Statistical Methods

Problem Sheet 3

1. Histogram making as Bernoulli trials:

(a) Generate a sample of uniform random numbers, say Nsample $=100$.
(b) Divide the range $[0,1.0]$ in Nbin $=50$ bins and look at the count in the third bin n3, i.e. the count for $x \in[3 d x, 4 d x]$. Here $d x=1.0 / \mathrm{Nb}$.
(c) Repeat the above process Ntrials $=100$ times and add each value of n 3 to a histogram. Comment on the shape of the hisogram.
2. Poisson and Gaussian distribution: Run the above code for $\mathrm{Nbin}=25$ and Nb in $=5$. Comment on the shapes of the distributions of n3 you get in these two examples.
3. Acceptance/rejection method to estimate value of π :
(a) Generate two uniform random numbers r_{1} and r_{2} between 0.0 and 1.0
(b) Accept the 2-dimensional point $\left(r_{1}, r_{2}\right)$, i.e. count it, if $\sqrt{r_{1}^{2}+r_{2}^{2}} \leq 1$.
(c) Repeate above step for N_{t} number of trials.
(d) The acceptance rate, $A=$ count $/ N_{t}$ is an estimator of $\pi / 4$. Plot the error $a b s(A-\pi / 4)$ as a function of N_{t} and comment on its shape. (Does is look like const/ $\sqrt{N_{t}}$?)
4. Maximum Likelihood Estimation:
(a) Download the codes fixexp.C and fixexppretty.C from the website http://www.iiserkol.ac.in/ ritesh.singh/serc2015.html
(b) Follow the instructions in the Tutorial session.

