statistics

... we quantify the correspondence between theoretical predictions
and experimental observations.

Null outcome
No conclusive evidence of signals
of Higgs boson at LEP⇒

mH > 114.3 GeV at 95% C.L.
Best fit for mH

Upper limit on mH (SM like)

I Parameter limitation
I Hypothesis testing
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What is Statistics?
As a discipline

What is Statistics?

Statistics is a discipline which is concerned with:

I designing experiments and other data collection
(like simulations),

I summarizing information to aid understanding
(in terms of quantifiers, estimators),

I drawing conclusions from data
(translating quantifiers into model parameters),

I estimating the present or predicting the future
(post-diction) or (pre-diction)
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What is Statistics?
As a quantifier

Statistics ≡ quantifiers

Let D = {x1, x2, ... , xN} be a large set of data.

I Histogram, frequency
distribution

I Cumulative distribution,
I Median center of distribution
I Mode, most frequent
I Mean, center of mass
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What is Statistics?
As a quantifier

Moments of distribution

Mean
Center of mass for a given data set

〈x〉 =
1

N

N∑
i=1

xi

Mean for a given histogram

〈x〉 =

(
H∑
i=1

wi

)−1 H∑
i=1

wi xi

Here H is number of histograms
and wi is the frequency in the i th

histogram.

Higher Moments

For a given data set nth moment is:

〈xn〉 =
1

N

N∑
i=1

xni

and for a given histogram is:

〈xn〉 =

(
H∑
i=1

wi

)−1 H∑
i=1

wi x
n
i

The mean is the first (n = 1)
moment. Other important
quantifier is related to 〈x2〉.
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What is Statistics?
As a quantifier

Moments of distribution

Variance
Mean or average, 〈x〉 is a measure
of center of the data. Variance
measures the spread of data
around the mean. Since we have:

〈(x − 〈x〉)〉 = 0

The variance is defines as

V = 〈(x − 〈x〉)2〉 = 〈x2〉 − 〈x〉2

Higher Moments

Show:
I 〈(x − 〈x〉)3〉 =
〈x3〉+ 2〈x〉3 − 3〈x〉〈x2〉
Skewness

I 〈(x − 〈x〉)4〉 = 〈x4〉 − 3〈x〉4 +
6〈x2〉〈x〉2 − 4〈x〉〈x3〉
Kurtosis

Show these relations numerically
during Tutorials.
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What is Statistics?
Data Modelling

Data Modelling ≡ Data Compression

I We have D = {x1, x2, ... , xN}, a large set of data points.
I Chosing H number of bins, the data set can be converted into a

histogram (frequency distribution). Now a set of N data points
are represented or modelled by set of 2H number, H for the bin
centers and H for frequencies. This is the first step of modelling,
where we replace a large set of data by its frequency distribution.

I Next level modelling involves finding a functional form of the
frequency distribution. Then we can replace the 2H numbers
describing the histogram with few moments 〈xn〉, which are
parameters of its functional approximation.

I Example: If the shape of the histogram is Gaussian, it is
parametrized with the mean and the variance.

D ⇒ 〈x〉 ±
√
V = 〈x〉 ±

√
〈x2〉 − 〈x〉2
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Probability
Histograms as Probability Distribution

Histogram ≡ Probabilities

A group of 50
people has
following age
distribution

Age #
0− 5 2

5− 10 8
10− 15 15
15− 20 14
20− 25 7
25− 30 4

Randomly choose a person
I What is the probability of

age below 15 years?
I Probability of age above 25

year?
I Probability of age between

10 and 20 years?

Ans: 50%, 8%, 58%

Probability density =
probability/(bin width)
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Probability
Histograms as Probability Distribution

Probability Density Functions

I If p(x) is the PDF of x then
p(x)dx is the probability of
finding the value between x
and x + dx .

