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Abstract. Let K be a compact subset of a totally-real manifold M , where M is either
a C2-smooth graph in C2n over Cn, or M = u−1{0} for a C2-smooth submersion u from
Cn to R2n−k, k ≤ n. In this case we show that K is polynomially convex if and only
if for a fixed neighbourhood U , defined in terms of the defining functions of M , there
exists a plurisubharmonic function Ψ on Cn such that K ⊂ {Ψ < 0} ⊂ U .

1. Introduction and statements of the results

The polynomially convex hull of a compact subset K of Cn is defined as K̂ := {z ∈ Cn :

|p(z)| ≤ supK |p|, p ∈ C[z1, . . . , zn]}. We say that K is polynomially convex if K̂ = K. As
a motivation for studying polynomial convexity we discuss briefly some of its connections
with the theory of uniform approximation by polynomials. Let P(K) denote the uniform
algebra on K generated by holomorphic polynomials. A fundamental question in the
theory of uniform algebras is to characterize the compacts K of Cn for which

P(K) = C(K), (1.1)

where C(K) is the class of all continuous functions on K. For K ⊂ R ⊂ C, (1.1) follows
from Stone-Weierstrass theorem. More generally, Lavrentiev [12] showed that K ⊂ C
has Property (1.1) if and only if K is polynomially convex and has empty interior. In
contrast, no such characterization is available for compact subsets of Cn, n ≥ 2. Since

the maximal ideal space of P(K), K ⊂ Cn, is identified with K̂ via Gelfand’s theory of
commutative Banach algebras (see [5] for details), we observe that

P(K) = C(K) =⇒ K̂ = K.

With the assumption that K is polynomial convex, there are several results, for instance
see [1, 2, 16, 20, 22], that describe situations when (1.1) holds. Unless there is some way
to determine whether K ⊂ Cn, n ≥ 2, is polynomially convex—which, in general, is very
difficult to determine—all of these results are somewhat abstract. One such result is due
to O’Farrell, Preskenis and Walsh [16] which, in essence, says that polynomial convexity
is sufficient for certain classes of compact subsets of Cn to satisfy Property (1.1). More
precisely:

Result 1.1 (O’Farrell, Preskenis and Walsh). Let K be a compact polynomially convex
subset of Cn. Assume that E is a closed subset of K such that K \E is locally contained
in totally-real manifold. Then

P(K) = {f ∈ C(K) : f |E ∈ P(E)}.
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By Result 1.1, if K is a compact polynomially convex subset of a totally-real subman-
ifold of Cn, then P(K) = C(K). In view of this fact, one is motivated to focus—with the
goal of polynomial convexity—on characterizing the class of compact subsets of Cn that
lie locally in some totally-real submanifold of Cn.

A totally-real set M of Cn is locally polynomially convex at each p ∈M , i.e., for each
point p ∈M there exists a ball B(p, r) in Cn such that M∩B(p, r) is polynomially convex
(see [21] for a proof in C2 and [10, 9] for a proof in Cn, n ≥ 2). In general, an arbitrary
compact subset of a totally-real submanifold in Cn is not necessarily polynomially convex,
as shown by the following example due to Wermer [10, Example 6.1]: let

M := {(z, f(z)) ∈ C2 : z ∈ C},
where

f(z) = −(1 + i)z + izz2 + z2z3.

It is easy to see that M is totally-real. Consider the compact subset K := {(z, f(z)) ∈
C2 : z ∈ D} ⊂ M. Since f(eiθ) = 0 for θ ∈ R, by using maximum modulus theorem,

we infer that K̂ contains the analytic disc {(z, 0) ∈ C2 : z ∈ D}. Hence, K is not
polynomially convex. Some sufficient conditions for polynomial convexity of totally-real
discs in C2, i.e., the compact subset {(z, f(z)) ∈ C2; z ∈ D} of a totally real graph in
C2, in terms of the graphing function f , are available in the literature (see [4, 14, 15],
and [18] for a nice survey). Forstneric̆ [7] showed that C2-perturbation of totally-real
polynomially convex compact subset is polynomially convex. Løw and Wold [13] brought
the smoothness down to C1. From these result we know that C1-perturbation of any
compact subset lying in a totally-real subspace in Cn is polynomially convex, but there
are no general results for compact subsets of Cn, n > 2, that we are aware of. Therefore,
it seems interesting to know the conditions under which a compact subset of a totally-
real submanifold of Cn is polynomially convex. In this paper we report the results of our
investigations on this question.

