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Abstract
Approximate multidimensional Riemann solvers are essential building blocks in designing
globally constraint-preserving finite volume time domain and discontinuous Galerkin time
domain schemes for computational electrodynamics (CED). In those schemes,we can achieve
high-order temporal accuracy with the help of Runge–Kutta or ADER time-stepping. This
paper presents the design of a multidimensional approximate generalized Riemann problem
(GRP) solver for the first time. The multidimensional Riemann solver accepts as its inputs
the four states surrounding an edge on a structured mesh, and its output consists of a resolved
state and its associated fluxes. In contrast, the multidimensional GRP solver accepts as its
inputs the four states and their gradients in all directions; its output consists of the resolved
state and its corresponding fluxes and the gradients of the resolved state. The gradients can
then be used to extend the solution in time. As a result, we achieve second-order temporal
accuracy in a single step. In this work, the formulation is optimized for linear hyperbolic
systems with stiff, linear source terms because such a formulation will find maximal use
in CED. Our formulation produces an overall constraint-preserving time-stepping strategy
based on the GRP that is provably L-stable in the presence of stiff source terms. We present
several stringent test problems, showing that themultidimensionalGRP solver for CEDmeets
its design accuracy and performs stably with optimal time steps. The test problems include
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cases with high conductivity, showing that the beneficial L-stability is indeed realized in
practical applications.

Keywords Conservation laws · Hyperbolic partial differential equations · Multidimensional
Riemann problem · Maxwell’s equations

Mathematics Subject Classification 78M12 · 65M08 · 35L65

1 Introduction

Computational electrodynamics (CED)which dealswith the numerical solution ofMaxwell’s
equations, plays a vital role in many problems in science and engineering. The finite-
difference time-domain (FDTD)method [1–5] has been amainstay of CED applications. The
primary strength of FDTD stems from its use of a beneficial staggering of the electric and
magnetic fields to ensure that the global constraints (inherent in Gauss’s law and the absence
of magnetic monopoles) are discretely represented on the computational mesh. FDTD is
globally constraint-preserving. However, the primary weakness of standard FDTD stems
from the fact that it is restricted to second-order accuracy, especially when electromagnetic
radiation interacts with material media.

The differential formofMaxwell’s equations has a dissipationless and dispersionless limit.
As a result, it is beneficial for numerical schemes to be as dissipationless and dispersionless
as possible. This has given rise to the discontinuous Galerkin time domain (DGTD) methods
[6–13]. Such methods do not satisfy the constraints in a global sense; though some of them
do satisfy the constraints locally within each element. Even so, since they are based on
discontinuous Galerkin methods, their strong point is that they can reach high orders of
accuracy. It is very desirable to retain good traits of the FDTD and DGTD schemes discussed
above.

In an effort to design CED schemes that offer the best of both worlds—global con-
straint preservation from FDTD and higher order from DGTD—we have embarked on an
effort to design such schemes. Therefore, finite volume time domain (FVTD) schemes that
globally preserve constraints and also attain high order of accuracy were presented in [14–
16]. DGTD schemes with those same favorable attributes were presented in [17–19]. The
two central ingredients of those schemes are a high order constraint-preserving reconstruc-
tion of vector fields [14–16, 20–24] and multidimensional Riemann solvers [25–32] The
constraint-preserving reconstruction provides spatially high order accuracy. The multidi-
mensional Riemann solver folds in the essential physics that electromagnetic phenomena
are mediated by wave propagation that invariably occurs in all directions. It also gives us a
natural, physics-based approach for obtaining the electric and magnetic fields at the edges of
the computational mesh.

Furthermore, Maxwell’s equations have symplectic andmulti-symplectic structures. Con-
sidering this, Leapfrog time integration has been the chosen strategy for standard FDTD as it
is a form of symplectic integrator. However, it is well-known that FDTD results in high level
of dispersion error [4]. As this numerical dispersion error accumulates over time, simulation
of long-term behaviour and long-duration electromagnetic wave propagation with FDTD
requires an extremely fine mesh, and finer mesh in conjunction with courant stability criteria
results in prohibitively high computational time for such simulations with FDTD. There have
been several efforts to reduce the dispersion error by modifying FDTD [33]. However, con-
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sidering all the desirable features of higher order numerical methods for CED, such as higher
order spatial and temporal accuracy, ability to handle complex geometry, low dispersion
error, higher-order CED schemes generally tend to use low-storage five-stage fourth-order
Explicit Runge–Kutta method (LSERK4) [8, 34–38], strongly stability-preserving Runge–
Kutta (SSPRK) [18, 19, 39, 40] or ADER (Arbitrary DERivatives in space and time) [41–44]
time-discretizations [16, 45].

To compare briefly the computational complexities of Runge–Kutta and ADER time inte-
gration schemes for CED, we first note that each stage in a Runge–Kutta time-discretization
is only first order accurate in time. For higher-order constraint-preserving time evolution of
CED with Runge–Kutta schemes is, therefore, obtained by the application of a multidimen-
sional Riemann solver at the edges of themesh in order to obtain the edge-collocated integrals
of the electric and magnetic fields. Thus each stage of a Runge–Kutta time-discretization is
relatively inexpensive, but the overall scheme can be more expensive because multiple stages
are used. Since the CED equations can have stiff source terms, the inclusion of stiff source
terms can also add to the cost of a Runge–Kutta time-discretization. The ADER update only
requires a single stage ADER formulation within each zone to make an “in-the-small” evo-
lution within each zone. Once this is available, constraint-preserving time evolution of CED
can be obtained with volumetrically-based ADER schemes by invoking a multidimensional
Riemann solver at the edges of the mesh. However, for volumetrically-based ADER schemes
the space-time ADER construction within a zone can itself be quite expensive. The treatment
of stiff source terms also adds to the cost of an ADER scheme.

