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Abstract
The origin of a universal and optimal genetic code remains a compellingmystery inmolecular biology
andmarks an essential step in the origin ofDNAand protein based life.We examine a collective
evolutionmodel of genetic code origin that allows for unconstrained horizontal transfer of genetic
elements within a finite population of sequences each of which is associatedwith a genetic code
selected from a pool of primordial codes.Wefind that when horizontal transfer of genetic elements is
incorporated in thismore realisticmodel of code-sequence coevolution in a finite population, it can
increase the likelihood of emergence of amore optimal code eventually leading to its universality
throughfixation in the population. The establishment of such an optimal code depends on the
probability ofHGT events. Only when the probability ofHGT events is above a critical threshold, we
find that the ten amino acid code having a structure that ismost consistent with the standard genetic
code (SGC) often getsfixed in the populationwith the highest probability.We examine how the
threshold is determined by factors like the population size, length of the sequences and selection
coefficient. Our simulation results reveal the conditions underwhich sharing of coding innovations
through horizontal transfer of genetic elementsmay have facilitated the emergence of a universal code
having a structure similar to that of the SGC.

1. Introduction

The standard genetic code (SGC) established prior to
the appearance of the last universal common ancestor
(LUCA) is nearly universal and the pattern of associa-
tions between the 61 sense codons and the 20 amino
acids is non-random [1, 2]. Attempts to explain the
origin of the genetic code started nearly 40 years ago
with the physico-chemical or adaptive theory of code
origin. The adaptive theory is to be distinguished from
the stereochemical theory [3–7] of code origin that
posits that the mapping between codons and amino
acids arose originally from the physicochemical
affinity between amino acids and nucleotide triplets.
According to the former hypothesis, the genetic code
evolved to minimize the effects of mutational [8, 9]
and translational errors [10–14]. Woese [15] was the
first to identify the existence of a pattern in the
distribution of amino acids across codons. He pointed

out the similarity in polarity values encoded by amino
acids in the first and second column of the SGC
naturally leads to reduction in translational errors
arising from the replacement of an amino acid by
another belonging to the same column. This qualita-
tive feature was first quantified [1, 2] by defining a cost
function associated with different code structures
characterized by distinct patterns of associations
between codons and amino acids. The code cost
function is defined as ( )F = åå F p g a a,i j i ij i j where Fi
denotes the frequency of the i’th codon, pij is the
probability that the codon i is mistranslated as the
codon j; ai is the amino acid associated with codon i; aj
is the amino acid associated with codon j and g(ai, aj) is
the cost of replacing amino acid ai by amino acid aj. Fi
is given in terms of the frequency P(ai) of the amino
acid ai and the number of codons n(ai) associated with
that amino acid in the code through the relation

( ) ( )=F P a n ai i i where P(ai) is determined from the
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mean fraction of each amino acid in coding sequences
ofmodern organisms [16].

The physico-chemical hypothesis then posited
that selection acts to minimize the cost function since
codes having lower costs are better optimized to with-
stand the effect of translational and mutational errors.
Following the work of Hurst and collaborators
[1, 2, 17], several studies that were robust to refine-
ments in cost function [18–20], the amino-acid sub-
stitution matrices [16, 21] and incorporation of
nonsense mutations [22] provided strong support for
the physico-chemical hypothesis by finding that the
SGC is highly optimized relative to many other non-
canonical codes. A common theme in all these studies
was to advocate the primacy of code cost in thefixation
of a code with a more physico-chemically optimized
(less costly code) always getting preferentially fixed.
However, all such studies were based on infinite popu-
lation models and did not take into account the effect
of fluctuations arising from finite population size on
code fixation probability.

Several studies have also questioned the extent to
which selection acting to minimize code cost can
explain the structure of the genetic code. An early
study [23] used genetic algorithms to find codes that
were optimized according to a variety of physico-che-
mical as well as structural criteria (such as code redun-
dancy, codon mutability etc) and compared them to
real codes. They found that codes that were similar to
real codes were obtained by optimizing structural and
not physico-chemical properties. Analysis of robust-
ness [24] of non-canonical codes as well as those codes
that differ from the SGC by only one codon assign-
ment have found many codes that are better adapted
to mutational errors than the SGC. In a recent work
[25], we have shown that in finite populations, the
physico-chemical hypothesis of code evolution is
insufficient to explain the emergence of the SGC since
codes which are slightly sub-optimal can also get fixed
in the population with significant probability. Our
results indicate that natural selection acting on a col-
lection of codes with similar levels of optimality is
incapable of discriminating between such codes.
Hence alternatives to the physico-chemical hypothesis
need to be explored in order to understand emergence
and universality of the SGC.