We now present the main results of this paper. Let K be a compact subset of a totally-
real graph over Cn in C2n. In this case we present a necessary and sufficient condition
for polynomial convexity of the given compact K in terms of the graphing functions:

Theorem 1.2. Let f1, . . . , fn : Cn −→ C be C2-smooth functions such that, writing F =
(f1, . . . , fn), the graph GrCn(F ) is a totally real submanifold of C2n. Then, a compact
subset K of GrCn(F ) is polynomially convex if and only if there exists a Ψ ∈ psh(C2n)
such that

K ⊂ ω ⊂ G :=

{
(z, w) ∈ Cn × Cn :

n∑
ν=1

|fν(z)− wν | <
m(z)

2L(z)

}
,

where

ω := {(z, w) ∈ Cn × Cn : Ψ(z, w) < 0},

L(z) := max
ν≤n

[
sup
||v||=1

|Lfν(z; v)|

]
; and

m(z) := inf
||v||=1

(
n∑
ν=1

∣∣∣∣∂fν∂z1
(z)v1 + · · ·+ ∂fν

∂zn
(z)vn

∣∣∣∣2
)
.

Here, and in what follows, Lf(z; .) denotes the Levi-form of a C2-smooth function f at
z. We now make a couple of remarks that will aid the understanding of the statement
of Theorem 1.2.
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Remark 1.3. The radius of the tube-like set

G =

{
(z, w) ∈ Cn × Cn :

n∑
ν=1

|fν(z)− wν | <
m(z)

2L(z)

}

may vary pointwise in C2n but the totally-real assumption on the graph GrCn(F ) ensures
that m(z) 6= 0 for z ∈ Cn (see Lemma 2.6 in Section 2). Therefore, the tube-like set G
is a nonempty open subset of C2n containing the compact K.

Remark 1.4. We observe that if, in addition, we assume that the functions f1, . . . , fn
in Theorem 1.2 are pluriharmonic, then the above tubular neighbourhood has infinite
radius at each point of GrCn(F ). We just choose ω to be a suitable polydisc containing
K, K ⊂ GrCn(F ), such that the conditions of Theorem 1.2 are satisfied. Thus, any
compact subset of such a graph is polynomially convex.

We would like to mention that Theorem 1.2 is a generalization of a result [6, Theo-
rem 6.1]—which characterizes polynomial convexity of graphs over polynomially convex
subset Ω, where Ω is a bounded domain in Cn—in author’s dissertation.

We now consider the case when the compact K lies in a totally-real submanifold which
is a level set of a C2-smooth submersion on Cn.

Theorem 1.5. Let M be a C2-smooth totally-real submanifold of Cn of real dimension
k such that M := ρ−1{0}, where ρ := (ρ1, . . . , ρ2n−k) is a submersion from Cn to R2n−k,
and K is a compact subset of M . Then K is polynomially convex if and only if there
exists Ψ ∈ psh(Cn) such that

K ⊂ ω ⊂ Ω :=

{
z ∈ Cn :

2n−k∑
l=1

|ρl(z)| <
m(z)

L(z)

}
,

where

ω := {z ∈ Cn : Ψ(z) < 0},

L(z) := max
l≤2n−k

(
sup
||v||=1

|Lρl(z, v)|

)
; and

m(z) := inf
||v||=1

2n−k∑
l=1

∣∣∣∣∣∣
n∑
j=1

∂ρl
∂zj

(z)vj

∣∣∣∣∣∣
2

.

Remark 1.6. It is well known that a compact subsetK ⊂ Cn is polynomially convex if and
only if, for every neighbourhood U , there exists a polynomial polyhedron that contains
the compact and lies inside U . From Theorem 1.5 we conclude that for a compact
subset K of a totally-real submanifold of Cn to be polynomially convex it suffices that,
for a single fixed neighbourhood U depending on the defining equations, we can find a
polynomial polyhedron that contains K and is contained in U .

As in Remark 1.3, the fact that ρ−1{0} is totally real ensures that m(z) 6= 0, for all

z ∈ K (see Lemma 2.5 in Section 2); the set Ω =

{
z ∈ Cn :

∑2n−k
l=1 |ρl(z)| <

m(z)

L(z)

}
is

an open set containing K.
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Remark 1.7. We should point out that we can use Theorem 1.5 for compact subsets of
totally-real graphs GrCn(F ) with the defining functions

ρ2j−1(z, w) = Re(w2j−1)− Re(f2j−1(z)), j = 1, . . . , n,

ρ2j(z, w) = Im(w2j)− Im(f2j(z)), j = 1, . . . , n.

