Statistical Methods Problem Sheet 3

1. Histogram making as Bernoulli trials:

- (a) Generate a sample of uniform random numbers, say Nsample = 100.
- (b) Divide the range [0, 1.0] in Nbin = 50 bins and look at the count in the third bin n3, i.e. the count for $x \in [3dx, 4dx]$. Here dx = 1.0/Nb.
- (c) Repeat the above process Ntrials = 100 times and add each value of n3 to a histogram. Comment on the shape of the hisogram.
- 2. **Poisson and Gaussian distribution:** Run the above code for Nbin=25 and Nbin = 5. Comment on the shapes of the distributions of n3 you get in these two examples.

3. Acceptance/rejection method to estimate value of π :

- (a) Generate two uniform random numbers r_1 and r_2 between 0.0 and 1.0
- (b) Accept the 2-dimensional point (r_1, r_2) , i.e. count it, if $\sqrt{r_1^2 + r_2^2} \le 1$.
- (c) Repeate above step for N_t number of trials.
- (d) The acceptance rate, $A = count/N_t$ is an estimator of $\pi/4$. Plot the error $abs(A \pi/4)$ as a function of N_t and comment on its shape. (Does is look like $const/\sqrt{N_t}$?)

4. Maximum Likelihood Estimation:

- (a) Download the codes fixexp.C and fixexppretty.C from the website http://www.iiserkol.ac.in/ ritesh.singh/serc2015.html
- (b) Follow the instructions in the Tutorial session.