The utility of a GRP approach stems from the fact that a GRP can utilize not just the
input states, but also their gradients. Realize that those gradients are always available, and
they can always be provided by the spatial reconstruction. The intricacy in designing a GRP
solver consists of finding ways to take the gradients of the input states and using them to
obtain gradients in the resolved state. Once the gradients in the resolved state are obtained,
one can obtain at least a second order accurate update in one stage. While a few exact and
approximate GRP solvers have been designed that go beyond second order accuracy [46–
55], the majority of GRP solvers have been restricted to second order in time [56–62]. All
the GRP constructions that we know of have been one-dimensional. Since multidimensional
Riemann solvers have begun to play such an important role in CED, and also other fields, it
is of great interest to obtain generalized Riemann problem versions of the same.

In globally-constraint preserving schemes for CED, we apply a multidimensional Rie-
mann solver to the edges of the mesh. Such multidimensional Riemann solvers have been
designed [25–28, 31, 32, 63]. However, as far as we know, this is the first effort to formulate
a multidimensional generalized Riemann problem solver that works seamlessly. The goal
of this first paper is to design a multidimensional generalized Riemann solver for CED. We
choose CED because it is a linear hyperbolic system and it is very beneficial to study the
problem in the context of a linear system before tackling the fully non-linear case. The fully
non-linear case will be formulated in a subsequent paper. We formulate the problem so that
it can be used for any general linear hyperbolic system, but we also specialize our results for
CED.

CED, just like aeroacoustics, is very special in that most applications are linear. If non-
linearities are present, they are usually mild. But that only changes the emphasis of the
solution methodology. Because waves can propagate without dissipation or dispersion in
electrodynamics and aeroacoustics, a substantial premium is placed onminimizing numerical
dispersion and dissipation. There has been a growing realization that the availability of GRP
solvers can lead to a new generation of low-dissipation, low-dispersion Taylor Series-based
(TS-based) schemes [64–66], though that field is perhaps still emergent. The schemes are
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referred to as Taylor series-based because the GRP solver delivers not just the numerical flux
but also its derivative in time.

The novelty of our work lies in presenting a multidimensional GRP solver, which can be
an essential building block for the development of low dissipation, low dispersion TS-based
schemes for CED, aeroacoustics and other analogous fields. We also show how linear stiff
source terms can be included in the multidimensional GRP solver.

The rest of the paper is organized as follows. In Sect. 2 we describe Maxwell’s equations
and globally constraint-preserving solution methods for those equations. The multidi-
mensional GRP solver is described in Sect. 3. Section 4 gives a pointwise strategy for
implementation. Section 5 provides accuracy analysis; Sect. 6 provides several stringent
test problems. Section 7 draws some conclusions.

2 Maxwell Equation

We split this Section into two parts. Section 2.1 introduces Maxwell’s equations. Section 2.2
describes their globally constraint-preserving numerical solution using a GRP solver.

2.1 Introduction to Maxwell’s Equations

The equations of CED can bewritten as two evolutionary curl-type equations for themagnetic
induction and the electric displacement. The first of these is Faraday’s law, given by,

∂B
∂t

+ ∇ × E = −M, (2.1)

where B is the magnetic induction (or magnetic flux density), E is the electric field and M
is the the magnetic current density. The magnetic current density is zero for any physical
domain. The second evolutionary equation for the electric displacement is the extended
Ampere’s law, given by

∂D
∂t

− ∇ × H = −J, (2.2)

where D is the electric displacement (or electric flux density), H is the magnetic field vector
and J is the electric current density. The structure of the above two equations is such that
the magnetic induction and the electric displacement also satisfy the following two non-
evolutionary involution constraints, given by

∇ · B = ρM , (2.3)

and

∇ · D = ρE . (2.4)

Here ρM and ρE are the magnetic and electric charge densities. For any physical medium
ρM = 0 since magnetic monopoles do not exist.

The involutionary nature of the above equations ensures that the electric charge density
satisfies the equation

∂ρE

∂t
+ ∇ · J = 0, (2.5)
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and the magnetic charge density satisfies the equation

∂ρM

∂t
+ ∇ · M = 0. (2.6)

In material media we also have the constitutive relations

B = μH, (2.7)

and

D = εE, (2.8)

where μ is a 3 × 3 permeability tensor and ε is the analogous 3 × 3 permittivity tensor.
For most material media, these tensors are diagonal. The eigenstructure of the hyperbolic
system is most easily found for the diagonal case, where wemake the simplifying assumption
ε = diag{εxx , εyy, εzz} and μ = diag{μxx , μyy, μzz}. The corresponding eigenstructure has
been catalogued in Sub-section II.2 of [15]. We will also need the inverses of the permittivity
and permeability tensors. These 3×3 inverse matrices will also be symmetric, and we denote
them as ε̃ and μ̃ .

The current density is related to the electric field via

J = σ E, (2.9)

where σ is the conductivity. Similarly, the magnetic current density is related to the magnetic
field via

M = σ ∗H, (2.10)

where is the equivalent magnetic loss, which is again zero in physical media, but may be
non-zero when imposing boundary conditions in CED.

2.2 Globally Constraint-Preserving Numerical Solution of Maxwell’s Equations

The facially-collocated normal components of the electric displacement and the magnetic
induction constitute the primal variables of our scheme In Fig. 1, these vector fields are shown
by the thick red arrowand the thick blue arrow, respectively, in each of the faces of the cuboidal
element. In a finite-volume sense, these primal variables are actually taken to be facial
averages of the normal components of the electric displacement and the magnetic induction.
The overall task consists of finding the edge-collocated components of the magnetic field
vector and the electric field vector, shown in Fig. 1. These are shown with the thinner red
arrow and the thinner blue arrow, respectively, next to the edges of the zone shown in Fig. 1.
In a finite-volume sense, these are actually averages in one space dimension (taken to be
the length of the element’s edge) and the time dimension (evaluated over the timestep).
The order of spatial reconstruction of the electric displacement and the magnetic induction
then determines the order of spatial accuracy of our numerical scheme. At second order,
volumetric ADER schemes of the sort designed in [41, 43] can indeed provide a one-step
update. However, a similar one-step update can be obtained using the multidimensional GRP
solver designed here.