It might be possible to deduce Theorem 1.2 from Theorem 1.5, but it is not easy to see.
The tube like domain Ω that appears in Theorem 1.5 with the above defining functions
seems to be different from the tube-like domain G in Theorem 1.2 and G 6⊂ Ω.

Before proceeding further let us discuss briefly the main ideas behind the proofs of
both the theorems.

• Firstly, it will be shown that a compact patch of the totally-real submani-
fold containing K is holomorphically convex in the tube-like domain G and
Ω in Theorems 1.2 and 1.5 respectively. For that we start with a function

u(z, w) :=
∑n

ν=1 |wν − fν(z)|2 for Theorem 1.2; and u(z, w) :=
∑2n−k

l=1 ρ2
l (z)

for Theorem 1.5. The specific geometric assumptions on the graphing functions
or defining functions gives the terms of quantities L(z) and m(z) so that u is
plurisubharmonic in G and Ω respectively.

• Secondly, since a sublevel set ω of a plurisubharmonic function on Cn is Runge
and the compact patch is holomorphically convex in ω, the compact patch con-
taining K is polynomially convex. Then an approximation result gives us the
polynomial convexity of K.

We conclude the section with an observation about polynomial convexity of compact
subsets that lie in an arbitrary totally-real submanifold of Cn, and not just a zero set of
a submersion defined on all of Cn.

Remark 1.8. An abstract result analogous to Theorem 1.5 holds for compacts that lie
in any arbitrary totally-real submanifold of Cn. The construction of a suitable tubular
neighbourhood that will replace the tube-like neighbourhood in Theorem 1.5 is the main
obstacle, which can be overcome by using partitions of unity. In this case, locally, we
have real valued C2-smooth functions ρ1, . . . , ρ2n−k such that the submanifold can be
viewed locally as the zero set of a submersion ρ = (ρ1, . . . , ρ2n−k); thus, locally we get a
neighbourhood defined in terms of ρ1, . . . , ρ2n−k as in Theorem 1.5. The problem with
the result that we will end up with is that, since the tube ω would be given in terms of
local data and (highly non-unique) cut-off functions, it would be merely an abstraction.
Of course, highly abstract characterisations of polynomial convexity, in the language of
uniform algebras, already exist—but hard to check. The point of this paper is to begin
with some natural overarching assumption and derive characterisations for polynomial
convexity that are checkable. A couple of examples of totally-real submanifolds are given
in Section 5 as applications of Theorem 1.2 and Theorem 1.5. We keep the discussion of
generalizing Theorem 1.5 to more general Stein manifolds for a future project.

2. Technical Results

In this section, we prove some results that will be used in the proofs of our theo-
rems: Lemma 2.2, a result about closed subsets of polynomially convex compact sets
(Lemma 2.3), and two results characterizing when a submanifold of Cn is totally real
(Lemma 2.6 and Lemma 2.5). We begin by stating a basic but nontrivial result by
Hörmander [11, Theorem 4.3.4] that will be used several times in this paper.
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Result 2.1 (Hörmander, Lemma 4.3.4, [11]). Let K be a compact subset of a pseudocon-

vex open set Ω ⊂ Cn. Then K̂Ω = K̂P
Ω , where K̂P

Ω := {z ∈ Ω : u(z) ≤ supK u ∀u ∈ psh(Ω)}
and K̂Ω := {z ∈ Ω : |f(z)| ≤ supz∈K |f(z)| ∀f ∈ O(Ω)}.

We note that if Ω = Cn then Result 2.1 says that the polynomially convex hull of K is
equal to the plurisubharmonically convex hull of K.

Next we prove a couple of lemmas, which have vital roles in the proofs of our theorems,
about the polynomially convex hull of general compact subsets Cn.

Lemma 2.2. Let K be a compact set in Cn, and let φ be a plurisubharmonic function
on Cn such that K ⊂ Ω, where Ω := {z ∈ Cn : φ(z) < 0}. Suppose there exists a

non-negative function v ∈ psh(Ω) such that v(z) = 0 ∀z ∈ K. Then K̂ ⊆ v−1{0}.

