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Abstract The origin of the genetic code marked a major transition from a plausible RNA
world to the world of DNA and proteins and is an important milestone in our understanding of
the origin of life. We examine the efficacy of the physico-chemical hypothesis of code origin
by carrying out simulations of code-sequence coevolution in finite populations in stages,
leading first to the emergence of ten amino acid code(s) and subsequently to 14 amino acid
code(s). We explore two different scenarios of primordial code evolution. In one scenario,
competition occurs between populations of equilibrated code-sequence sets while in another
scenario; new codes compete with existing codes as they are gradually introduced into the
population with a finite probability. In either case, we find that natural selection between
competing codes distinguished by differences in the degree of physico-chemical optimization
is unable to explain the structure of the standard genetic code. The code whose structure is
most consistent with the standard genetic code is often not among the codes that have a high
fixation probability. However, we find that the composition of the code population affects the
code fixation probability. A physico-chemically optimized code gets fixed with a significantly
higher probability if it competes against a set of randomly generated codes. Our results suggest
that physico-chemical optimization may not be the sole driving force in ensuring the emer-
gence of the standard genetic code.
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Introduction

The standard genetic code (SGC) is nearly universal and is estimated to have originated about
3.8 billion years ago prior to the appearance of the Last Universal Common Ancestor (LUCA)
of all known living organisms. Hence, an understanding of the processes that led to the origin
of the standard genetic code is crucial for our understanding of the origin of life. Attempts to
understand the structure of the SGC has a long history. Several theories (Pelc 1965; Pelc and
Welton 1966; Dunnill 1966) were proposed to explain the pattern of amino acid association of
codons in the SGC on the basis of stereo-chemical affinities between codons and amino acids.
Subsequent lack of evidence rendered such theories ineffective. Nevertheless, a few studies
provide some support for the stereo-chemical affinity between Arginine and its codons(Jukes
1973; Knight and Landweber 2000) and Leucine and Tyrosine with their respective codons
(Yarus 2000).

Proponents of the physico-chemical (adaptive) theory of code evolution suggested that the
genetic code evolved to minimize the effect of mutational (Sonneborn 1965; Epstein 1966) and
translational errors (Woese 1965; Goldberg and Wittes 1966; Woese 1967; Di Giulio 1989;
Ardell 1998). Woese (1965) was the first to highlight the fact that the arrangement of amino
acids among codons in the SGC is non-random. He pointed out, by focusing on the polarity
property of amino acids, that amino acids in each of the first two columns of the SGC have
similar polarities which reduce the effect of translational errors that replaces one amino acid by
another in the same column. Crick (1968) argued that the structure of the SGC may have
frozen in an error-correcting form because making further changes in the code would be highly
deleterious and hence such organisms which undergo codon reassignments would be selected
out of the population. The first influential quantitative studies on the non-random organization
of amino acids in the genetic code were carried out by Haig and Hurst (1991) and Freeland and
Hurst (1998). They showed, by defining an average cost of translational error, that the SGC is
optimized to reduce the cost of translational errors relative to many alternative codes where the
amino acids are randomly distributed among the 20 codon blocks. Subsequent refinements of
the cost function and particularly the amino acid substitution matrix (Gilis et al. 2001;
Goodarzi et al. 2004, 2005; Novozhilov et al. 2007; Chechetkin and Lobzin 2009) have
confirmed the highly optimized character of the SGC. Novozhilov et al. (2007) have also
examined the fitness landscape of code evolution and found that level of optimization depends
on whether the fitness of the random codes is comparable to that of the SGC. The effect of
horizontal gene transfer (Vetsigian et al. 2006) on the universality and optimality of the genetic
code has also been investigated.

Ardell and Sella, in a series of important papers (Ardell and Sella 2001; Sella and
Ardell 2002, 2006), explored the effect of code-sequence co-evolution on the structure of
the genetic code using a deterministic, population genetic doublet codon model. Their
work provided additional verification of the physico-chemical hypothesis and also yielded
several new insights into the early evolution of the code starting from a completely
ambiguous coding state in which every codon codes for every biologically encoded amino
acid with equal probability. They found that codes always froze before redundancy of
codon-amino-acid associations could be removed. Moreover, the final set of encoded
amino acids did not span the maximal range of amino acid property space suggesting that
code may have evolved to select “generalist” amino acids which can perform a variety of
functions, rather than “specialized” amino acids, in order to reduce the effect of transla-
tional errors. Zhu and Freeland (2006), building on the work of Orr (1998; 2002), have
argued that the SGC in addition to being optimized is also designed to enhance the rate of
adaptive evolution.
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The co-evolution theory, an influential alternative to the physico-chemical theory of code
evolution was proposed by Wong (1975, 1976, 1980, 2005) and subsequently refined and
championed by Di Giulio and collaborators (Di Giulio 1996; Di Giulio and Medugno 1998,
1999, 2001; Di Giulio 2008). The co-evolution theory suggests that the structure of the SGC
was constrained by the metabolic pathways (Taylor and Coates 1989) of amino acid synthesis.
They argued that the code initially encoded a small number of early (precursor) amino acids
which could be synthesized abiotically in a few steps from non-amino acid precursors using
the glycolytic and citric acid cycle. The structure of the code gradually evolved as redundant
codon blocks were ceded from precursor to product amino acids which require precursor
amino acids for their synthesis. Di Giulio (2002) has pointed out that synthesis of amino acids
on tRNAs could facilitate the ceding of codons from precursor to product amino acids. He cites
the evidence of Gln and Asn synthesis from Glu and Asp tRNAs in some Bacteria and
Archaea, in support for the co-evolution theory. He further argues (Di Giulio 2008) that
charging of tRNAs by aminoacyl tRNA synthetases (aaRS) need not have developed in the
earliest stages of code evolution and synthesis of amino-acids on tRNAs may have been the
alternative method for charging of tRNAs during that epoch. While that may well be true for
some standard amino acids like Asn, Gln, Cys, and a few non-standard ones like Sec and fMet,
generalizations to other product amino acids is debatable. Nevertheless, biosynthesis of
product amino acids on tRNAs remains one of the strongest signatures of the importance of
precursor-product relation between amino acids in shaping the structure of the SGC.

An alternative co-evolution theory proposed by Chechetkin (2006) and Delarue (2007)
suggests that structure of the code co-evolved along with the ability of tRNA anticodons to
recognize specific codons and aaRS so as to reduce the effect of codon ambiguity and
translational errors that characterized the code in the early stages of its evolution.