A single step constraint-preserving update for the entire set of CED equations, consistent
with the curl-type update in Eqs. (2.1) and (2.2) can be written at each face of the zone shown
in Fig. 1 as

D̄n+1

x;i+ 1
2 , j,k

= D̄n
x;i+ 1

2 , j ,k
− Δt J̄

n+ 1
2

x;i+ 1
2 , j ,k

+ Δt

ΔyΔz
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Fig. 1 Schematic diagram depicting the collocation of the primal and dual variables of Maxwell’s equations.
Primal variables of the scheme, given by the normal components of the magnetic induction and electric
field displacement, are facially-collocated. They undergo an update from Faraday’s law and the generalized
Ampere’s law, respectively. The components of the primal magnetic induction vector are shown by the thick
blue arrows, while the components of the primal electric displacement vector are shown by the thick red arrows.
The edge-collocated electric fields, which are used for updating the facial magnetic induction components,
are shown by the thin blue arrows close to the appropriate edge. The edge-collocated magnetic fields, which
are used for updating the facial electric displacement components, are shown by the thin red arrows close to
the appropriate edge (Color figure online)

(
Δz H̄

n+ 1
2

z; i+ 1
2 , j+ 1

2 ,k
− Δz H̄

n+ 1
2

z; i+ 1
2 , j− 1

2 ,k
+ Δy H̄

n+ 1
2

y;i+ 1
2 , j,k− 1

2
− Δy H̄

n+ 1
2

y;i+ 1
2 , j,k+ 1

2

)

(2.11a)

D̄n+1

y;i, j− 1
2 ,k

= D̄n
y;i, j− 1

2 ,k
− Δt J̄

n+ 1
2

y;i, j− 1
2 ,,k

+ Δt

ΔzΔx

(
Δx H̄

n+ 1
2

x; i, j− 1
2 ,k+ 1

2 ,
− Δx H̄

n+ 1
2

x;i, j− 1
2 ,k− 1

2 ,
+ Δz H̄

n+ 1
2

z;i− 1
2 , j− 1

2 ,k
− Δz H̄

n+ 1
2

z;i+ 1
2 , j− 1

2 ,k

)

(2.11b)

D̄n+1

z;i, j,k+ 1
2

= D̄n
z;i, j,k+ 1

2
− Δt J̄

n+ 1
2

z;i, j ,k+ 1
2

+ Δt

ΔxΔy

(
Δx H̄

n+ 1
2

x; i, j− 1
2 ,k+ 1

2
− Δx H̄

n+ 1
2

x;i, j+ 1
2 ,k+ 1

2
+ Δy H̄

n+ 1
2

y;i+ 1
2 , j,k+ 1

2
− Δy H̄

n+ 1
2

y;i− 1
2 , j,k+ 1

2

)

(2.11c)
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B̄n+1

x;i+ 1
2 , j,k

= B̄n
x;i+ 1

2 , j ,k
− Δt M̄

n+ 1
2

x;i+ 1
2 , j ,k

− Δt

ΔyΔz

(
Δz Ē

n+ 1
2

z; i+ 1
2 , j+ 1

2 ,k
− Δz Ē

n+ 1
2

z; i+ 1
2 , j− 1

2 ,k
+ Δy Ē

n+ 1
2

y;i+ 1
2 , j,k− 1

2
− Δy Ē

n+ 1
2

y;i+ 1
2 , j,k+ 1

2

)

(2.11d)

B̄n+1

y;i, j− 1
2 ,k

= B̄n
y;i, j− 1

2 ,k
− Δt M̄

n+ 1
2

y;i, j− 1
2 ,,k

− Δt

ΔzΔx

(
Δx Ē

n+ 1
2

x; i, j− 1
2 ,k+ 1

2 ,
− Δx Ē

n+ 1
2

x;i, j− 1
2 ,k− 1

2 ,
+ Δz Ē

n+ 1
2

z;i− 1
2 , j− 1

2 ,k
− Δz Ē

n+ 1
2

z;i+ 1
2 , j− 1

2 ,k

)

(2.11e)

B̄n+1

z;i, j,k+ 1
2

= B̄n
z;i, j,k+ 1

2
− Δt M̄

n+ 1
2

z;i, j ,k+ 1
2

− Δt

ΔxΔy

(
Δx Ē

n+ 1
2

x; i, j− 1
2 ,k+ 1

2
− Δx Ē

n+ 1
2

x;i, j+ 1
2 ,k+ 1

2
+ Δy Ē

n+ 1
2

y;i+ 1
2 , j,k+ 1

2
− Δy Ē

n+ 1
2

y;i− 1
2 , j,k+ 1

2

)
.

(2.11f)

The reconstructed values for the electric displacement and magnetic induction, as well as
their gradients, form the inputs to the multidimensional GRP. The multidimensional GRP is
invoked at each edge. As an output, the GRP gives the time evolution of the resolved state that
straddles the edge being considered. From this resolved state, we can evaluate the discrete
curl of the electric and magnetic fields along each edge to obtain the globally constraint-
preserving update in Eq. (2.11). We also have to pay attention, of course, to the source terms
for the electric current density and the magnetic current density; these terms are usually stiff
and should be handled with a scheme that is unconditionally stable. Furthermore, we want
the asymptotic behaviour of the discrete update in Eq. (2.11) to be such that as Δt → ∞
the discrete treatment of the source terms gives the same asymptotic result as the differential
form of the PDE. Such an unconditional stability is also known as L-stability, and we discuss
this in a later section.