Proof. We are given that K b Ω = {z ∈ Cn : φ(z) < 0}. Hence, by the Result 2.1,

K̂P
Ω = K̂Ω ⊂ Ω. Upper-semicontinuity of φ gives K̂ b Ω. Since Ω is a pseudoconvex

domain, K̂P
Ω b Ω. Therefore, K̂P

Ω ⊂ v−1{0}, which implies K̂Ω ⊂ v−1{0}. Since Ω is

also a Runge domain, K̂ = K̂Ω. Hence, K̂ ⊂ v−1{0}. �

Lemma 2.3. Let K be a compact polynomially convex subset of a totally-real submanifold
of Cn. Then any closed subset of K is polynomially convex.

Proof. Since K is a polynomially convex subset of a totally-real submanifold of Cn, we
apply Result 1.1 to get P(K) = C(K). Let L be a closed subset of K. By Tietze extension
theorem, C(K)|L = C(L). Since P(K)|L ⊂ P(L) ⊂ C(L), we have P(L) = C(L). Hence,
L is polynomially convex. �

We now state a result due to Oka (see [11, Lemma 2.7.4]) that gives us one direction
of the implications in both the theorems in this paper.

Result 2.4 (Oka). A compact subset K of Cn is polynomially convex if and only if for
every neighbourhood U of K there exist a polynomial polyhedron P such that

K ⊂ P ⊂ U.

Recall that a polynomial polyhedron is the set {z ∈ Cn : |pj(z)| ≤ 1, j = 1, . . . ,m} for
finitely many polynomials p1, . . . , pm.

Let M be a C1-smooth real submanifold of Cn of real dimension k, k ≤ n. For each
p ∈M there exists a neighbourhood Up of p in Cn and C2-smooth real-valued functions
ρ1, ρ2, . . . , ρ2n−k such that

Up ∩M = {z ∈ Up : ρ1(z) = ρ2(z) = · · · = ρ2n−k(z) = 0},

where ρ = (ρ1, . . . , ρ2n−k) is a submersion. With these notations we now state the
following lemma.

Lemma 2.5. M is totally real at p ∈M if and only if the matrix Ap is of rank n, where

Ap :=



∂ρ1

∂z1
(p) · · · ∂ρ1

∂zn
(p)

∂ρ2

∂z1
(p) · · · ∂ρ2

∂zn
(p)

...
...

∂ρ2n−k
∂z1

(p) · · · ∂ρ2n−k
∂zn

(p)


.
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Proof. Viewing Cn as R2n, the tangent space TpM can be described as:

TpM =
{
v ∈ R2n : Dρ(p)v = 0

}
.

We first assume that M is totally real at p ∈ M . We will show that the rank of Ap
is n. Suppose the matrix Ap has rank less than n. Without loss of generality, we may
assume that the rank of Ap is n− 1. Hence, there exists v = (v1, . . . , vn) ∈ Cn \ {0} such
that

Apv = 0.

This implies that the system of linear equation
n∑
j=1

∂ρl
∂zj

(p)vj =0, l = 1, . . . , 2n− k, (2.1)

has a nonzero solution. Viewing vj = v′j + iv
′′
j , j = 1, . . . , n, and writing the system of

equations (2.1) in terms of real coordinates, for each l = 1, . . . , 2n − k, we obtain that
the complex equation

n∑
j=1

(
∂ρl
∂xj

(p) + i
∂ρl
∂yj

(p)

)
(v′j + iv′′j ) = 0

is equivalent to following systems of real equations
n∑
j=1

(
∂ρl
∂xj

(p)v′j −
∂ρl
∂yj

(p)v′′j

)
= 0; (2.2)

n∑
j=1

(
∂ρl
∂xj

(p)v′′j +
∂ρl
∂yj

(p)v′j

)
= 0. (2.3)

In view of (2.3), we get that the vector v = (v′1, v
′′
2 , . . . , v

′
n, v
′′
n) lies in TpM , and the

equations in (2.2) ensure that iv ∈ TpM (viewing v = (v′1 + iv′′1 , . . . , v
′
n + iv′′n) ∈ Cn).

This is a contradiction to the fact that M is totally real at p.
For the converse, assume the matrix Ap has rank n. We show that M is totally real

at p ∈ M . Suppose M is not totally real at p, i.e., there exists a v ∈ TpM , v 6= 0, such
that iv ∈ TpM . This implies that equations (2.3) and (2.2) hold. Hence, Apv = 0, which
contradicts the assumption that rank of Ap is n. Hence, M is totally real at p. �

Next we state a lemma that gives a characterization for a graph in C2n, using the
graphing functions, to have complex tangents.