The co-evolution theory [26–29] which provides
one such alternative has been extensively studied and
refined by Di Giulio and collaborators [30–34].
According to this theory, the pattern of codon amino
acid associations observed in the SGC was determined
by the metabolic pathways [35] of amino acid bio-
synthesis (see also [36] for an alternative theory of
genetic code origin). Initially, the code encoded only a
few early amino acids called the precursor amino acids
that could be synthesized abiotically. Subsequently, as
the late (product) amino acids were synthesized from
the precursor amino acids, the latter ceded some of its
codon blocks to the former, thereby increasing the

encoding capability of the code. Di Giulio [37] has also
argued that the predictions of the co-evolution theory
is consistent with the optimal character of the SGC.

Codon reassignments leading to alternative
genetic codes (AGCs) in the post-LUCA phase have
also been observed in many mitochondrial genomes
and in a few nuclear and bacterial genomes [38, 39].
The factors affecting codon reassignments in the
pre-LUCA and post-LUCA phase [40] are quite
different and have been discussed extensively in [41].

Most of the literature on genetic code origin is
based on models which assume vertical descent even
though the importance of HGT on the evolution of the
earliest life forms has been pointed out by several
researchers [42–44]. An alternative model of code
evolution was proposed in an insightful paper by
Vetsigian et al [45]where they argued that a primordial
world was most likely dominated by rampant transfer
of genetic elements across leaky protocells. The high
degree of horizontal transfer renders a communal
character to the evolutionary process and makes it
impossible to trace back a common ancestry. It there-
fore becomes imperative to understand the evolution
of a community of sequences and codes.

Vetsigian et al [45] described a general scenario in
which different code communities (termed as ‘innova-
tion pools’) coexist in a population. HGT occurs
between sequences within each code community
(strong HGT) as well as between sequences belonging
to different code communities albeit with a lesser
probability (weak HGT). Such transfer of genetic ele-
ments is instrumental in giving rise to new innovations
in coding protocols. It was argued that such an evolu-
tionary dynamics would eventually lead to the dom-
inance of the code community that had access to the
largest number of coding innovations at the cost of
other less innovative code communities. Further com-
petition within this code community expedited by
strong HGT would lead to the emergence of a single
and perhaps ambiguous code because of ambiguity in
codon amino acid associations. Such ambiguous codes
result in the synthesis of statistical proteins since the
same coding sequence can give rise to multiple amino
acid sequences because codons are ambiguously asso-
ciated with two or more amino acids. As primordial
organisms evolved greater levels of complexity, ambi-
guity in the meaning of codons would be dis-
advantageous and ambiguous codes would be
gradually replaced by an unambiguous, optimal and
universal genetic code. This type of communal evolu-
tionary dynamics in which competition between dif-
ferent code communities distinguished by different
degrees of coding innovations brought about largely
via HGT is characteristic of Lamarckian evolution.
The transition from Lamarckian to Darwinian evol-
ution is characterized by increasing levels of orga-
nismal complexity which necessitates significant
reductions in HGT, the elimination of coding

2

Phys. Biol. 13 (2016) 036007 NAggarwal et al



ambiguity and culminates in the appearance of the
LUCA therebymarking the onset of vertical descent.

Vetsigian et al [45] used an infinite population
model of code-sequence coevolution that was origin-
ally developed by Ardell and Sella [46, 47] to explore a
simplified version of the above scenario where HGT is
allowed between any two codes with equal probability
regardless of their degree of similarity. They were able
to show that optimality and universality of the genetic
code emerges as a consequence of the communal evol-
ution characterized by HGT. However, they did not
explore the role of various parameters in shaping the
co-evolutionary dynamics and the structure of the
universal code that emerges in the presence ofHGT.

We envisage a similar scenario where genetic ele-
ments such as genes as well as components of the
translation machinery can be freely exchanged among
a community of sequences and code. SuchHGT events
can induce a sequence to change its code in order to
better adapt to the changed genome. Change in code is
facilitated through HGT of translational components
which can also be freely exchanged between members
of the community. We have developed amore realistic
finite population model of code-sequence co-evol-
ution that enables us to explore in greater detail the
consequences of communal evolution of code-
sequence sets in the presence of unconstrained HGT
and allows us to explicitly ascertain the structure of the
code that emerges from the competition between
several code-sequence sets.