3 Design of a Multidimensional GRP Solver for Maxwell’s Equations
and Linear Hyperbolic Partial Differential Equations in General

Maxwell’s equations can be written as a system of PDE in the following manner

∂U
∂t

+ ∂F(U)

∂x
+ ∂G(U)

∂ y
+ ∂H(U)

∂x
= S(U), (3.1)

where

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

Dx

Dy

Dz

Bx

By

Bz

⎞
⎟⎟⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
μ̃xz Bx + μ̃yz By + μ̃zz Bz

−μ̃xy Bx − μ̃yy By − μ̃yz Bz

0
−ε̃xz Dx − ε̃yz Dy − ε̃zz Dz

ε̃xy Dx + ε̃yy Dy + ε̃yz Dz

⎞
⎟⎟⎟⎟⎟⎟⎠

, G =

⎛
⎜⎜⎜⎜⎜⎜⎝

−μ̃xz Bx − μ̃yz By − μ̃zz Bz

0
μ̃xx Bx + μ̃xy By + μ̃xz Bz

ε̃xz Dx + ε̃yz Dy + ε̃zz Dz

0
−ε̃xx Dx − ε̃xy Dy − ε̃xz Dz

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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H =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ̃xy Bx + μ̃yy By + μ̃yz Bz

−μ̃xx Bx − μ̃xy By − μ̃xz Bz

0
−ε̃xy Dx − ε̃yy Dy − ε̃yz Dz

ε̃xx Dx + ε̃xy Dy + ε̃xz Dz

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, S =

⎛
⎜⎜⎜⎜⎜⎜⎝

−σ(ε̃xx Dx + ε̃xy Dy + ε̃xz Dz)

−σ(ε̃xy Dx + ε̃yy Dy + ε̃yz Dz)

−σ(ε̃xz Dx + ε̃yz Dy + ε̃zz Dz)

−σ ∗(μ̃xx Dx + μ̃xy Dy + μ̃xz Dz)

−σ ∗(μ̃xy Dx + μ̃yy Dy + μ̃yz Dz)

−σ ∗(μ̃xz Dx + μ̃yz Dy + μ̃zz Dz)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In the above equations, μ̃i j and ε̃i j represents different components of μ̃ and ε̃ tensors where
μ̃ and ε̃ are inverses of 3×3 symmetric electric permittivity tensor ε and symmetric magnetic
permeability tensor μ, respectively.

In light of the linearity of the fluxes and source terms in Maxwell’s equations, the above
equation can be written in terms of the Jacobians of the fluxes and the Jacobian of the source
terms as follows

∂U
∂t

+ Ã
∂U
∂x

+ B̃
∂U
∂ y

+ C̃
∂U
∂z

= −Σ̃U. (3.2)

In the above equation, Ã, B̃ and C̃ are solution-independent characteristic matrices obtained
from the x, y, z-fluxes. Likewise, Σ̃ = − ∂S(U)

∂U is a constant matrix, where the negative sign
has been introduced just to respect the fact that the current terms in Maxwell’s equations are
written with a negative sign in front.

We would like to design a multidimensional approximate GRP solver for Eq. (3.2) spe-
cializing it to Maxwell’s equations.

To describe the development of multidimensional GRP in a step-by-step manner, we split
this section into several parts. In Sect. 3.1, we briefly describe the 1D Riemann problem
(RP) and generalized Riemann problem (GRP) solvers. This provides us with the lead in to
multidimensional Riemann solvers and the multidimensional GRP solver without any source
term that we describe in Sect. 3.2. In Sect. 3.3, we show how this can be used to obtain a
GRP without a source term. In Sect. 3.4, we show how the solution of the GRP is obtained
in presence of a linear stiff source term.

3.1 One Dimensional Riemann Problem and Generalized Riemann Problem Solvers
for Linear System

A one-dimensional Riemann solver operates at the faces of a mesh because that is where the
one-dimensional discontinuities can be diagnosed on a mesh. It takes the two states at a face
as input states and provides the resolved state and one-dimensional flux as output (Left panel
of Fig. 2).

Analogously, a one-dimensional GRP solver also operates at the faces of amesh. However,
it takes the two states at a face, as well as their spatial gradients, as input states and provides
the resolved state and one-dimensional flux and the gradient of the resolved state, as output
(Right panel of Fig. 2). The output can then be used to extend the resolved state and its fluxes
in time. Please note that we consider the approximate HLL Riemann solver here, which
produces only one constant intermediate state between two interacting states. The expression
for resolved state is given by [67]:

U∗ = − 1

SR − SL

[
( Ã − SRI)UR − ( Ã − SLI)UL

]
, I : Identity Matrix, (3.3)

where SR and SL are extremal speeds in right and left directions.
For a linear hyperbolic system, as SR and SL is constant, we can find the derivatives of

the resolved state analytically with respect to any arbitrary r direction where r can be any
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Fig. 2 One dimensional solvers that operate at the faces of a mesh. Left panel: One dimensional approximate
Riemann solver. It takes two states UL and UR at the face as inputs and provides a single resolved state U∗
as we use HLL Riemann solver here. Right panel: One dimensional Generalized Riemann solver for linear
hyperbolic system. It takes left state UL , right state UR and their derivatives ∂rUL and ∂rUR as inputs where
r represents any one of the x, y, z direction in a Cartesian mesh and provides a resolved state U∗ and the
derivative ∂rU∗ as outputs. As for linear hyperbolic systems (like Maxwell’s equations) maximal wave speeds
SL , SR are constant, the characteristics curves become straight lines even for GRP

one of x, y, or z in a Cartesian mesh, and it is given by,

∂rU∗ = − 1

SR − SL

[
( Ã − SRI) ∂rUR − ( Ã − SLI) ∂rUL

]
. (3.4)

We use expressions (3.3) and (3.4) in the next section to obtain resolved states and their
derivatives fromonedimensionalRiemann solvers that are required for a complete description
of our multidimensional GRP-based scheme for linear hyperbolic systems.

3.2 Multidimensional Riemann Solver and Generalized Riemann Solver for Linear
System

Amultidimensional Riemann solver operates at the edges of a mesh because that is where the
multidimensional discontinuities can be diagnosed on a mesh. We assume a Cartesian mesh
to simplify the discussion, but the discussion is indeed generalizable. The multidimensional
Riemann solver takes the four states that come together at an edge as input states and provides
the resolved state (traditionally called a strongly-interacting state) and multidimensional
fluxes as output. Analogously, the multidimensional GRP solver also operates at the edges
of the mesh. However, the multidimensional GRP solver takes four states together with
their spatial gradients as inputs. As outputs, it produces the strongly-interacting state and
multidimensional fluxes, as well as the gradients of the strongly-interacting state. The output
can then be used to extend the strongly-interacting state and its fluxes in time.