Lemma 2.6. Let f1, . . . , fn : Cn −→ C be C1-smooth functions. Let M := {(z, w) ∈
C2n : wν = fν(z), ν = 1, . . . , n}. Let P := (a, f1(a), . . . , fn(a)) ∈ M . Then, M has a
complex tangent at P ∈ M if and only if there exists a vector (v1, . . . , vn) ∈ Cn \ {0}
such that

n∑
j=1

vj
∂fν

∂zj
(a) = 0 ∀ν = 1, . . . , n.

Proof. The proof follows from the following fact due to Wermer [23].

Fact. Let h1, . . . , hm be C1-smooth complex valued functions defined in a neighbourhood
U of 0 ∈ Rk such that the function h := (h1, . . . , hm) is a regular map on U into Cm.
Let S := h(U). Then, S is totally real at h(0) if and only if the complex rank of the

matrix

(
∂hj
∂xi

(0)

)
i,j

is k.

�
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3. The proof of Theorem 1.2

We begin the proof by constructing a tube-like neighbourhood of the graph and a
non-negative plurisubharmonic function defined in it, which vanishes on the graph. This
constitutes Step I. Further steps then lead us to showing the desired compact to be
polynomially convex on the basis of our construction in the first step.

Step I:Constructing a tube-like neighbourhood G of the graph and a plurisubharmonic
function u on G.

In this case we consider the defining functions:

uν(z, w) = |wν − fν(z)|, ν = 1, . . . , n.

and

u(z, w) :=

n∑
ν=1

u2
ν(z, w).

We obtain the Levi form:

Lu(·;V ) =
n∑
ν=1

(fν − wν)
n∑

j,k=1

∂2fν

∂zj∂zk
vjvk + (fν − wν)

n∑
j,k=1

∂2fν

∂zj∂zk
vjvk


+

n∑
j,k=1

(
n∑
ν=1

∂fν

∂zj

∂fν

∂zk

)
vjvk +

n∑
j,k=1

(
n∑
ν=1

∂fν

∂zk

∂fν

∂zj

)
vjvk

−
n∑

j,k=1

∂fk

∂zj
vjtν −

n∑
j,k=1

∂f j

∂zk
vktj +

n∑
ν=1

|tν |2,

where we denote V = (v, t) = (v1, . . . , vn, t1, . . . , tn) ∈ C2n. Swapping the subscripts j
and k in the first sum in the second line above allows us to see that:

Lu(·;V ) = 2
n∑
ν=1

Re
(
(fν − wν)Lfν(z; v)

)
+

n∑
j,k=1

(
n∑
ν=1

∂fν

∂zj

∂fν

∂zk

)
vjvk

+
n∑

j,k=1

(
n∑
ν=1

∂fν

∂zk

∂fν

∂zj

)
vjvk −

n∑
j,k=1

∂fk

∂zj
vjtk −

n∑
j,k=1

∂f j

∂zk
vktj +

n∑
ν=1

|tν |2.

= 2

n∑
ν=1

Re
(
(fν − wν)Lfν(z; v)

)
+

n∑
ν=1

∣∣∣∣∂fν∂z1
v1 + · · ·+ ∂fν

∂zn
vn − tν

∣∣∣∣2
+

n∑
j,k=1

(
n∑
ν=1

∂fν

∂zk

∂fν

∂zj

)
vjvk

= 2

n∑
ν=1

Re
(
(fν − wν)Lfν(z; v)

)
+

n∑
ν=1

∣∣∣∣∂fν∂z1
v1 + · · ·+ ∂fν

∂zn
vn − tν

∣∣∣∣2
+

n∑
ν=1

∣∣∣∣∂fν∂z1
v1 + · · ·+ ∂fν

∂zn
vn

∣∣∣∣2
≥

n∑
ν=1

∣∣∣∣∂fν∂z1
v1 + · · ·+ ∂fν

∂zn
vn

∣∣∣∣2 − 2
n∑
ν=1

|fν − wν ||Lfν(z; v)|. (3.1)
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Let

L(z) := max
ν

(
sup
||v||=1

|Lfν(z; v)|

)
,

and

m(z) := inf
||v||=1

(
n∑
ν=1

∣∣∣∣∂fν∂z1
v1 + · · ·+ ∂fν

∂zn
vn

∣∣∣∣2
)
.

Since the graph GrCn(F ) is totally real, by Lemma 2.6, we have m(z) > 0 for all z ∈ Cn.
Define

G :=

{
(z, w) ∈ C2n :

n∑
ν=1

|fν(z)− wν | <
m(z)

2L(z)

}
.