Despite the initial expectation of a “frozen” SGC (Crick 1968), there is substantial evidence
(Knight et al. 2001; Sengupta et al. 2007) to suggest that the code is still evolving.
Investigations into the mechanisms of codon reassignments (Swire et al. 2005; Sengupta and
Higgs 2005; Sengupta et al. 2007) reveal the complexities involved in producing alternative
genetic codes via codon reassignments and provide some hints about the difficulty of
expanding the amino acid vocabulary of the code. A better understanding of the structural
aspects of the translation machinery and the ability to manipulate them may also provide
additional clues on the origin and evolution of the code.

Higgs (2009) proposed a four-column theory for the origin of the genetic code by arguing
that the code translational machinery could initially only distinguish between codons which
differed in the second base position and encoded amino acids that were associated with codons
that encoded G at the first position. The latter hypothesis is based on evidence of sequence
fossils found in present day genomes that are characterized by an excess of amino acids
encoded by GNN (Brooks and Fresco 2003) and particularly GCU codons (Trifonov and
Bettecken 1997; Frenkel and Trifonov 2012). The triplet expansion of the GCU codon
followed by point mutations in the tandem GCU repeats may have played a role in determining
the association between GCU, codons accessible from GCU by point mutations, and the
earliest amino acids. According to the Higgs (2009) model, eventually, the code expanded by
reassigning codon blocks from early to late amino acids in an error-correcting manner. By
defining a cost function for a code encoding less than 20 amino acids, Higgs showed that
driving force behind code expansion in the early stages was primarily positive selection for
increased functionality and diversity of encoded proteins resulting from an increase in the
encoded amino acid alphabet. Novozhilov and Koonin (2009) also used the code-cost function
to draw conclusions about the primordial structure of the genetic code. By making use of the
code cost based on polarity values of amino acids to calculate a minimization percentage of a
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set of codes, they showed that a 2-letter code that distributes ten early amino acids among the
sixteen 4-codon blocks in a way that is most consistent with the structure of the SGC also turns
out to be the most optimal. Both these studies are based on the premise that code-cost
ultimately determines fixation with the most optimal (lowest cost) code guaranteed to be fixed
in the population. Such a conclusion is valid only in the limit of infinite population size.
Koonin and Novozhilov (2009) provide an excellent review of the many factors that dictated
the origin and evolution of the genetic code.

None of the previous literature has addressed the effect of code-sequence co-evolution in
finite populations on the early evolution of the genetic code. Finite population effects are
particularly important because in such a scenario, fixation of several sub-optimal codes is
possible provided their costs are not too different from the most optimal code in the set. That
would allow for plausible alternative evolutionary trajectories which eventually lead to the
emergence of a universal code. In this paper, we study the effect of code-sequence co-
evolution on the evolution of a finite population of primordial codes in the pre-LUCA phase.
Our aim is to understand the consequence of competition between a finite population of
primordial codes distinguished by differences in the degree of physico-chemical optimization,
on the emergence and structure of a universal genetic code. In the process, we aim to explore
the conditions under which a population of genetic codes encoding a small number of amino
acids are eventually replaced by a set of codes encoding a larger number of amino acids. Even
though a genetic code encoding a larger number of amino acids may produce more function-
ally diverse proteins, the trade-off between the fitness advantage of encoding more amino acids
and the disadvantage of changing the code will eventually decide which type of code gets fixed
in the population.

The first part of our paper deals with the early phase of code evolution culminating in
code(s) which encode ten amino acids. In this stage, we explore two different evolutionary
scenarios. In the first scenario, all the plausible codes simultaneously compete with one
another. However, the competition starts only after the sequences associated with a code have
attained mutation-selection equilibrium. In the second scenario, new codes from the set of
plausible codes are gradually and randomly introduced into a population with a fixed proba-
bility. In both cases, we compute the probability of fixation of a code. The second part deals
with the late stage of code evolution starting from two different initial conditions correspond-
ing to two different ten amino acid codes. In this stage we explore the evolution of codes
encoding 10 amino acids to those encoding 14 amino acids. The set of plausible codes selected
are constrained by the amino acids available at that stage, the physico-chemical similarity
between amino acids encoded in the same column and in some cases the precursor-product
relation between amino acids. We also compared the results of code-sequence co-evolution for
the set of constrained codes with code-sequence evolution for a set of randomly generated
primordial codes not subject to any of the above constraints.

We find that natural selection alone cannot explain the emergence of a single universal code
having a structure that is most consistent with the SGC if the pool of competing codes has
similar levels of physico-chemical optimization. The structure of the code that gets fixed with
highest probability in such a scenario can differ significantly from the one that is most
consistent with the SGC, as long as the former satisfies the same physico-chemical constraints
in codon amino acid association as that observed in the SGC. Significantly, finite population
effects also ensure that slightly sub-optimal codes can get fixed with substantial probability. On
the other hand, if a code in the physico-chemically constrained set competes with a set of
randomly generated codes with significantly lower levels of physico-chemical optimization, it
tends to get fixed with a significantly higher probability than any of the randomly generated
(unconstrained) codes.
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Model

In considering competition between primitive codes, a major challenge lies in identifying a set
of plausible primitive codes. The number of possible codes can be prohibitively large. Even if
we restrict our choices to those codes that have the same codon block structure as the SGC, the
number of possible 20 amino acid codes is 20! (assuming the same amino acid cannot occupy
more than one block.) It is unlikely that the pool of competing codes could have been so large.
We therefore consider a smaller sub-set of codes which are constrained to distribute the amino
acids among the various codon blocks based on certain organizing principles. The physico-
chemical similarity between amino acids is one such organizing principle that shaped the
structure of the SGC. A Principle Component Analysis (PCA) of amino acids encoded in the
SGC shows that amino acids belonging to the first and second columns are tightly clustered.
Clustering is observed for the third column amino acids as well, albeit to a lesser extent. This
suggests that error minimization brought about by the allocation of similar amino acids in the
first column, second column and to a lesser extent in the third column profoundly shaped the
primordial evolution of the code. We further hypothesize that the code evolved from one
encoding a small number of amino acids by gradually incorporating new amino acids as they
were synthesized. Trifonov (2000, 2004) and Higgs and Pudritz (2007, 2009) have established
the order of appearance of the 20 biologically encoded amino acids based on an extensive
survey of the literature on prebiotic chemistry in which amino acids were synthesized. Their
analysis also indicates that the early amino acids required less energy to synthesize and could
be easily synthesized from inorganic compounds available in a primordial environment. On the
other hand, none of the late amino acids could be synthesized abiotically. The establishment of
an early and late amino acid hierarchy is further strengthened by examining the biosynthetic
pathways of amino acid synthesis. The co-evolution theory identifies precursor-product
relationships between various sets of amino acids. Six of the earliest amino acids can be
identified on the basis of the precursor-product classification. Following Trifonov and Higgs &
Pudritz, we therefore divide the primitive code evolution process into an early phase that
encoded at most the 10 earliest amino acids and a late phase which is marked by the evolution
of the code encoding 10 amino acids to a code encoding 14 amino acids. We do not go beyond
14 amino acid codes because subsequent sub-divisions either involve fourth column sub-
divisions which do not satisfy the physico-chemical constraints or require distinguishing
between purines at the third position, a feature that may likely have appeared quite late in
code evolution process.