In our simulations, we have considered popula-
tion sizes that differ by an order of magnitude with the
smallest population having approximately a thousand
sequences. In finite populations, fluctuations in quan-
tities like the mean fitness and optimum code fitness
(see ‘Results’ section for definition) would vary as
Ο( )N1 where N is the population size. Moreover,
the stochastic nature of code-sequence co-evolution
results inmore than one code getting fixedwith a finite
probability. As, N increases such fluctuations would
decrease and the evolutionary dynamics would even-
tually become deterministic with only one code get-
ting fixedwith a probability close to unity. It is difficult
to predict what a realistic population size would be for
protocells that were present during a primordial epoch
prior to the existence of LUCA. The population sizes
we have chosen clearly highlight finite population
effects on the code-sequence co-evolutionary
dynamics.

Even though there are estimates of HGT rates in
prokaryotes [48], such values are not relevant in the
primordial epoch that we focus on. This is because the
HGT rates in the pre-LUCA and post-LUCA epoch is
likely to be quite different. Vogan and Higgs [44] have
argued that modern (post-LUCA regime) organisms
should evolve to reduce HGT rates that depend on
rates of gene loss during genome replication. As repli-
cation fidelity increases, HGT becomes less favourable
and HGT rates gradually decrease in contrast to the

pre-LUCA phase where gene-loss rates are expected to
be high and therefore higher HGT rates would aid in
the rapid spread of useful genomic innovations. This
suggests that HGT is likely to play a significant role
only during the pre-LUCA epoch of genetic code
evolution.

In this paper we investigate how our conclusions
regarding the emergence of an optimal and universal
code resulting from competition between a set of pri-
mordial code-sequence sets, are affected when the
probability of horizontal gene transfer events, selec-
tion coefficient, the initial number of sequences asso-
ciated with each code and the length of the sequence
are varied.

We find that for a range of values of the probability
of horizontal gene transfer ( )P ,hgt the ten amino acid
code that gets fixed in the population with the highest
probability is the one that is most consistent with the
SGC. However, that is no longer the case when Phgt

falls below a threshold value that depends on other
parameters in the model. In the latter case, several
codes have similar fixation probabilities. Bymodifying
the code-update rule after an HGT event, we further
examined how a lower frequency of transfer of transla-
tional components affect the threshold value of Phgt

and the structure of the code that gets fixed in the
population. We also study the effect of changing the
benchmark code (that determines the fitness of a
sequence) on the structure of the emergent code.

2.Model

We first specify a set (NC) of primordial codes that
compete with one another through the sequences they
translate. A plausible pool of codes was most likely
constrained by the nature and diversity of the transla-
tional machinery. It therefore seems reasonable to
believe that a primordial pool of codes would differ in
few codon assignments due to small changes in the
nature of the translation machinery. Moreover, the set
of primordial codes is selected based on the assump-
tion that only a few amino acids were encoded in a very
primitive code which gradually evolved from being
able to distinguish a single base at the second codon
position (4-column code) to being able to distinguish
between bases at the second as well as at the first codon
position. The pool is primarily constrained by the
physico-chemical similarity observed between amino
acids in the first and second columns. New codes are
generated from the 4-column code via reassignment of
one ormore synonymous codon blocks to a previously
unassigned amino acid. The rationale for choosing this
set is discussed in detail in [25]. Here we summarize
the constraints that were imposed to obtain these of
alternative codes. Reassignments do not occur in
codon blocks whose amino acid assignments are
consistent with the SGC. A 4-codon block can be
reassigned to another amino acid only if its physico-
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chemical properties are similar to the original amino
acid. Reassignments can occur only within the set of
ten earliest amino acids [49, 50] since we consider the
early phase of code evolution where the code encoded
a limited number of amino acids not larger than ten. In
generating alternative codes, we do not change the
assignment of the third or fourth columns since we
assume the amino acid composition of these columns
primarily involve the ten late stage amino acids which
were incorporated after the translation apparatus
acquired the capability of distinguishing between
purines and pyrimidines at the third position. The
third column is therefore assigned to Glu (first eight
codons) and Asp (last eight codons) both of which
belong to the set of ten earliest amino acids. A 4-codon
block that is reassigned once cannot be reassigned later
back to its originalmeaning and can only be reassigned
to a new amino-acid. These constraints lead to a set of
216 codes characterized by similar levels of physico-
chemical optimization. While this set may not be
exhaustive, it seems plausible to assume that the set is
representative of a pool of codes that may have existed
in certain ecological niches in a primordial world.