The edge-based arrangement of electric and magnetic fields for CED in Fig. 1 shows that
the multidimensional GRP solver provides exactly the desired edge-based data at the very
location this data is needed. This highlights the special utility of the multidimensional GRP
solver for CED and other involution-constrained applications.

The GRP solver is two dimensional, because we would like to invoke it at the edges of
the mesh. For illustration, we choose the GRP solver invoked at z-edge, and as a result, we
focus on the xy-plane. However, we will retain derivatives with respect to all three axes in
Eq. (3.2) as we realize that it might be beneficial to retain the variation in the third direction
in fully three-dimensional CED problems.

For a structured mesh, the specification of the multidimensional Riemann problem at the
edges of a Cartesian mesh requires the specification of four input states [25–27]. These input
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Fig. 3 a Four input statesULU , URU , ULD, URD at the z-edge of a mesh, where one is looking down along
the z-axis. b Strongly-interacting state from multidimensional Riemann problem and resolved states from the
one-dimensional Riemann problems. While the left panel is in physical space, the right panel is best shown in
terms of the wave speeds. Here, ξ = x/t and ψ = y/t are the wave speeds in the x- and y-directions

states at the initial time are called URU (for right-up), ULU (for left-up), ULD (for left-
down) and URD (for right-down). Figure 3a shows the input states at the z-edge of a mesh,
where one is looking down along the z-axis. As soon as those input states begin to interact,
i.e. at a time that is later than the initial time, four one dimensional Riemann problems
get established between the four states. Therefore, between the states URU and ULU an
x-directional Riemann problem gives rise to the resolved state U∗

U ; another x-directional
Riemann problem between the states URD and ULD gives rise to the resolved state U∗

D ; a
y-directional Riemann problem between the states URU and URD gives rise to the resolved
state U∗

R ; similarly a y-directional Riemann problem between the states ULU and URD

gives rise to the resolved state U∗
L . Figure 3b shows how these resolved states from the

one-dimensional Riemann problems are established. When these one-dimensional Riemann
problems interact, they form another self-similarly evolving strongly-interacting state U∗
which yields corresponding x and y fluxes F∗ and G∗. Figure 3b also shows this strongly-
interacting state. While Figure 3a is in physical space, Fig. 3b is best shown in terms of the
wave speeds. Please note that we use the approximate HLL Riemann solver which produces
only one constant intermediate state between two interacting states. As a result, the four
resolved states U∗

R, U∗
L , U∗

U , U∗
D are constant states without sub-structure. Likewise, the

state U∗ has no sub-structure.
Because the characteristic matrices are constant, the extremal speeds in the x-direction

span ξ ∈ [SL , SR] and in the y-direction span ψ ∈ [SD, SU ] are also constant. SR, SL are
extremal speeds associated with characteristic matrix Ã and SU , SD are extremal speeds
associated with characteristic matrix B̃. For the case of CED with diagonal permittivity and
permeability, we have

SR = max(
√

μ̃zz ε̃xx ,

√
μ̃yy ε̃zz), SL = −SR,

SU = max(
√

μ̃xx ε̃zz,
√

μ̃zz ε̃xx ), SD = −SU . (3.5)

So we see that the extremal wave speeds are very easy to calculate for CED.
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Fig. 4 Input data for the multidimensional GRP—the four input states from Fig. 3a now come in with their
gradients in all directions. We also show the resolved states of the one-dimensional Riemann problems and
the minimum number of gradients that we should retain in those resolved states. The strongly-interacting state
now has all three gradients

We now describe how one transitions from a multidimensional Riemann solver to a multi-
dimensional GRP solver. Figure 4 shows the input data for the multidimensional GRP—the
four input states from Fig. 3a now come in with their gradients in all directions. Therefore,
along with the state URU we also have its three spatial gradients ∂xURU , ∂yURU , ∂zURU .
These gradients can be obtained from any higher order reconstruction in the neighbouring
right-up zone.

Figure 4 shows that similar gradients can be obtained from other neighbouring zones.
We also show the resolved states associated with the one-dimensional Riemann problems
and the minimum number of gradients that we should retain in those resolved states. The
strongly-interacting state now has all three gradients. Once the gradients have been obtained
in the strongly-interacting state, they can be used to obtain the “in-the-small” time-evolution
of the strongly-interacting state. This can be done in the sense of a Lax-Wendroff procedure,
resulting in a multidimensional GRP solver that is second order in time.

First, we focus on the resolved states, represented by U∗
U , U∗

D, U∗
R, U∗

L in, Fig. 4 that
emerge when we apply the one-dimensional Riemann solvers taking two input states at a
time from four input states. For example, we can obtain the resolved state U∗

U taking URU

and ULU as inputs and using Eq. (3.3) and it is given by:
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U∗
U = − 1

SR − SL

[
( Ã − SRI)URU − ( Ã − SLI)ULU

]
, I : Identity Matrix. (3.6)

Now that we have obtained U∗
U , we can also find the associated y-flux in the upper resolved

state as G∗
U = B̃U∗

U .
We can see from Fig. 4, that we already have ∂yURU and ∂yULU . Also, as we deal with

a linear hyperbolic system with constant extremal speeds SR and SL here, we can obtain the
following expressions for partial derivative of the resolved state in y direction using Eq. (3.4):

∂yU∗
U = − 1

SR − SL

[
( Ã − SRI) ∂yURU − ( Ã − SLI) ∂yULU

]
. (3.7)

Similarly, we can obtain the partial derivative of the resolved state with respect to z using
Eq. (3.4) and it is given by

∂zU∗
U = − 1

SR − SL

[
( Ã − SRI) ∂zURU − ( Ã − SLI) ∂zULU

]
. (3.8)

We can obtain analogous results for U∗
D by replacingU with D in the subscript of Eqs. (3.6)

to (3.8).
Now let us focus on the states URU and URD and the associated extremal speeds SU , SD

in Fig. 4 and we have a y-directional Riemann problem. Using Eq. (3.3), we obtain

U∗
R = − 1

SU − SD

[
(B̃ − SU I)URU − (B̃ − SDI)URD

]
. (3.9)

We have obtained U∗
R , we can also find the associated x-flux in the right resolved state

as F∗
R = ÃU∗

R . The expressions (3.3) and (3.4) are used in the next section to develop a
complete multidimensional GRP-based solver.