Our starting point is a four column code proposed by Higgs. In building a set of constrained
primitive codes, we assume that code evolution occurred in stages and tRNAs first acquired
the ability to distinguish between bases at the second position. This was followed by the gain
in ability of the tRNAs to distinguish between bases at the first position and eventually by their
ability to distinguish between purines and pyrimidines at the third position. The latter ability
leads to sub-division of 4-codon blocks and is incorporated in our model only in the late phase
of code evolution. A new code is generated from the 4-column code by reassigning a block of
synonymous codons to a new (previously unassigned) amino acid. During the early phase of
code evolution, a set of alternative codes are obtained on the basis of the following constraints
on reassignments in the first two columns. (i) Codon blocks whose amino acid assignments are
consistent with that of the SGC are not reassigned in order to minimize the number of
reassignments that would be necessary to attain the SGC from a primitive code. Hence, the
GUN and GCN blocks that are associated with amino acids Val and Ala respectively in the 4-
column code as well as the SGC do not undergo further reassignments. (ii) A 4-codon block
can be reassigned to another amino acid only if it is physico-chemically similar to the original
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amino acid. Moreover, during the early phase of code evolution, reassignments can occur only
within the set of ten earliest amino acids. Consequently, the codon blocks UUN, CUN and
AUN can be reassigned from Val to either Leu or Ile but not to Phe or Met since the latter two
are late amino acids. Similarly, the codon blocks UCN,CCN,CAN can be reassigned from Ala
to either Ser, Pro or Thr; which belong to the set of ten earliest amino acids. (iii) A 4-codon
block that has been reassigned once cannot be further reassigned back to its original meaning.
It can only be reassigned to a new amino-acid. For example, of the AUN block has been
reassigned from Val to Leu once, it cannot be reassigned back from Leu to Val but it can be
reassigned from Leu to Ile. Also, reassignments in the first and second columns can at most
distinguish between bases at the first position. Hence when such reassignments occur, the
entire 4-codon block gets reassigned.

The possible reassignments in the third column are most difficult to predict. This is because
the two earliest amino acids in this column, Asp and Glu do not occupy a 4-codon block but
partition the lowermost 4-codon block among themselves in the SGC. None of the remaining
4-codon blocks in the SGC are occupied by just one amino acid and all of them are equally
partitioned among two amino-acids in the SGC. Moreover, none of the amino acids that appear
in the third column, other than Asp and Glu belong to the set of ten earliest amino acids. It
therefore seems reasonable to hypothesize that the ability to discriminate between purines and
pyrimidines in the third codon position, arose only after the ability to discriminate between
purines and pyrimidines at the first codon position. Hence the third column may have been
subdivided into 4-codon blocks encoding Asp and Glu in the early phase of code evolution. It
is difficult to predict unambiguously which 4-codon block encoded Asp and which Glu.
Hence, starting from Asp, we allow for the reassignment of only the upper two 4-codon
blocks in the third column to Glu.

The amino acids in the fourth column are least similar in terms of their physicochemical
properties. Moreover, apart from Gly and Ser, none of the other fourth column amino acids
belong to the set of ten earliest amino acids. Hence, we assume that the fourth column encoded
only Gly during the early phase of code evolution.

With the above constraints, the number of alternative codon block assignments in the first
column is 2×2×2=8. Similarly, the number of alternative codon block assignments in the
second column is 3×3×3=27. The number of alternative codon block assignments in the third
column is 1×1=4 (if we allow for reassignment of YAN from Asp to Glu). Since there are no
alternative reassignments possible in the fourth column of the code during the early phase of
code evolution, the total number of plausible alternative codes subject to the above constraints
is 8×27×1=216. Initially, the frequencies of all codes in the population are taken to be equal.

In building a constrained subset of alternative codes for the late phase of code-sequence
coevolution, we assume that the codon block assignments in the first two columns have frozen
and the codes differ only in terms of the third column codon assignments. We start from a stage
where the third column is subdivided into two eight codon blocks with UAN,CAN being
assigned to Glu and AAN,GAN being assigned to Asp. We then build a set of plausible
alternative codes obtained by reassignment of 2-codon sub-blocks to appropriate amino acids.
In considering plausible reassignments of the 2-codon sub-blocks, we use the following
constraints to reduce the number of alternative plausible codes. We first check if physico-
chemical similarity exists between Asp (or Glu) and the reassigned amino acids X. We also
check if Asp (or Glu) and X shares a precursor-product relationship consistent with co-
evolutionary theory. Moreover, if the amino acid associated with a particular 2-codon sub-
block is consistent with its assignment in the SGC, then no further reassignments are
considered. This constraint is imposed to minimize the number of reassignments that need
to be carried out to reach the SGC from a primordial code. Since, GAY is also assigned to Asp
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in the SGC, we do not consider further reassignment of Asp for that codon sub-block. Finally,
if neither physico-chemical similarity, nor precursor-product relationships can explain the
amino acid assignment of a third column codon block (example: UAN), then it is not
reassigned. In the latter case, the SGC assignment of UAY and UAR are Tyr and Stop
respectively. Both Tyr (which is a late amino acid) and Stop were most likely the consequence
of very late reassignments and hence we do not consider them. We also do not consider Asp to
His reassignment because even though Asp and His are somewhat similar in terms of physico-
chemical properties (albeit less so than (Asp, Asn); (Asp, Gln); (Asp, Glu) pairs), they do not
share a precursor-product relationship. For the same reason, we do not consider the Glu to Asn
reassignment. Furthermore, since third column changes were most likely characterized by the
ability of the tRNAs to distinguish between purines and pyrimidines in the third codon
position, we consider only those changes which reassign a 2-codon sub-block to a new amino
acid X and not consider those changes which reassign an entire 4-codon block to X. In view of
these constraints, the plausible reassignments in the third column that lead to alternative
genetic codes are: CAY,CAR: Glu to His, Gln, Asp; AAY,AAR: Asp to Asn, Lys, Glu and
GAR:Asp to Asn, Lys, Glu. Hence the number of alternative codes that compete with one
another in the late phase of code evolution is 108.