From (3.1), it is clear that u is strictly plurisubharmonic onG and u−1{0} = Gr(f1, ..., fn).
Since ω ⊂ G (by hypothesis), we have u ∈ psh(ω) and K ⊂ GrCn(F ) ⊂ u−1{0}.
Step II: Showing that K̂ ⊂ u−1{0}.
Since, by Step I, u ∈ psh(ω) and K ⊂ u−1{0}, all the conditions of Lemma 2.2 are
fulfilled with given compact K, v := u and φ := Ψ. Hence, in view of Lemma 2.2, we
obtain

K̂ ⊂ u−1{0}.

Step III: Completing the proof.

The aim of this step is to show that K is polynomially convex. After a suitable regu-
larization of Ψ we may assume that Ψ is continous. We now consider K1 := {(z, w) ∈
GrCn(F ) : Ψ(z, w) + ε ≤ 0}, where

−ε := sup
K

Ψ(z, w).

Clearly, K ⊂ K1. Thanks to the fact that K ⊂ ω = {(z, w) ∈ Cn × Cn : Ψ(z, w) < 0},
we get that ε > 0. Ψ is plurisubharmonic in C2n,

K̂1 ⊂ {(z, w) ∈ C2n : Ψ(z, w) < 0} = ω ⊂ G.

By Lemma 2.2, with the compact K1, Ω := G v := u and φ := Ψ, we conclude that

K̂1 ⊂ u−1{0} = M . Hence, K1 is polynomially convex. Using Lemma 2.3, we conclude
that K is polynomially convex.

The converse follows from Result 2.4.

4. Proof of Theorem 1.5

Our proof of Theorem 1.5 follows in lines similar to that of Theorem 1.2. Again, using
the defining equations, we will construct a nonnegative plurisubharmonic function in a
tubular neighbourhood of the given compact subset K.

Proof of Theorem 1.5. As before, we divide the proof in three steps.

Step I. Existence of a plurisubharmonic function u on a neighbourhood of K with K ⊂
u−1{0}.

Let us define the following function:

u(z) :=

2n−k∑
l=1

ρ2
l (z).
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We now compute the Levi-form for the above function u. For that, We have

∂2u

∂zj∂zk
(z) = 2

2n−k∑
l=1

ρl(z)
∂2ρl
∂zj∂zk

(z) + 2

2n−k∑
l=1

∂ρl
∂zj

(z)
∂ρl
∂zk

(z). (4.1)

Hence, the Levi-form of u:

Lu(z, v) =

n∑
j,k=1

∂2u

∂zj∂zk
(z)vjvk

= 2
2n−k∑
l=1

n∑
j,k=1

ρl(z)
∂2ρl
∂zj∂zk

(z)vjvk + 2
2n−k∑
l=1

∣∣∣∣∣∣
n∑
j=1

∂ρl
∂zj

(z)vj

∣∣∣∣∣∣
2

= 2

2n−k∑
l=1

ρl(z)Lρl(z, v) + 2

2n−k∑
l=1

∣∣∣∣∣∣
n∑
j=1

∂ρl
∂zj

(z)vj

∣∣∣∣∣∣
2

≥ 2
2n−k∑
l=1

∣∣∣∣∣∣
n∑
j=1

∂ρl
∂zj

(z)vj

∣∣∣∣∣∣
2

− 2
2n−k∑
l=1

|ρl(z)||Lρl(z, v)|. (4.2)

Let us define the following set

Ω :=

{
z ∈ Cn :

2n−k∑
l=1

|ρl(z)| <
m(z)

L(z)

}
,

where

L(z) := max
l

(
sup
||v||=1

|Lρl(z, v)|

)
,

and

m(z) := inf
||v||=1

2n−k∑
l=1

∣∣∣∣∣∣
n∑
j=1

∂ρl
∂zj

(z)vj

∣∣∣∣∣∣
2

.

Since M is totally real, by Lemma 2.5, we get that m(z) > 0 for z ∈M . From (4.2), we
obtain that

Lu(z, v) ≥ 0, for all z ∈ Ω,

Hence, u is plurisubharmonic in Ω and K ⊂ u−1{0}.
Step II. Showing that K̂ ⊂ u−1{0}.

Let us denote ω := {z ∈ Cn : φ(z) < 0}. By the assumption u is plurisubharmonic in
ω. Invoking Lemma 2.2 again with Ω := ω, v := u, we get that

K̂ ⊂ u−1{0}.