A finite set of sequences (Nseq/C) is associated with
each code with the number being same for each code
initially. The total number of sequences in the popula-
tion is = ´N N N .C seq C The initial population is
made up of identical DNA sequences of length L con-
taining a variety of sense codons. Each sequence
undergoes mutation with a fixed rate μ per site per
generation. The Jukes–Cantor model is used as a
model for base substitutions. The number of muta-
tions is determined from a Poisson distribution having
a mean of μL. The fitness of a sequence (and hence
indirectly, the fitness of a code) is estimated by com-
paring the amino acid sequence obtained by translat-
ing theRNA sequence according to the associated code
to the target protein [51] obtained by translating the
original RNA sequence according to the SGC.

As mentioned earlier, a cost can be associated with
each code independent of sequences it translates and
has been previously used to determine the optim-
ization level of a code in infinite population models.
Since, we are using codes with less than 20 amino
acids, such a code cost was calculated using the func-
tion ( ) ( ) ( )a f a aF = å ååa P p g a,i j i ij j proposed by

Higgs [19], where a labels the site type (α runs over all
the 20 biological encoded amino acids) and ( )f ai

gives the frequency of the i’th codon at sites of type α.
If we suppose that in the absence of the amino acid
associated with a site-type α, the genome uses the best
possible alternative amino acid available B(α) at that
site, (i.e. ( )aB is the amino acid with minimum

( ( ))a ag B, value), and synonymous codons occur
with equal frequency; ( ) ( ( )) ( )f a d a= a B n a, ;i i i

where the δ-function is 1 if the two arguments are
equal and is 0 otherwise. g(a.b) values are calculated
using the relation ( )= å -g w z zab i i ia ib

2 where the

sum is over amino acid properties, wi is the weight
associated with the i’th amino acid property (taken
from table 1 of [19]) and zia and zib are the normalized
values of the i’th property of amino acids a and b.

In code-sequence coevolution models, the code
cost is not an appropriate measure of code fitness
which depends on the fitness of the sequences a code
translates. In our simulations, we calculate the fitness
of a sequence by comparing it with a reference protein.
We assume that the fitness of a sequence is given by the
product of the fitness of individual codons making up
the sequence. The fitness of the ith sequence is given
by ( ) ( ( ))=  -=w i sg a b1 ,k

L
k k1

3/ where s is the selec-
tion coefficient, ak and bk are amino acids associated
with the k’th codon in the reference protein and the
evolving sequence respectively. The values of g(a.b)
were taken fromHiggs [19].

To set up the initial conditions for subsequent
evolution in the presence of HGT, the sequences asso-
ciated with each code are first allowed to attain muta-
tion–selection equilibriumwithout having to compete
with other code-sequence sets. After equilibration, the
equilibrated sets of sequences associated with each
code are allowed to compete with each other while
evolving by undergoingmutations as well asHGTwith
the rate Phgt per sequence per generation. HGT was
implemented by randomly selecting a donor sequence
from the population, taking a randomly selected seg-
ment from the donor sequence and pasting it at a ran-
domly selected position in the acceptor sequence after
removing a segment of equal length from the acceptor
sequence. This manner of implementing HGT was
adopted to ensure that the total length of the sequence
remain unchanged after HGT. During the collective
evolution epoch in a primordial world, sequence seg-
ments as well as translational components could be
freely transferred between leaky protocells allowing
them to explore diverse coding strategies. Hence, fol-
lowing the procedure adopted in [45], the genetic code
of the acceptor sequence was then changed by picking
a code at random from the code population. The
change was accepted if the fitness of the acceptor
sequence calculated using the new code eithermatches
or is greater than its original fitness calculated using
the old code associated with it. If the fitness of the for-
mer is less than the latter, the new code is rejected;
another code is randomly selected from the popula-
tion with the process being repeated until all the codes
in the pool have been sampled without successful
acceptance of any new code. In each generation, this
cycle is repeated for every sequence in the population
that undergoes HGT. Each code-sequence pair in the
population is then made to compete with each other,
with the entire population being updated every gen-
eration by selecting sequences with a probability pro-
portional to their fitness. The process continues until a
code gets fixed in the population. Fixation of a code
implies that all sequences in the population are trans-
lated using that code. The fixation probability of a
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particular code is then calculated by running the simu-
lation for NT trials. In order to highlight the fact that
code fixation probability is not inversely correlated
with code cost, we have provided the code cost (inde-
pendent of sequences) along with the fixation prob-
ability in various cases. The algorithm for the model is
given in appendix 1 of the ‘supplementary material’
file. The effect of changing the code update rule on the
code fixation probability was also investigated. To do
so, we used a more constrained update rule after an
HGT event. According to this update rule, a code
change is attempted once per HGT event failing which
the original code associated with the sequence is
retained.