We also carried out several simulations of competition between a set of randomly generated
codes which included at least one or a few codes belonging to the constrained set generated on
the basis of physico-chemical similarity between amino acids. This allowed us to compare the
results of competition among the constrained set of codes with that of competition between
randomly generated (unconstrained codes) and a code (or a few codes) that satisfied the same
physico-chemical constraint observed in the SGC.

The set of primitive codes considered by us is by no means a definitive one. The actual set
may have been smaller or somewhat larger. Nevertheless, by imposing the constraint of
physico-chemical similarity in obtaining a set of alternative codes, we ensure that the codes
considered can be generated by minor changes in the translation machinery which affect
codon-amino acid associations. Such changes may have been quite plausible in a primordial
world where the translation machinery was still evolving. We therefore feel that our set is
representative enough to enable us to address many of the key issues pertaining to code-
sequence co-evolution in finite populations.

Methods

In the first scenario, competition occurs between an equilibrated set of code-sequence
combinations.

Equilibration Phase We let a population of 1,000 sequences associated with each code to
equilibrate with the corresponding code by allowing each code-sequence set to evolve through
mutation and natural selection without requiring them to compete with other code-sequence
sets. Initial population consists of identical DNA sequences of length L made up of a
combination of sense codons. We consider two different initial sequences in our simulations
where each of the sense codons occurs either once (L=183) or four times (L=732). In every
generation, the sequences undergo random mutations with a mutation rate of μ per site. The
number of mutations per sequence is given by a random number chosen from a Poisson
distribution with mean μL. A base selected for mutation can mutate to every other base with
equal probability following the Jukes-Cantor model. DNA sequences are then translated using
their corresponding genetic codes to protein sequences. The fitness of a sequence is calculated
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by comparing its translated protein sequence with the reference protein sequence which has
been obtained by translating the initial sequence with the SGC. The population for the next
generation is obtained by successively selecting sequences in the current generation with
probabilities proportional to their fitness. This process of mutation, translation and selection
continues until a mutation-selection balance is reached and each sequence equilibrates (i.e.
mean fitness becomes constant, apart from stochastic fluctuations) with its corresponding
genetic code.

Competition Phase After equilibration, 10 sub-populations each having 100 sequences per
code is created by random sampling from the equilibrated populations. Code-sequence sets in
each of these 10 sub-populations are made to compete for 10 trials thereby giving a total of 100
trials. This process is repeated for populations equilibrated with 10 different seeds and results
of different seeds are combined to get results for a total of 1,000 trials. Sequences following
different codes compete with each other for selection to the next generation. This process
continues until a code gets fixed in the population. If in Nt trials, a particular genetic code is
fixed Nf times then the fixation probability of the code is given by Pf=Nf/Nt. The algorithm for
this model is given in Appendix 1.

In the second scenario, we start from an initial equilibrated population of sequences using
the five amino acid code which is very similar to the four column code proposed by Higgs but
where the third column is equally divided between Asp (AAN,GAN) and Glu (UAN,CAN).
We then gradually introduce new codes with a fixed probability per generation by picking a
sequence from the population at random and switching the code it uses to translate the
sequence to a new one. Unlike the first scenario, the new code-sequence pair starts competing
with the existing ones in the population as soon as it is introduced. The gradual introduction of
the new code follows two distinct protocols. In the first case, a random code is chosen from the
finite set of all possible codes. In the second case, codes are introduced randomly but
hierarchically based on the number of amino acids encoded. A new code is randomly selected
from a set of codes encoding n-amino acids and competition between two or more n-amino
acid codes continues until all n-amino acid codes are introduced and one of them gets fixed in
the population. Subsequently, a random code from a set encoding (n+m) amino acids is
selected and introduced into the population of n-amino acid codes and allowed to compete
with the existing n-amino acid code (m=1 if n≥7 and m=2 if n=5). Thereafter, the process is
repeated till the codes with highest number of amino acids have been introduced in the
population subsequent to which evolution of the population continues for a fixed number of
generations. The simulation is carried out for several trials and the fixation probability is
calculated on the basis of those trials where one code gets fixed in the population. Appendix 2
gives the algorithm for the gradual code introduction simulations.

Results

Early Phase of Code Evolution

Competition Between Multiple Equilibrated Code-Sequence Sets

We first discuss the results of competition between 217 codes (including the 4-column code)
belonging to the constrained set that is created on the basis of physico-chemical similarity
between amino-acids belonging to the same column. Table 1 gives the cost of the ten least
costly codes as well as the cost of the 4-column code and the ten amino-acid code that is most
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consistent with the SGC (labelled CSGC) in terms of amino acid association between codons.
The structures of these codes are shown in Fig. 1. The function proposed by Higgs (2009) for
calculating the cost of codes encoding less than 20 amino acids is used in the cost-calculation.
It is worth noting that CSGC has the 17’th lowest cost but differences in cost between the ten
least costly codes is marginal. Table 2 gives the list of codes in the constrained set that has a
fixation probability greater than 0.01 and Fig. 2 shows the structure of the ten codes having the
highest fixation probability. Figure 3a shows variation in mean fitness of the population after
start of competition between codes in one particular trial. Changes in code frequencies for five
codes (indicated by different colours) are shown in Fig. 3b. The initial monotonic increase and
eventual saturation of the mean fitness can be attributed to the gradual elimination of many low
fitness codes and eventual fixation of a single code and establishment of mutation-selection
equilibrium between that code and the population of sequences it translates.

It is clear that there is no single code which has a significantly higher fixation probability
than all other codes. There are at least seven codes with relatively high fixation probabilities
(by approximately an order of magnitude). CSGC was fixed only twice out of thousand trials.
Sometimes, we also found codes encoding less than ten amino acids that get fixed in the
population. Even though in this case, the code with the highest fixation probability also turned
out to have the least cost, there were many other codes with comparable fixation probabilities
but higher cost. The presence of a large number of codes having similar fixation probabilities
can be attributed to the similar levels of optimization of codes belonging to the constrained set.
To verify this, we also investigated the effect of competition between 210 randomly generated
10-amino acid codes and CSGC. Here the CSGC emerged as a clear winner and was fixed 539
times out of 1,000 trials, significantly more than any randomly generated code. The cost of the
codes in the random set clearly indicates that the CSGC is the most optimized code in the set
terms of physico-chemical properties which explains its high fixation probability. We also
explored the effect of competition (Table 3) between codes in the random set with CSGC and
six other codes having the highest fixation probabilities in the constrained set (see Table 2) to
determine the extent to which the composition of code population affects the fixation proba-
bility. Here also, the codes which did well in the constrained set were fixed far more frequently
and with similar fixation probabilities than either the CSGC (last row in Table 3) or any of the
210 random codes. In an alternative simulation, we determined the result of competition
(Table 4) between 210 randomly generated codes, CSGC and six other codes in the
constrained set having the least cost (see Table 1). In this case, three of these low cost codes
were never fixed in the population. Significantly, the same three codes were also never fixed
during the competition between codes belonging to the constrained set. There were four codes
(including the CSGC which appears in the second row of Table 4) having similar costs as well
as similar fixation probabilities that were significantly larger (more than twice) than other
codes in the set. However, these four codes were not the ones with the lowest cost.