I
∫
R
dx p(x) = 1, R is the range

of variable x .
I p(x) ≥ 0 for x ∈ R

Uniform (x , a, b), x ∈ [a, b]

1

b − a

Exponential (x , a), x ∈ [0,∞]

1

a
exp(−x/a)

Gaussian (x , µ, σ), x ∈ [−∞,∞]

1√
2πσ

exp

[
(x − µ)2

2σ2

]

Ritesh Singh Statistics: Lecture –1 12 / 16



Probability
Probability Theory

Kolmogorov axiom

Let S is the set of events. Let A and
B be the subsets of S .

I For each A ⊂ S , there is a
real-valued function P such
that P(A) ≥ 0.

I P(S) = 1

I For A ∩ B = φ
P(A ∪ B) = P(A) + P(B)

These are Kolmogorov axioms for
the function P to be probability.

Many other properties of
probability can be deduced from
these.

I Probability of A or B is
P(A ∪ B)

I Probability of A and B is
P(A ∩ B)

I P(Ā) = 1− P(A), Ā is
complement of A w.r.t. S

I P(A ∪ Ā) = 1

I P(φ) = 0

I If A ⊂ B, then P(A) ≤ P(B)

I P(A ∪ B) =
P(A) + P(B)− P(A ∩ B)
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complement of A w.r.t. S

I P(A ∪ Ā) = 1
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I P(Ā) = 1− P(A), Ā is
complement of A w.r.t. S

I P(A ∪ Ā) = 1
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the function P to be probability.

Many other properties of
probability can be deduced from
these.

I Probability of A or B is
P(A ∪ B)

I Probability of A and B is
P(A ∩ B)

I P(Ā) = 1− P(A), Ā is
complement of A w.r.t. S

I P(A ∪ Ā) = 1

I P(φ) = 0

I If A ⊂ B, then P(A) ≤ P(B)

I P(A ∪ B) =
P(A) + P(B)− P(A ∩ B)
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Probability
Probability Theory

Conditional Probability

If A and B are independent then
probability of A and B

P(A ∩ B) = P(A) P(B)

I Month = April (say A) and
year being even (say B) is
independent of each other,
since there is April in every
year.

I 29 February (A) and
even/odd-ness of year (B) is
not independent.

Conditional probability of A given
B (with P(B) 6= 0) is given by

P(A|B) =
P(A ∩ B)

P(B)

If A and B are independent

P(A|B) =
P(A ∩ B)

P(B)
= P(A)

i.e. When A and B are
independent, then the conditional
probability of A given B does not
depend upon B at all.
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Probability
Probability Theory

Bayes’ Theorem

Probability of A given B is

P(A|B) =
P(A ∩ B)

P(B)

and probability of B given A is

P(B|A) =
P(B ∩ A)

P(A)

Since P(A ∩ B) = P(B ∩ A)

P(A|B) =
P(B|A) P(A)

P(B)

Let’s assume S is composed of
disjoint subsets Ai , thus S = ∪iAi

Further

B = B∩S = B∩(∪iAi ) = ∪i (B∩Ai )

P(B) =
∑
i

P(B ∩ Ai )

=
∑
i

P(B|Ai )P(Ai )

P(A|B) =
P(B|A) P(A)∑
i P(B|Ai )P(Ai )
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Probability
Probability Theory

An example of Bayes’ Theorem

The probability of having
AIDS(prior to any tests) for a given
population
P(AIDS) = 0.001
P(no AIDS) = 0.999

Consider a test with results + or −
and conditional probabilities as
P(+|AIDS) = 0.98
P(−|AIDS) = 0.02

P(+|no AIDS) = 0.03
P(−|no AIDS) = 0.98

Follwing questions can be asked
and answered:

I What is the probability for
find +(−) result for the
population?
0.03095 (0.96905)

I If the result is +, what is the
likelihood of person suffring
from AIDS?
0.03166

I If the result is −, what is the
likelihood of person still
suffring from AIDS?
2.06× 10−5
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