3. Results

We first discuss the case where the SGC serves as the
benchmark code since it is used to translate the set of
equilibrated sequences that serve as the benchmark
RNA sequences to give the benchmark protein
sequences. By varying Phgt and selection coefficient (s)
for sequences of different lengths (L), we study the
effect of these factors on the emergent code structure.
We have carried out simulations for several different
values of the above parameters. The figures and tables
provided are a representative sample. Table 1 below
gives the cost of the codes that get fixed in the
populationwith highest fixation probabilities for three
different probabilities of HGT when sequences of
length L= 183 nucleotides are used. The cost of a code
is calculated according to the prescription provided by
Higgs [19] for codes encoding less than 20 amino
acids. Figure 1(a) shows the variation in the mean
fitness of the population for a particular trial;
figures 1(b)–(d) gives the fluctuations in the frequency
of different codes present in the population (indicated
by different colours) for three different values of Phgt

and figures 1(e) and (f) shows the change in the
optimum code fitness over time for two different
values of Phgt. We define the optimum code as the one
whose associated sequences have a mean fitness that is
larger than the mean fitness of sequences associated
with any other code in the population in that genera-
tion. The structure of the codes that get fixed in the
populationwith non-zero fixation probabilities for the
parameter set of table 1(a) is shown in figure 2. We
define the critical threshold of Phgt as one for which
the probability of fixation of CSGC is at least twice as
large as the next highest fixation probability. A caveat
worth noting is that this definition is somewhat ad hoc
and the critical threshold will change with the defini-
tion for finite population simulations. Nevertheless, it
is necessary to specify a criterion for identifying the
critical threshold in finite population simulations. For
the parameter set specified in table 1, the critical
threshold of Phgt is =P 0.005.hgt

C At values of Phgt

equal to or larger than this threshold, we find that the

code that gets fixed with a significantly higher prob-
ability than all other codes in the population is the one
that is most consistent with the SGC (see figure 2 for
the structure of the 10 amino-acid code that is most
consistent with the SGC that is henceforth referred to
as CSGC). Incidentally, the code with second highest
fixation probability is also quite similar to CSGC and
differs fromCSGC only inmapping of codons AUN to
amino acid leucine instead of isoleucine. As Phgt

decreases below the threshold, the probability of
fixation of CSGC decreases and eventually CSGC no
longer getsfixedwith the highest probability.

As indicated by figure 1(a), the code-sequence
population coevolves to gradually increase the mean
fitness of the sequences in the population. Although
the mean fitness sharply increases in the first few gen-
erations as themajority of codes with lowfitness values
are out-competed by the ones with greater fitness’s,
the rate of increase in the average fitness later becomes

Table 1.The code cost versusfixation probabilities
for the codeswith highest fixation probabilities for
the parameter values: s= 0.2,μ= 0.001, L= 183,
Nseq/C= 5,NT= 1000,NC= 216. (a)Phgt= 0.02 (b)
Phgt= 0.005 (c)Phgt= 0.003. For the cases (a) the
non-zerofixation probabilities are givenwhile for
case (b) and (c) six highestfixation probabilities are
shown. CSGC corresponds to the code in row 1 of
1(a), 1(b) and 1(c). Code labels are used only for those
codes that correspond to one of the code structures
shown infigures 2 and S3 (see supplementary
materialfile).