We also repeated the simulations for a different parameter set which had significantly larger
selection coefficient. Table 5 gives the fixation probabilities for different codes belonging to

Table 1 Cost of the ten least costly codes in the constrained set listed in the ascending order of Cost

Serial no. 1 2 3 4 5 6 7

Cost 25.553 25.565 25.611 25.624 25.629 25.760 42.541

There are two distinct codes corresponding to each of the first five least costly codes listed here. The second last
column gives the cost of the ten amino acid code that is most consistent with the SGC and the last column gives
the cost of the four-column code
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the constrained set when the length of sequences used is smaller. In this case also, we find
many codes to have similar fixation probabilities. As in the previous case, codes with high
fixation probabilities do not necessarily have the lowest cost. The CSGC has the 14’th highest
fixation probability with a value of 0.031 (not shown in the list) which needs to be contrasted

Fig. 1 Codes with ten least values of cost in the constrained set of 217 codes. Code in the set most consistent
with the SGC (CSGC) and the four column code (FCC) are also shown
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with the highest fixation probability of 0.15. The qualitative trends in variation of mean fitness
and code frequency (see Online Resource 1) are similar to that shown in Fig. 3.

Increasing the selection coefficient, which suggests that natural selection should favour
more optimized codes, does not seem to significantly increase the fixation probability of low
cost codes. This can also be attributed to the fact that many optimized codes have costs that are
so similar that even an increase in selection coefficient is incapable of successfully discrim-
inating between these codes.

Competition Between Multiple Code-Sequence Sets in the Gradual Introduction Model

A plausible alternative scenario of the pre-LUCA phase of code evolution may involve the
gradual introduction of new codes through reassignment or by conformational changes in the
translation machinery. Does this alternative scenario lead to significantly different conclusions
for code evolution compared to the previous scenario where all codes are competing with each
other simultaneously? In order to explore this question, we carried out simulations where new
codes were introduced gradually with a fixed probability per generation starting from an initial
state where the entire population consisted of sequences that were translated using the five
amino acid code. A new code is introduced when an existing sequence in the population is
translated using the new code and has to compete with the rest of the sequences which use
different code(s). See “Methods” for details.

Random Introduction of new Codes It is plausible that alternative primordial codes may have
appeared gradually due to variations in the translation machinery and had to compete with an
existing set of codes. We therefore explore a model of code evolution in which codes are
gradually introduced into the population. The initial state corresponds to an equilibrated
population of the 5-amino acid code and new codes are introduced into the population with
a fixed probability per generation by randomly picking one code belonging to the finite set of
codes. Unlike the previous model, a newly introduced code is not allowed to equilibrate before
being forced to compete with other codes in the population. We studied the effect of varying
the different model parameters on the fixation probabilities of the codes in the early phase of
code evolution. Table 6 shows the fixation probabilities along with the code cost for various
values of selection coefficient (s) and new code introduction probability (Pnew). The structures
of the top five codes with the highest fixation probabilities for case (b) and (d) are given in
Online Resource 2 and Online Resource 3.

Table 2 Fixation probabilities
arising from competition between
the 217 codes in the constrained set

Parameters used: No. of se-
quences per code=1,000, L=732,
μ=0.0001, s=0.05, NT=1,000

Code-cost Fixation probability

25.553 0.204

25.787 0.176

25.787 0.128

25.799 0.107

26.317 0.099

25.553 0.094

25.769 0.092

25.760 0.032

26.422 0.020

25.611 0.011

Revisiting the Physico-Chemical Hypothesis of Code Origin



While the codes fixed with the highest fixation probabilities are not necessarily the least
costly ones for any given sequence length or population size, the fixation probabilities of the
codes were much smaller compared to the result of competition between equilibrated code-
sequence sets. Many codes got fixed with similar but low fixation probabilities. Since a new

Fig. 2 Codes with ten highest fixation probabilities (in decreasing order) in a competition between the 217 codes
in the constrained set. Parameters used: Number of sequences per code(N)=1,000, sequence length (L)=732,
mutation rate per site (μ)=0.0001, selection coefficient (s) =0.05
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code on introduction into the population, does not have the chance to equilibrate before it starts
competing with existing code-sequence sets, occasionally the fitness of a new code sequence
pair may be high (relative to its equilibrated counterpart) due to the stochastic nature of the
switching of a sequence from the old to the new code. This coupled with the random nature of
new code introduction and the lower likelihood of slightly fitter variants invading a more
adapted population of code(s) can explain the relatively lower fixation probabilities in the
gradual introduction model. In this case also, the differences in optimization levels are not
significant enough to clearly differentiate between alternative primordial codes in a finite
population model. For this reason, we find that eight or nine amino acid codes also get fixed in

Fig. 3 Equilibrated code competition model: a Variation of mean fitness of the population with time after the
start of competition between 217 codes in the constrained set. b Change in frequency of five codes (indicated by
different coloured lines); in one specific trial. Parameters used: No. of sequences per code=1,000, L=732, μ=
0.0001, s=0.05
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the population quite frequently. Figure 4 shows the change in mean fitness of the population
and the frequency of the different codes that exist in the population at any given time. It is clear
from Fig. 4b that most codes that are present in the population have very low frequencies (0.01
or less) and only a few codes exist with significantly higher frequencies, at any given time. The
mean fitness initially increases in a step-like manner (unlike the equilibrated code-sequence
competition model) and the significant increase in mean fitness around 25,000 generations can
be attributed to the appearance and eventual fixation of a fitter code variant. However that code
variant is eventually replaced by a code that appears around 63,000 generations. Around
38,000 and 55,000 generations, two new and fitter code variants appear (denoted by grey and
yellow lines in Fig. 4b). This is also manifest through a jump in mean fitness around 38,000
generations. However these fitter variants fail to get fixed in the population. Intriguingly, the
appearance of a new and less fit code variant (an 8-amino acid code; see Online Resource 4)
around 63,000 generations (pink line in Fig. 4b), which eventually gets fixed by invading the
existing fitter code variant, is correlated with a dip in mean fitness. Nevertheless, the mean
fitness subsequently increases possibly due to mutation-selection equilibrium being established
between the code and the sequences it translates. Subsequent new code variants which appear
after 70,000 generations cause small fluctuations in the mean fitness but fail to get fixed in the
population and are eventually eliminated. For almost all (except one) parameter sets explored,
CSGC does not occur among the top ten codes with the highest fixation probability. For the
parameter set specified in Table 6(c), the CSGC has the 15’th highest fixation probability
(=0.011) which is to be contrasted with the highest fixation probability (=0.037).