We can see from Fig. 4 that we already have ∂yURU and ∂yURD . Therefore, for a linear
hyperbolic system and constant speeds SU and SD , we can obtain x and z derivative of the
resolved state UR using Eq. (3.4).

∂xU∗
R = − 1

SU − SD

[
(B̃ − SU I) ∂xURU − (B̃ − SDI) ∂xURD

]
, (3.10)

∂zU∗
R = − 1

SU − SD

[
(B̃ − SU I) ∂zURU − (B̃ − SDI) ∂zURD

]
. (3.11)

We can obtain analogous results for U∗
L by replacing R with L in the subscript of Eqs. (3.9)

to (3.11).
At this point, we have all the necessary expressions to obtain the strongly-interacting state

U∗ as depicted in Fig. 4 and it can be obtained using Equation (12) in [27],

U∗ = −1

2

(
1

SR − SL

[
( Ã − SRI)U∗

R − ( Ã − SLI)U∗
L

]

+ 1

SU − SD

[
(B̃ − SU I)U∗

U − (B̃ − SDI)U∗
D

])
. (3.12)
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From Eq. (3.12), we can obtain F∗ = ÃU∗ and G∗ = B̃U∗ . Also, Eq. (3.12) can be
formally differentiated in the z-direction to obtain ∂zU∗ as follows:

∂zU∗ = −1

2

(
1

SR − SL

[
( Ã − SRI)∂zU∗

R − ( Ã − SLI)∂zU∗
L

]

+ 1

SU − SD

[
(B̃ − SU I)∂zU∗

U − (B̃ − SDI)∂zU∗
D

])
. (3.13)

For the x- and y-gradients of the strongly-interacting state, a more sophisticated treatment
is described in the ensuing paragraphs. For those who seek the x- and y-fluxes associated
with the state U∗, please see Equations (13) and (14) of [27].

We now focus on introducing x- and y-gradients in the strongly-interacting state in Fig. 4.
Consider a general linear hyperbolic system with variation in the x-direction. It can be
formally written as

∂tU + Ã∂xU = 0.

If we differentiate that equation with respect to the x-coordinate, it becomes

∂t (∂xU) + Ã∂x (∂xU) = 0.

We see, therefore, that the x-gradient of the solution vector also satisfies a linearized Riemann
problemwith the same foliation ofwaves as the original linear hyperbolic system. This insight
was first used by Titarev and Toro in [48] to obtain the gradient of the resolved state inside
the Riemann fan. It also explains why we will only need ∂xU∗

R and ∂xU∗
L to obtain ∂xU∗.

Note, however, from an examination of Eq. (3.10) that ∂xU∗
R and ∂xU∗

L do indeed depend on
all the x-gradients from all the input states. Consequently, we obtain ∂xU∗ via a genuinely
multidimensional contribution from all the input states. Similarly, we will only need ∂yU∗

R
and ∂yU∗

L to obtain ∂yU∗. In the next two paragraphs, we make this process explicit. We will
subsequently provide all possible details using CED as an example.

From the discussion in the previous paragraph, we have understood that the longitudinal
(i.e. x-directional) gradients of the strongly-interacting state also satisfy the linear system

∂t (∂xU∗) + Ã∂x (∂xU∗) = 0, (3.14)

with the initial conditions:

∂xU∗|t=0 = ∂xU∗
L if x < 0

∂xU∗|t=0 = ∂xU∗
R if x > 0.

We now use the Titarev-Toro-style linearization. Because the characteristic matrix is con-
stant, the solution of the linear system is easily found. Within the context of the linearization
in Eq. (3.14), we obtain the solution

∂xU∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂xU∗
L when SL ≥ 0

1
2

[
∂xU∗

L + ∂xU∗
R

]
+ 1

2

mx∑
m=1

αm
x r

m
x − 1

2

M∑
m=mx+1

αm
x r

m
x when SL < 0 < SR

∂xU∗
R when SR ≤ 0

with αm
x ≡ lmx · [∂xU∗

R − ∂xU∗
L

]
. (3.15)
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In the above equation, the eigenvalues λmx , m = 1, 2, 3, . . . M of the left eigenvectors
lmx , m = 1, 2, 3, . . . M and the right eigenvectors rmx , m = 1, 2, 3, . . . M are obtained from
the characteristic matrix Ã . In Eq. (3.15) mx is defined to be the unique wave for which
we have λ

mx
x < 0 < λ

mx+1
x . This completes our description of (∂xU∗). [We also point out

that the omission of a factor of half in front of the eigenvectors in Equation (2.19) of [62]
is indeed an error, and this paper fixes the deficiency in the form of an erratum to that prior
paper.]

Analogous to the discussion in the previous paragraph, the longitudinal (i.e. y-directional)
gradients of the strongly-interacting state also satisfy the linear system

∂t (∂yU∗) + B̃∂y(∂yU∗) = 0, (3.16)

with the initial conditions:

∂yU∗|t=0 = ∂yU∗
D if y < 0

∂yU∗|t=0 = ∂yU∗
U if y > 0.