Code label Code cost Fixation probability

CSGC 25.76 0.785

A 26.42 0.196

B 25.77 0.011

C 25.79 0.004

D 25.89 0.001

E 26.93 0.001

F 26.44 0.001

G 27.63 0.001

(a)

Code label Code cost Fixation probability

CSGC 25.76 0.550

A 26.42 0.248

J 25.80 0.091

B 25.77 0.036

27.74 0.033

D 25.89 0.018

(b)

Code label Code cost Fixation probability

CSGC 25.76 0.305

J 25.80 0.255

A 26.42 0.157

27.74 0.135

D 25.89 0.049

B 25.77 0.047

(c)
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more gradual as the few codes remaining in the popu-
lation (see figure 1(b)) compete and try to optimize
their sequence fitness. The mean fitness eventually
saturates when a code gets fixed in the population and
subsequent fluctuations in the mean fitness can be
attributed to sequences better adapting to the uni-
versal code that emerges from the competition. This
trend is also roughly followed by the optimum code
fitness (see figure 1(e)) albeit with a lot of fluctuations.
These fluctuations occur when the optimum code
changes over generations or when new sequences are
added to be translated by the optimum code. We find
that the optimum code as defined earlier is a more
appropriatemetric for understanding primordial code
evolution than the code having the least cost which has
been typically used in all previous infinite population
analysis of standard code origin.

When Phgt is increased while keeping the number
of sequences per code fixed, the rate at which new
codes appear in the population increases. Many of
these codes are quickly eliminated in the competition
with other codes leaving a few to compete with each

other without any getting fixed in the population. This
is manifest through large fluctuations in the fre-
quencies of these codes (compare figure 1(d) with (b)
and (c)) exhibiting shifting dominance of these few
codes in the population over time. Eventually, one of
those codes (represented by the olive green colour)
gets fixed in the population. However, when HGT
rates are high, the fixation of a code can be short-lived
since another new code can appear in the population
due toHGT subsequent events.

For probabilities of HGT that fall below the critical
threshold, CSGC is no longer the code with the highest
fixation probability. For such low values of Phgt, HGT
does not have a significant impact on shaping the out-
come of code-sequence coevolution (see figure S1 of
‘supplementary material’ for the structures of the
codes that gets fixed in this case). The result is con-
sistent with our analysis of code origin in the absence
of HGT [25] where we found that it becomes difficult
to distinguish between codes with similar levels of
physico-chemical optimization.
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Figure 1. (a)Variation in themean fitness of the populationwith time. (b) Frequency of the different codes (indicated by different
coloured lines) in the population; for a single trial. The code indicated by the purple line eventually getsfixed in the population. (c)
Same as in (b) butwith Phgt= 0.003. (d) Same as in (b) but withPhgt= 0.1. (e)Variation of the optimumcode fitness with time for
Phgt= 0.02 and (f)Phgt= 0.003.Other parameters used: s= 0.2,μ= 0.001, L= 183, =N 5,seq C/ =N 216,C Phgt= 0.02.
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When the selection coefficient is lowered, the
diversity of codes in the population increases since
lower fitness sequences associated with some codes are
retained in the population for a longer time (see figure
S2 in ‘supplementarymaterial’). Eventually, sequences
associated with only a few codes survive with neither
one of those possessing a sufficient selective advantage
over the others to get fixed in the population. This can
be attributed to the close similarity in the structures of
those surviving codes.

Increasing the number of sequences per code
( )Nseq C/ in the population does not alter the nature of
results or the structure of the codes with the highest

fixation probabilities but facilitates the process for a
lower probability of HGT as can be seen in table 2 and
figure S3 of ‘supplementary material’. Figures 3(a) and
(b) shows the time variation of frequency of codes for a
single trial for two different values of P .hgt Increase in
Nseq C/ largely reduces the fluctuations in the time var-
iation of the mean fitness and optimum code fitness
(figures 3(c) and (d)) due to the increase in the total
population size.

For a fixed mutation rate per site per generation,
longer sequences are prone to accumulate more errors
and a smaller selection coefficient ensures that sequen-
ces with a greater diversity in fitness are tolerated in the
population. In such a situation, HGT is limited in its
ability to ensure that the population efficiently con-
verges on the code that optimizes the fitness of the
associated sequences relative to the benchmark
sequence. This is evident from the results of our simu-
lations using sequences of length L = 732. Table 3
shows the cost and associated fixation probabilities of
codes for two different values of selection coefficient.
Even though CSGC has the highest fixation prob-
ability when s = 0.05, its value is comparable to a few
other alternative codes (figure S4 in the ‘supplemen-
tary material’ gives the structures of those codes).

Figure 2.The structure of the codeswith non-zerofixation probabilities for the parameter values: s= 0.2,μ= 0.001, L= 183,
=N 5,seq C/ =N 1000,T =N 216,C =P 0.02hgt . Codon blocks in CSGC are in light blue colour. For other codes, codon blocks that

have the same amino acid association as inCSGC are in light blue; codon blocks that have amino acid associations that are different
fromCSGC are shaded dark blue.