Step III. Completing the proof.

As in the proof of Theorem 1.2 we consider

K1 := M ∩ {z ∈ Cn : φ(z) + ε ≤ 0},

where −ε = supK φ(z). The remaining part of the proof goes in the same way as in Step
III of the proof of Theorem 1.2.

As before, the converse follows from Result 2.4 �
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5. Examples

In this section we provide a couple of examples of totally-real submanifolds of C2: the
first one is given in Hörmander-Wermer [10].

Example 5.1. We consider the graph K = {(z, f(z)) ∈ C2 : z ∈ D} over the closed
unit disc D, where f(z) = −(1 + i)z + izz2 + z2z3. It is shown in [10], by attaching an
analytic disc to {(z, f(z)) : |z| = 1} ⊂ K, that K is not polynomially convex. Here we
focus on the closed subsets of the compact K of the form:

Kr := {(z, f(z)) ∈ C2 : |z| ≤ r}.

Since K is a subset of a totally-real submanifold M = {(z, f(z)) : z ∈ C}, we already

know that there exists an r > 0 such that K̂r = Kr. Here a range for r is deduced for
which Kr is polynomially convex. We use Theorem 1.2 to show that Kr is polynomially
convex for all r ∈ [0, 1/2].

Let us first compute:

∂f

∂z
(z) = −(1 + i) + 2i|z|2 + 3|z|4,

∂2f

∂z∂z
(z) = 2z(i+ 3|z|2).

Hence, in the notation of Theorem 1.2, we have

L(z) =

∣∣∣∣ ∂2f

∂z∂z
(z)

∣∣∣∣ = 2|z|
√

1 + 9|z|4

m(z) =

∣∣∣∣∂f∂z (z)

∣∣∣∣2 = 9|z|8 − 2|z|4 − 4|z|2 + 2. (5.1)

We get a neighbourhood of K as

Ω :=

{
(z, w) ∈ C2 : |w − f(z)| < 9|z|8 − 2|z|4 − 4|z|2 + 2

2|z|
√

1 + 9|z|4

}
,

in which u(z, w) := |w − f(z)|2 is plurisubharmonic. We now note that the function
h(r) := 9r4 − 2r2 − 4r + 2 is monotonically decreasing in the interval [0, 1/3]. Hence,
from (5.1) we have

inf
|z|≤1/2

m(z) = h(1/4) = 233/256.

Consider another function

g(s) := 2s
√

1 + 9s4.

A simple computation shows us that g is strictly increasing in [0,1/2]. Hence, we have

sup
|z|≤1/2

L(z) = g(1/2) = 5/4.

Hence, we get that the open set Ω̃ := {(z, w) ∈ C2 : |z| < 1/2 + δ, |w − f(z)| <
233/320 + ε} ⊂ Ω for sufficiently small δ > 0 and ε > 0. We now consider the following
function

φ(z, w) := |w + (1 + i)z|2.
Since the quadratic for corresponding to the complex hessian of φ is:

∂2φ

∂z∂z
|u|2 +

∂2φ

∂z∂w
uv +

∂2φ

∂w∂z
vu+

∂2φ

∂w∂w
|v|2 = |u|2 + 2|v|2 > 0 ∀(u, v) ∈ C2 \ {0}.
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Note that φ is a strongly plurisubharmonic function on C2. We have

sup
|z|≤1/2

|z|3
√

1 + |z|4 =

√
17

32
.

Consider the function ψ : C2 → R defined by

ψ(z, w) := φ(z, w)− k2,

where k =
233− 10

√
17

320
− ε̃ for sufficiently small ε̃. Clearly, ψ is also strongly plurisub-

harmonic in C2.
Claim:

Kr ⊂ {ψ(z, w) < 0} ∩ {(z, w) ∈ C2 : |z| < 1/2 + δ} ⊂ Ω̃,

for some sufficiently small δ > 0.
Let us first proof the second part. Suppose (z, w) ∈ C2 such that |z| ≤ 1/2 such that

ψ(z, w) < 0. This implies:

φ(z, w) < k2

=⇒|w + (1 + i)z| < k

=⇒|w + (1 + i)z|+ 10
√

17

320
<

233

320

=⇒|w + (1 + i)z|+ sup
|z|≤1/2

|(i+ |z|2)z||z|2 < 233

320

=⇒|w − f(z)| ≤ |w + (1 + i)z|+ sup
|z|≤1/2

|(i+ |z|2)z||z|2 < 233

320
.