As before, we use the Titarev-Toro-style linearization. Because the characteristic matrix is
constant, the solution of the linear system is easily found. Within the context of the lineariza-
tion in Eq. (3.16), we obtain the solution

∂yU∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂yU∗
D when SD ≥ 0

1
2

[
∂yU∗

D + ∂yU∗
U

]
+ 1

2

my∑
m=1

αm
y r

m
y − 1

2

M∑
m=my+1

αm
y r

m
y when SD < 0 < SU

∂yU∗
U when SU ≤ 0

with αm
y ≡ lmy · [∂yU∗

U − ∂yU∗
D

]
. (3.17)

In the above equation, the eigenvalues λmy , m = 1, 2, 3, . . . M the left eigenvectors
lmy , m = 1, 2, 3, . . . M and the right eigenvectors rmy , m = 1, 2, 3, . . . M are obtained

from the characteristic matrix B̃ . In Eq. (3.17)my is defined to be the unique wave for which

we have λ
my
y < 0 < λ

my+1
y . This completes our description of (∂yU∗).

For CED, the eigenvalues and orthonormal eigenvectors have been documented in [15].
Two of the waves in this system become non-evolutionary because they correspond to the
constraints. The case where the permittivity and permeability are diagonal is very important.
In that case, we give explicit expressions for (∂xU∗) and (∂yU∗). For (∂xU∗), we have

∂xU∗ = 1

2

(
∂xU∗

L + ∂xU∗
R

)
+ 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−
√

μ̃zz

ε̃yy

(
(∂xU∗

R)6 − (∂xU∗
L)6

)
√

μ̃yy

ε̃zz

(
(∂xU∗

R)5 − (∂xU∗
L)5

)

0√
ε̃zz

μ̃yy

(
(∂xU∗

R)3 − (∂xU∗
L)3

)

−
√

ε̃yy

μ̃zz

(
(∂xU∗

R)2 − (∂xU∗
L)2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.18)
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In the above equation, (∂xU∗
(·))i denotes the i-the component of the corresponding vector.

∂yU∗ = 1

2

(
∂yU∗

D + ∂yU∗
U

)
+ 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
μ̃zz

ε̃xx

(
(∂yU∗

U )6 − (∂yU∗
D)6

)
0

−
√

μ̃xx

ε̃zz

(
(∂yU∗

U )4 − (∂yU∗
D)4

)

−
√

ε̃zz

μ̃xx

(
(∂yU∗

U )3 − (∂yU∗
D)3

)

0√
ε̃xx

μ̃zz

(
(∂xU∗

U )1 − (∂xU∗
D)1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.19)

The above two equations show us how easy it is to obtain the gradients in the strongly-
interacting state.

3.3 A GRP solverWithout any Source Term

In its most rudimentary form, a multidimensional GRP solver is used as follows. We hand
in the four states and their gradients as inputs to the multidimensional GRP at time tn . The
GRP in turn produces the strongly-interacting state U∗ and its gradients ∂xU∗

U , ∂yU∗
U and

∂zU∗
U at each tn . However, a GRP solver should enable us to take a temporally second order

accurate time update to a time tn+1 = tn + Δt in one call to the GRP solver. As a result, we
want the time-centered solution at a time of tn +Δt/2. This is obtained by a Lax-Wendroff-like
procedure as follows:

U∗,1/2 = U∗ − Δt

2

[
Ã(∂xU∗) + B̃(∂yU∗) + C̃(∂zU∗)

]
. (3.20)

With U∗,1/2 in hand, we can easily obtain time-centered electric and magnetic fields at the
edges of the mesh. This enables us to find the electric field and magnetic field components
at the edges of the mesh with the result that Eq. (2.11) then be used to make a single-step,
second order in time update.

3.4 A GRP Solver for Linear Systems with Stiff Linear Source

The output from the GRP solver will be a state U∗,1/2 updated to a time tn+1/2 at the edges
of the mesh, as discussed in the previous sub-section. This state has to be at least first order
accurate in time for the overall time update in Eq. (2.11) to be second order accurate in time.
Now let us consider the inclusion of the source term in Eq. (3.2). We can write the update that
is analogous to Eq. (3.20), but this time we write it formally so that the effect of the source
term is included at least up to first order of accuracy. We therefore write

U∗,1/2 = g(Δt Σ̃)

[
U∗ − Δt

2

[
Ã(∂xU∗) + B̃(∂yU∗) + C̃(∂zU∗)

]]
. (3.21)

Here g(Δt Σ̃) is a matrix function that depends only on the matrix Δt Σ̃ because the
source terms are linear. The matrix function can consist of any reasonable approximation
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of e−(
Δt
2 Σ̃). In the next paragraph, we will examine the concept of L-stability in CED. We

will then specialize g(Δt Σ̃) to ensure L-stability so that the overall timestep has this very
beneficial stability property.

The update in Eq. (2.11) can be formally written as

Un+1 = Un − Δt Σ̃ U∗,1/2 − ΔtR(U∗,1/2), (3.22)

where U∗,1/2, Δt Σ̃ U∗,1/2 and R(U∗,1/2) represent the output state from the multidimensional
GRP updated to a time tn + Δt/2 at the edges of the mesh, the source terms and a discrete
representation of the curl type operator in Eq. (2.11) respectively. In fairness, the facial
currents in Eq. (2.11) are obtained by averaging the currents provided at the edges of the
mesh by themultidimensionalGRP.However, that point of detail does not affect the following
analysis. The demonstration of L-stability does not rely on the formof the curl-type terms, and
so we will ignore the presence of the curl-type terms for the rest of this formal demonstration
of L-stability. In other words, to demonstrate L-stability, wewill ignore termswith any spatial
gradients and focus only on the source terms. When all spatial gradients are set to zero, we
have U∗ = Un . Ignoring all spatial gradients, Eqs. (3.21) and (3.22) give us

Un+1 =
[
I − Δt Σ̃ g(Δt Σ̃)

]
Un = G(Σ̃Δt)Un, (3.23)

where G(·) is the overall amplification factor of the scheme.
The effect of finite conductivity inMaxwell’s equations is such that, if the spatial gradients

do not act, and if the entire system is governed by non-zero conductivity, then the end result
after a significantly long time interval should be a zero electric displacement and a zero

magnetic induction. In other words, as Δt Σ̃ → ∞, we want
[
I − Δt Σ̃ g(Δt Σ̃)

]
→ 0.