Table 2.The code cost versusfixation probabilities
for the codeswith six highest fixation probabilities
for the parameter values: s= 0.2,μ= 0.001, L= 183,

=N 100,seq C/ NT= 1000,NC= 216,Phgt= 0.001.
Code labels correspond to code structures shown in
figures 2 and S3 (see supplementarymaterialfile).

Code label Code cost Fixation probability

CSGC 25.76 0.856

A 26.42 0.100

B 25.77 0.038

C 28.79 0.004

J 25.80 0.002
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When s is reduced to 0.02, the effect of HGT is no
longer evident and consequently CSGC has a very low
fixation probability compared to a seven amino-acid
code that has the highest fixation probability (figure S5
in the ‘supplementary material’ gives the structures of
these codes). Under such circumstances, the stochastic
nature of the evolutionary dynamics can occasionally
allow a sub-optimal code to get fixed with a

significantly high probability since a low HGT rate
reduces the likelihood of fitter code variants from
emerging and competingwith the existing codes.

The benchmark code affects the fitness of a
sequence since it is used to obtain the target proteins
(that are adapted to the benchmark code) against
which the evolved amino acid sequences are compared
to ascertain their fitness. We therefore decided to
explore the effect of changing the benchmark code on
the structure of the emergent universal code. We used
another benchmark code called the AGC that was
obtained by reshuffling the amino acid associated with
codons within the same column of the SGC. In this
case, we found that for values of Phgt above a thresh-
old, the code fixed with the highest probability is the
one most consistent with AGC, labelled as CAGC (see
figure S6 in ‘supplementary material’). The codes with
the five highest fixation probabilities are given in
figure S7 of ‘supplementarymaterial’. Table S1 of ‘sup-
plementary material’ shows how the fixation prob-
ability varies with code cost in this case. For values of
Phgt lower than the threshold, CAGC has a fixation
probability that is much less than the code with the
highest fixation probability.

The high frequency of horizontal transfer of trans-
lational components across leaky protocells is man-
ifest in the update rules (see ‘Methods’ section and
‘appendix A’ for details) which allows a sequence to
sample different codes in the population before select-
ing one which retains or increases its fitness relative to
its current fitness that was obtained by translating the
sequence with the code originally associated with it.
For the results described above, we followed the proto-
col adopted in [45] for code update after anHGT event

Figure 3. Frequency of the different codes (indicated by different coloured lines) in the population; for a single trial for (a)Phgt= 0.001
(b)Phgt= 0.02. Though the other codes remain for a long time the one indicated by the purple line in (a) and (b) eventually gets fixed in
the population. (c)Variation of the optimum code fitness with time for Phgt= 0.001 and (d)Phgt= 0.02.Other parameters used:
s= 0.2,μ= 0.001, L= 183, =N 100,seq C/ =N 216C .

Table 3.The code cost versusfixation probabilities
for the codeswith six highest fixation probabilities
for the parameter values:μ= 0.001, L= 732,

=N 5,seq C/ NT= 1000,NC= 216, =P 0.01hgt (a)
s= 0.05 (b) s= 0.02. For case (b) the non-zerofixa-
tion probabilities are givenwhile for case (a) six high-
estfixation probabilities are shown. Code labels
correspond to code structures shown in figures 2 and
S4, S5 (see supplementarymaterialfile).

Code label Code cost Fixation probability

CSGC 25.76 0.434

A 26.42 0.403

K 28.42 0.099

L 28.44 0.012

M 28.52 0.012

N 28.54 0.010

(a)

Code label Code cost Fixation probability

O 29.13 0.918

CSGC 25.76 0.053

A 26.42 0.012

P 28.42 0.008

Q 27.13 0.008

R 28.42 0.001

(b)
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(see ‘Methods’ section for details). A smaller frequency
of horizontal transfer of translational components can
be implemented by changing the update rule. We did
so by enforcing that the code update process of the
acceptor sequence is allowed only once, after an HGT
event. The original code translating the sequence is
replaced by the new code only if the fitness of the
sequence translated using the new code exceeds or
equals the fitness of the sequence translated using the
original code. In this case, CSGC gets fixed with a
higher probability than other codes in the pool pro-
vided the probability of HGT events is higher than
before. For example, when Phgt = 0.1, the above
update criterion ensures that CSGC is no longer fixed
with the highest probability. However, when Phgt is
increased to 0.2, CSGC has the highest fixation prob-
ability but even then its fixation probability is compar-
able to other codes having similar structure. Table S2
in the ‘supplementary material’ file gives the fixation
probability of CSGC and six other codes that get fixed
with the highest fixation probabilities for three differ-
ent values ofPhgt.