Hence, for sufficiently small δ > 0, we have

{ψ(z, w) < 0} ∩ {(z, w) ∈ C2 : |z| < 1/2 + δ} ⊂ Ω̃.

We now show the first part, i.e., we need to show that for |z| ≤ 1/2,

ψ(z, f(z)) < 0.

We have

φ(z, f(z) = |f(z) + (1 + i)z|2

= |z|6(1 + |z|4).

Since h(r) := r3(1 + r2) is an increasing function on [0, 1/2], we have

sup
|z|≤1/2

|z|6(1 + |z|4) =
17

1024
.

Hence, we obtain

sup
|z|≤1/2

φ(z, f(z)) < k2.

Hence, Kr ⊂ {ψ(z, w) < 0} ∩ {(z, w) ∈ C2 : |z| < 1/2 + δ}. Therefore, by using

Theorem 1.2, we conclude that K̂r = Kr for all r ∈ [0, 1/2].
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Remark 5.2. An another example of similar type to Example 5.1 is given in [8]. The
totally-real graph in [8] is:

M := {(z, w) ∈ C2 : w = g(z)},

where g(z) = z(|z|2 − 1)ei|z|
2
. Let K := M ∩ {(z, w) ∈ C2 : z ∈ D}. An analytic disc φ :

D→ C2 defined by φ(z) = (z, 0) attached to K. After a computation analogous to that
in Example 5.1 and applying Theorem 1.2, we can find that for every r ∈ (0, 1/16

√
11),

Kr is polynomially convex.

Example 5.3. Let us consider the following graph in C2 over R2:

M = {(x1 + ic(x2
1 + x3

2), x2 + id(x2
2 + x3

1)) ∈ C2 : x1, x2 ∈ R},

where 0 ≤ c, d ≤ 1

60
. We show that the compact K := M ∩ D2 is polynomially convex.

In this case we have ρ := (ρ1, ρ2), where

ρ1(z1, z2) :=
1

2i
(z1 − z1)− c

4

(
(z1 + z1)2 +

1

2
(z2 + z2)3

)
ρ2(z1, z2) :=

1

2i
(z2 − z2)− d

4

(
1

2
(z2 + z2)2 + (z1 + z1)3

)
.

Clearly K = ρ−1{0} ∩ D2. Using the notation zj = xj + iyj , j = 1, 2, we compute:

∂ρ1

∂z1
(z) = i/2− cx1,

∂ρ2

∂z2
(z) = i/2− dx2,

∂ρ1

∂z2
(z) = −3cx2

2

2
,

∂ρ2

∂z1
(z) = −3dx2

1

2
,

∂2ρ1

∂z1∂z1
(z) = −c/2, ∂2ρ1

∂z1∂z2
(z) = 0,

∂2ρ1

∂z2∂z2
(z) = −3cx2

2
,

∂2ρ2

∂z1∂z1
(z) = −3dx1

2
,

∂2ρ2

∂z1∂z2
(z) = 0,

∂2ρ2

∂z2∂z2
(z) = −d/2.

From the above computation we get that:

L(z) = max
l=1,2

(
sup
||v||=1

∣∣∣∣ ∂2ρl
∂z1∂z1

(z)|v1|2 + 2Re

(
∂2ρl
∂z1∂z2

(z)v1v2

)
+

∂2ρl
∂z2∂z2

(z)|v2|2
∣∣∣∣
)

≤ 2 max{c, d}

m(z) = inf
||v||=1

∣∣∣∣( i2 − cx1

)
v1 −

3cx2
2

2
v2

∣∣∣∣2 +

∣∣∣∣( i2 − dx2

)
v2 −

3dx2
2

2
v1

∣∣∣∣2 .
Hence, the neighbourhood

Ω =

{
z ∈ C2 : |ρ1(z)|+ |ρ2(z)| < m(z)

L(z)

}
of K contains the open set{

z ∈ Cn : |y1 − c(x2
1 + x3

2)|+ |y2 − d(x2
2 + x3

1)| < 5

72 max{c, d}

}
,

and u(z) := ρ2
1(z) + ρ2

2(z) is plurisubharmonic in Ω. Since the constants c, d < 1/60, we
get that

K b D(0; 1 + ε)×D(0; 1 + ε) ⊂ Ω,
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where 0 < ε < 1/100. Therefore, by applying Theorem 1.5, we conclude that K is
polynomially convex.
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