For larger populations, the difference between fixation probabilities of alternative codes
reduces even further with the ten codes having almost equal and low fixation probabilities.
Online Resource 5 shows the code costs for codes with ten highest fixation probabilities for the

Table 3 Fixation probabilities
arising from competition between
the 210 random ten amino acid
codes, the ten amino acid code most
consistent with SGC and six codes
in the constrained set with highest
fixation probabilities

Parameters used: No. of se-
quences per code=1,000, L=732,
μ=0.0001, s=0.05, NT=1,000

Code-cost Fixation probability

25.787 0.279

25.553 0.199

25.787 0.151

25.799 0.149

26.317 0.100

25.553 0.096

26.525 0.021

25.760 0.050

Table 4 Fixation probabilities
arising from competition between
the 210 random ten amino acid
codes, the ten amino acid code most
consistent with SGC and six codes
in the constrained set with least cost

Parameters used: No. of se-
quences per code=1,000, L=732,
μ=0.0001, s=0.05, NT=1,000

Code-cost Fixation probability

25.611 0.233

25.760 0.207

25.553 0.202

27.092 0.172

25.553 0.099

26.525 0.080

26.921 0.007
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same parameter set as specified in Fig. 4 but with N=10000. Online Resource 6 shows the
structure of the codes listed in Online Resource 5 and Online Resource 7(a) and (b) shows the
change in mean fitness and the code frequency. On comparing Fig. 4b and Online Resource 7,
it becomes evident that an increase in population size makes it less likely for a code invasion to
occur more than once. When new codes appear, their frequency seldom increases beyond
0.001 for sequences with L=732. This implies that the fitness advantage associated with a new
code must be considerably large for the new code to be able to invade the population. This is
manifest in the figures given in Online Resource 7 which shows that the fixation of a new code
variant that appears just before 50,000 generations is marked by an increase in mean fitness.
Further subsequent increase in mean fitness occurs as the sequences gradually get equilibrated
with this new code variant and saturation in the meant fitness occurs after mutation-selection
equilibration is established.

Hierarchical Introduction of new Codes In this scenario new codes are introduced hierarchi-
cally (see “Methods” section for details) from the finite set of physico-chemically constrained
codes, based on the number of amino acids encoded. Here too, the codes fixed with the highest
probability are not the least costly codes for any parameter set. Table 7 gives the fixation
probabilities versus code cost for two different values of selection coefficient. The CSGC
appears within the top twenty highest fixation probability codes for most of the parameter sets
explored. Figure 5a shows the variation in mean fitness and Fig. 5b shows the frequency of the
various codes present in the population. A low value of the selection coefficient enables many
more codes to survive in the population especially since in this case, codes encoding the same
number of amino acids are more likely to compete against each other at any given time. This is
evident in Fig. 5b which shows many instances of invasion by new codes as well as
coexistence of several codes at any given time. Hence, even low fitness codes to occasionally
become fixed in the population. The mean fitness of the population sometimes increases in
almost a step-like manner. This happens when a significantly fitter code variant encoding a
larger number of amino acids, invades an existing population. This effect is more striking
when the selection coefficient is high. (See Online Resource 8).

The results of the hierarchical code introductionmodel are also consistent with those described
in the previous sub-sections and suggest that it is practically impossible to distinguish between
several alternative codes having very similar levels of optimization. How does a physico-
chemically optimized code like CSGC or some other code with an even higher level of
optimization fare against randomly generated (unconstrained) codes in the gradual code

Table 5 Fixation probabilities
arising from competition between
the 217 codes in the constrained set
with a higher selection coefficient
and lower sequence length

Only those codes having the ten
highest fixation probabilities are
listed. Parameters used: No. of
sequences per code=1,000, L=
183, μ=0.001, s=0.2, NT=1,000

Code-cost Fixation probability

25.773 0.150

25.887 0.093

25.787 0.082

25.760 0.077

25.758 0.059

25.611 0.054

25.624 0.053

25.787 0.052

25.553 0.052

25.553 0.050
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Table 6 The code cost versus fix-
ation probability for codes having
the ten highest fixation probabili-
ties, for different parameter sets

The common parameters are se-
quence length, L=732, popula-
tion size, N=1,000, mutation rate
μ=0.0001. a) s=0.02, Pnew=0.1,
NT=1,000 b) s=0.02, Pnew=
0.01,NT=500 c) s=0.05, Pnew=
0.1, NT=1,000 d) s=0.05, Pnew=
0.02, NT=1,000

Code-cost Fixation probability

a)

29.1339 0.059

26.9419 0.042

27.1387 0.030

27.1387 0.027

26.4365 0.026

26.4217 0.024

28.4412 0.024

28.4228 0.023

28.4958 0.021

28.4515 0.021

b)

26.9419 0.028

28.4412 0.020

27.7811 0.018

29.1339 0.018

27.2102 0.018

26.4509 0.016

27.1387 0.016

26.4217 0.016

26.5073 0.014

28.4958 0.014

c)

27.1387 0.037

29.1339 0.030

27.1387 0.030

26.4365 0.025

27.1982 0.024

28.4958 0.022

28.4228 0.022

26.4217 0.022

26.5134 0.021

26.9419 0.021

d)

28.4412 0.021

28.4228 0.020

28.4228 0.019

28.4958 0.018

27.7865 0.018

28.5281 0.017

27.1387 0.017

28.4958 0.016

27.7811 0.016

27.7553 0.015

A.V. Bandhu et al.



introduction model? In order to address this question, we first generated a set of 210 random
codes (encoding 8–10 amino acids) that are not subject to physico-chemical constraints along
with CSGC which was the only optimized code in the set. In a simulation where codes were
gradually introduced from this set, the CSGCwas the clear winner with a fixation probability that
was substantially larger than any of the unconstrained codes that had significantly higher costs. A
population of unconstrained codes was easily invaded by CSGC. However, this result does not in
imply there is anything special about the structure of CSGC. When CSGC was replaced by
another code from the constrained set that had a slightly higher code-cost compared to CSGC, the
latter was fixed far more frequently than any of the unconstrained codes.