4.Discussions and conclusions

We developed the first finite population code-sequence
co-evolutionmodel in the presence of HGT to ascertain
the effects of HGT on primordial code evolution under
various circumstances. Our results highlight the extent
to which HGT affects the outcome of competition
between primordial codes and the structure of the
emergent universal code. We show that the efficacy of
HGT on shaping the outcome of the code-sequence
coevolutionary dynamics depends on the initial number
of sequences associated with each code in the popula-
tion, length of the sequences, the selection coefficient,
and the frequency of transfer of translational compo-
nents like tRNA’s. HGT alone cannot always guarantee
the emergence of a code with a structure that is
consistent with the SGC. There is a critical probability of
HGTbeyondwhich the presence ofHGT can lead to the
emergence of an optimized and universal code. This
critical threshold varies with N ,seq C/ sequence length (L)
and selection coefficient. While increasing Nseq C/

ensures the effectiveness of HGT leading to the emer-
gence of CSGC for a lower threshold of Phgt, an increase
in sequence lengthLmakes itmore difficult forCSGC to
emerge unless the selection coefficient is appropriately
increased to prevent the sustained presence of less
optimum codes in the population. Lowering the selec-
tion coefficient also makes the fixation of CSGC more
difficult unlessPhgt is enhanced.

As noted in [45], a crucial role is played by HGT of
translational components which can result in the same
sequence producing two distinct proteins as a result of
translating the sequence before and after HGT. Since
the nature of translational components transferred
between the leaky protocells is random, such a process

gives rise to the so-called statistical proteins. A high
frequency of horizontal transfer of translational com-
ponents across genomes of primordial organisms
leads to a more efficient search for codes that mini-
mize the fitness difference between the sequences in
the population and the benchmark sequences. This
process eventually allows the population to converge
to theCSGC code resulting in its emergence as the uni-
versal and optimized code with a high fixation prob-
ability. If the horizontal transfer of translational
components occurs less frequently, Phgt needs to be
increased in order for the coevolutionary dynamics to
efficiently select CSGCover other similar codes.

It is standard practice [51] in population genetic
simulations of sequence evolution to calculate the fit-
ness of a sequence by comparing the translated
sequence with a previously specified target protein.
The target protein will carry the imprint of the code
which is used to translate it. But this is not what causes
convergence of the code to one which is similar to the
SGC. In the absence of HGT, the code getting fixed
with the highest probability is not the one most con-
sistent with the SGC. It is clear that HGT plays a cru-
cial role in determining the code that gets fixed in the
population. The consequences of changing the bench-
mark code (used to translate the equilibrated sequen-
ces to produce the target protein sequences) depend
on the pool of competing codes. When AGC was used
as the benchmark code, the 10-amino acid code that
got fixed with the highest probability was not CSGC
but CAGC as long as the probability ofHGTwas above
the threshold value. These results further reinforce the
efficiency with which the process of HGT can identify
the codewhich optimizes the fitness of the sequences it
translates relative to the target protein that carries sig-
natures of the benchmark code. Once such a code is
identified, the code-sequence co-evolutionary dynam-
ics in the presence of HGT facilitates its fixation in the
population.

Several interesting directions suggested by our
work can be explored further. HGT is expected to be
more effective between sequences that are translated
by similar genetic codes. As pointed out in Vetsigian
et al [45], when a HGT event occurs, the transferred
sequence segment undergoes mutations to better
adapt to the original code used by the host (acceptor)
and the host simultaneously attempts to adjust its ori-
ginal code to better utilize the transferred sequence
segment. HGT between significantly different codes
makes this process of code-sequence co-adaptation
generally more difficult. It therefore remains to be
seen how effective a role HGT plays on code-sequence
coevolution when it is no longer unconstrained with
intra community HGT between sequences translated
by similar codes occurring at higher rates than inter
community HGT occurring between sequences asso-
ciated with widely different codes. This would enable
us to explore the effect of competition between two or
more distinct pools of codes characterized by

9

Phys. Biol. 13 (2016) 036007 NAggarwal et al



markedly different patterns of association between
codons and amino acids. The results presented here
clarifies the conditions under whichHGT can be effec-
tive in facilitating the emergence of the SGC from a
population of competing code-sequence sets with
similar levels of physico-chemical optimization.
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