Fig. 4 Random code introduction model: a Change in mean fitness of the population with time. b Frequency of
the different codes (indicated by different coloured lines) in the population; for a single trial. The code indicated
by the pink line that appears in the population around 63,000 generations eventually gets fixed. Parameters used:
L=732, N=1,000, μ=0.0001, s=0.02, Pnew=0.1

Revisiting the Physico-Chemical Hypothesis of Code Origin



Late Stage of Code Evolution

Competition Between Multiple Equilibrated Code-Sequence Sets

In this stage, we consider the evolution of the code from one which encodes ten amino acids to
one which encodes 14 amino acids. We assume that the code assignments in the first two
columns have been frozen and code-expansion occurs only through reassignments in the third
column. We do not consider further subdivisions of codon blocks in the first column since Phe
and especially Met appear very late in the temporal hierarchy of the 20 biologically encoded
amino acids. We also do not consider any subdivisions of the fourth column since they are
impossible to predict on the basis of either the physico-chemical or the coevolution hypothesis.
We consider two ten-amino acid codes as starting points for code evolution in the late phase.
These are CSGC and another ten amino acid code that had the highest fixation probability in the
early phase of code evolution (see codes labelled “CSGC” in Fig. 1 and code labelled “1” in
Fig. 2). The set of constrained codes are obtained on the basis of reassignments that are consistent
with either the physico-chemical hypothesis or the co-evolution hypothesis (see “Methods”
section for details). Our aim as before is to ascertain whether natural selection between
alternative codes belonging to this constrained set can lead to the emergence of a 14 amino acid
code whose structure is consistent with that of the SGC (referred to as CSGC14). Table 8(a) and
(b) lists the code cost of five codes that got fixed with the highest fixation probability for the
starting codes labelled “CSGC” in Fig. 1 and “1” in Fig. 2 respectively. In the former case, even
though CSGC14 was found to have the second highest fixation probability of 0.193, there were
six codes that had similar fixation probabilities. In the latter case, CSGC14 had a very low fixation

Table 7 The code cost versus fix-
ation probability for codes having
the ten highest fixation probabili-
ties, for two different selection
coefficients

Pnew=0.5, NT=100 a) s=0.02, b)
s=0.05. All other parameters are
same as in Table 6

Code-cost Fixation probability

(a)

28.4412 0.09

28.4228 0.06

28.4228 0.06

27.7423 0.05

28.4958 0.04

27.8049 0.04

27.7811 0.04

27.8049 0.04

25.6286 0.03

25.7726 0.03

(b)

26.9419 0.16

27.2102 0.16

29.1339 0.14

27.1387 0.05

26.6095 0.04

26.4365 0.04

30.0310 0.03

26.2462 0.03
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probability that was two orders of magnitude lower than the five highest fixation probability
codes. The structures of these five codes are given in Online Resource 9 and Online Resource 10.

Conclusions

The finite population dynamics of code-sequence co-evolution presented here provides several
insights into the early evolution of the genetic code. Conclusions based on infinite population
models of code evolution need to be re-evaluated in the light of our results. Our results suggest

Fig. 5 Hierarchical code introduction model: a Change in mean fitness of the population with time. b Frequency
of the different codes (indicated by different coloured lines) in the population; for a single trial. At any generation
a few codes are present in the population and a new code invasion is more probable. Parameters used: s=0.02,
Pnew =0.5, μ=0.0001, N=1,000, L=732

Revisiting the Physico-Chemical Hypothesis of Code Origin



that the cost of the code, as measured by the degree of physico-chemical optimization, is not
sufficient to determine fixation of the code. We found several codes in our constrained set
which have higher cost than the most optimal code and yet got fixed in the population with
sufficiently high probability. In both our models and for both phases of code evolution, it was
difficult to distinguish between the fifteen to twenty codes from the constrained set, with the
highest fixation probabilities. The CSGC was often not among the top ten codes with the
highest fixation probabilities. The small differences in fitness between several codes belonging
to the constrained set ensured that stochastic fluctuations arising from the finite population size
played an important role in code fixation. This leads us to conclude that the code evolution
trajectory is possibly affected by extraneous factors and cannot be explained solely by natural
selection between competing codes distinguished by differences in the level of physico-
chemical optimization. However, as anticipated, a code belonging to the constrained set is
fixed with high probability if it competes only with a randomly generated (non-optimized) set
of codes. In the language of fitness landscapes, the codes belonging to the constrained set
correspond to local peaks in the fitness landscape whose heights are not significantly different.

The code population structure at any given time clearly affects code fixation. This is also
evident from the results of our simulations of the late stage of code evolution and the gradual
code introduction model. In the former scenario, the initial state of the system defined by the
structure of the 10 amino acid code determines the outcome of competition that results in the
eventual fixation of a 14 amino acid code. In the latter scenario a non-equilibrated code has a
lower likelihood of invading a possibly better adapted population of one or more codes. On the
contrary, there is a high probability that such a code will be quickly removed from the
population. Hence at any given point of time, only a few competing codes are present in the
population. An optimized code with a significant fitness advantage over existing codes in the
population can invade the population with a higher probability. However, if it has to compete
with code(s) having similar optimization levels, its ability to invade the population will depend
approximately inversely on the population size as predicted by neutral evolution theory.

It is worth emphasizing that we do not deny the importance of physico-chemical optimization
in shaping the evolution of the code structure. The redundancy of codon-amino acid associations
observed in the SGC and physico-chemical similarity of amino acids in the first and second
column (and to a lesser extent in the third column) of the SGC clearly suggests that the code
evolved to reduce the effect of translational errors. However our results indicate that the selection

Table 8 The code cost versus fix-
ation probability for codes having
the five highest fixation probabili-
ties, for two different starting codes
(see code labelled “CSGC” in Fig. 1
and code labelled “1” in Fig. 2)

Parameters used are: No. of codes
in the population=109. No. of
sequences per code=1,000, L=
732, μ=0.0001, s=0.05, NT=
1,000

Code-cost Fixation probability

(a)

17.532 0.202

17.412 0.193

17.512 0.147

18.101 0.100

17.413 0.099

(b)

17.394 0.255

17.221 0.182

17.962 0.146

18.573 0.100

17.949 0.100
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of the SGC over alternative codes which differ marginally in the degree of optimality cannot be
explained only by the physico-chemical hypothesis of code origin. Such alternative codes could
easily have emerged due to small changes in the evolving translation machinery in the pre-
LUCA phase. The appearance of such alternative codes may have been facilitated by smaller
genomes that were most likely prevalent in the pre-LUCA phase. The post-LUCA evolution of
the genetic code observed in many mitochondrial genomes (Knight et al. 2001; Sengupta et al.
2007; Swire et al. 2005) lends further support to the plausibility of appearance of organisms
following alternative codes with distinct but similar optimization levels.

The structure of the earliest primordial code(s) and the nature of the molecular machinery that
was responsible for establishing such a code are also likely to have affected the pathways of code
evolution. This is a challenging issue to resolve and lie at the heart of some of the disagreements
between the competing theories of code origin.We feel that the code evolution by sub-division of
codon blocks could have been driven by a combination of physico-chemical optimization and
ceding of codon blocks to new amino acids based on precursor-product relation between old and
new amino acids. Sometimes, though not always, sub-divisions based on precursor-product
relationships may also have been compatible with constraints imposed by the physico-chemical
optimization hypothesis. Hence, the co-evolution theory of code-evolution may not necessarily
be incompatible with the adaptive theory, a conclusion also reached by Di-Giulio (2005).

The evolution of the molecular recognition mechanisms that lead to aminoacylation of the
tRNA, binding of the tRNA to the ribosome and binding of the tRNA anti-codons with the
codons in the mRNA, were also crucial determinants in code evolution. The evolution of the
specificity of those reactions most likely tipped the balance in favour of a particular code
structure thereby leading to a universal code. The genetic code provides a recipe for protein
synthesis only because aminoacylated tRNAs with the appropriate anti-codons pair with the
corresponding codons in the mRNA. This process requires a fully developed translational
machinery which involves the ribosome, aaRS, initiation factors and release factors.Most studies
on genetic code origin assume that the translation machinery was well-developed (albeit,
available in several variants) while associating codons with amino acids in various genetic
codes. However, this leads to a conundrum which can only be solved when an understanding of
the origin of the translation machinery emerges. Wolf and Koonin (2007) have suggested a step-
wise method by which the complex molecular machinery responsible for protein synthesis could
have evolved progressively towards increasing complexity from functionally simpler compo-
nents. This process of coevolution of the translation machinery and the genetic code could have
been important in ensuring the emergence of the SGC. It appears that Crick’s “frozen accident”
hypothesis of code origin may be more prophetic than previously anticipated.
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Appendix 1

We give below the algorithm for code-sequence coevolution for the case where the sequences
are first equilibrated to their respective codes and all the equilibrated set of code-sequence
combinations compete against each other simultaneously.

1) Start with a population containing 1,000 identical nucleotide sequences of length L
corresponding to each code.
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2) Each code-sequence set is allowed to evolve through mutation and natural selection
without requiring it to compete with other code-sequence sets till sequences have adapted
to their respective genetic codes and mutation-selection equilibrium is established.

3) Mutations are made in the sequences in accordance with the Jukes-Cantor model, with a
mutation rate of μ. The mutation-selection process is carried out as follows:

i. Copy the parent sequence to the offspring sequence.
ii. Make mutations in the offspring sequences with the number of mutations, n deter-

mined by the Poisson distribution.

p nð Þ ¼ e–μL μLð Þn
n!

iii. Choose the position in the sequence that is to be mutated from a uniform distribution
between 1 and L.

iv. Make mutations according to Jukes-Cantor mutation matrix.
4) Compute the fitness of each offspring sequence by translating the sequence with the code it

follows and comparing the generated amino acid sequence with the reference amino acid
sequence obtained by translating the initial sequence with the standard genetic code. We
assume that the fitness of a sequence is given by the product of the fitness of individual
codons making up the sequence. This implies the absence of any correlations between
codons making up the sequence. Hence the fitness of the i’th sequence is given by

w ið Þ ¼ ∏
L=3

k¼1
1−sg ak ; bkð Þð Þ

where, ak is the amino acid associated with the k’th codon in the reference protein
sequence; bk is the corresponding amino acid as specified in the code associated with the
evolving sequence and g(a.b) is the cost of replacing amino acid a by amino acid b. g(a,b)
has been normalized so that its maximum possible value is 1. s is the selection coefficient.

5) The parent population for the next generation (t+1) is obtained by selecting sequences in the
offspring population in the current generation (t) with probabilities proportional to their fitness.

6) The equilibrated population is then used for creating 10 sub-populations. Every sub-
population has 100 sequences (corresponding to each of the genetic codes)that are
randomly selected from the set of 1,000 equilibrated sequences.

7) Code-sequence sets in each of these 10 sub-populations are made to compete against each
other until a code gets fixed in the population and this process is repeated for 10 trials. The
results of each sub-population are combined to generate results for 100 trials.

8) Steps 6 and 7 are repeated for populations equilibrated with ten different random number
seeds and results thus obtained are combined to get results for a total of 1,000 trials.

9) If in Nt trials a particular genetic code is fixed Nf times, the fixation probability of the code
is given by Pf=Nf / Nt

Appendix 2

We give below the algorithm for code-sequence coevolution for the case where codes are
gradually introduced into the population. In the first scenario, a new code is introduced by
randomly selecting one from a pre-defined set of codes.
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1. Start with a population of N sequences of length L each, following the five amino acid code.
2. The sequences are allowed to evolve and reach mutation-selection equilibrium with

respect to the five amino acid code by following steps (3)–(5) in Appendix 1 till the
mean fitness of the population becomes constant (apart from stochastic fluctuations).

3. New codes are introduced in the population with a fixed probability. For this, a random
number between 1 and N is generated to select the sequence which is translated with the
new code.

4. The population is evolved by repeating steps (3)–(5) of Appendix 1 and the simulation is
run for a fixed number of generations to identify the code which has the maximum
frequency in the last generation or until one of the codes become fixed in the population,
whichever occurs earlier.

5. Steps (2)–(4) are then repeated for a fixed number of trials (Nt) and the fixation probability
is calculated on the basis of those trials where a code gets fixed in the population.

For the second scenario (hierarchical code introduction model) the step (3) in the above
algorithm was modified as follows:

i. The codes are introduced in the population with a finite probability from a set of codes
encoding the least number (n) of amino acids. The population is allowed to evolve by
mutation and selection till all the codes from the current set of n amino acid codes have
been introduced and one of them gets fixed in the population.

ii. Thereafter, the codes to be introduced are chosen from a set encoding the next highest
number of amino acids and this process is repeated till all the codes from the set of codes
encoding highest number of amino acids (i.e. 10) have been introduced in the population.
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