This is a physics-based interpretation of L-stability. The matrix function g(Δt Σ̃) that we
choose should reflect that fact. Notice that Σ̃ is either a non-negative diagonal matrix, or
it can be diagonalized into such a form via a similarity transformation. As a result, we can
define χ ≡ Δt Σ̃ and simplify our analysis by treating Σ̃ as a scalar. L-stability is therefore
equivalent to demanding that

lim
χ→∞ χg(χ) = 1. (3.24)

In the next three paragraphs we explore different reasonable forms for g(χ) so as to finally
obtain an L-stable formulation. Figure 5 shows the overall amplification factor G(χ) =
1 − χg(χ) for different choices.

Let us first examine the exact solution operator of the stiff source term. In that case, and
with all gradients set to zero, for Eq. (3.21) we obtain the following:

U∗,1/2 = e−(Δt/2 Σ̃)Un with g(χ) ≡ e−χ/2. (3.25)

For this choice, we have

lim
χ→∞ χg(χ) = lim

χ→∞ χe−χ/2 = 0. (3.26)

So we see that the exact solution operator of the stiff source term does not satisfy the L-
stability criteria (3.24) and as a result the overall scheme is not L-stable. We might think that
the exact evolution operator for the source term should be an ideal choice, but this is not the
case when we consider the overall scheme.
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Fig. 5 Amplification factor as a function of χ = Σ̃Δt . We show that an exact solution as well as the backward
Euler solution do not result in an overall time update strategy that has the L-stability property. However, the
arithmetic average of the two solutions leads to an overall update strategy that is indeed L-stable. The exact
solution is also shown

Let us next examine the backward Euler solution. In that case, and with all gradients set
to zero, we have the following form for Eq. (3.21)

U∗,1/2 =
[
I + Δt

2
Σ̃
]−1

Un with g(χ) ≡ 1

1 + χ/2
. (3.27)

For this choice, we have

lim
χ→∞ χg(χ) = lim

χ→∞
χ

1 + χ/2
= 2. (3.28)

Therefore, we see that the overall amplification factor of the scheme with backward Euler
time-stepping lim

χ→∞G(χ) = lim
χ→∞(1 − χg(χ)) = −1.

While the exact and backward Euler solution are not L-stable, the two options begin to
hint towards an optimal choice. Since both the exact and the backward Euler solution would
give us an overall scheme that is second order accurate in time, an arithmetic average of the
two would also give us a second order accuracy in time. If we take the average of these two
options, we obtain the following form for Eq. (3.21)

U∗,1/2 = 1

2

[
e
−(

Δt

2
Σ̃) +

(
I + Δt

2
Σ̃
)−1][

U∗ − Δt

2

(
Ã(∂xU∗) + B̃(∂yU∗) + C̃(∂zU∗)

)]
.

(3.29)

123



26 Page 18 of 29 Journal of Scientific Computing (2023) 96 :26

Now if we set all the gradients to zero, we obtain

U∗,1/2 = 1

2

[
e−(Δt/2 Σ̃) +

(
I + Δt

2
Σ̃
)−1]

Un, (3.30)

and thus

g(χ) = 1

2

(
e
−(

χ

2
) + 1

1 + χ/2

)
. (3.31)

For this choice we have

lim
χ→∞ χg(χ) = lim

χ→∞
χ

2

(
e
−(

χ

2
) + 1

1 + χ/2

)
= 1. (3.32)

Therefore,we see thatwe have found anL-stable scheme andEq. (3.29) gives us an expression
of the final, successful choice of an overall scheme.

4 Pointwise Strategy for Implementation

The following steps will result in a one-step, GRP-based, second order accurate in space and
time FVTD scheme for CED which preserves the global constraints and is L-stable in the
presence of stiff linear source terms.

1. Theprimal variables of the schemeare facially-averagednormal components of the electric
displacement vector field and themagnetic induction vector field, as shown in Fig. 1. These
components give us a second order accurate reconstruction of electric displacement vector
field and the magnetic induction vector fields following Section III of [15].

2. Focus on each edge center of a Cartesianmesh. Consider the four zones that abut this edge.
Use the reconstructed fields to obtain the four input states to the multidimensional GRP.
Because the reconstruction from the previous step also enables us to obtain the gradients
in all directions from those four states, we also provide these gradients as inputs to the
GRP.

3. Use Eq. (3.5) to obtain SR, SL , SU , SD . This enables us to identify the multidimensional
wave model, shown in the left panel of Fig. 3.

4. Use Eqs. (3.6),(3.8) and (3.7) to obtain U∗
U and its gradients in the y- and z-directions.

Do analogously for U∗
D .

5. Use Eqs. (3.9),(3.10) and (3.11) to obtain U∗
R and its gradients in the x- and z-directions.

Do analogously for U∗
L .

6. Use Eqs. (3.12) and (3.13) to obtain the strongly-interacting state U∗ and its gradient in
the z-direction.

7. Use Eqs. (3.18) and (3.19) to obtain the gradients of the strongly-interacting state in the
x and y-directions. Please note that Eqs. (3.18) and (3.19) are just specialized forms of
Eqs. (3.15) and (3.17) respectively.

8. If there are no source terms, use Equation (3.20). If source terms are present, use Equation
(3.29). This gives us the time-centered states at the edges of the mesh that can be used to
construct the curl-type operators in Eq. (2.11).

9. If sources are present, obtain the facial current densities by averaging the edge-centered
values of the same. This gives us an L-stable treatment of the stiff source terms.

10. Make the update in Eq. (2.11). This completes our description of a spatially and temporally
second order accurate, globally constraint-preserving, FVTD time update.
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5 Accuracy Analysis

5.1 Propagation of a Plane ElectromagneticWave in Two Dimensions

In this test problem, we study the propagation of a plane electromagnetic wave through vac-
uum along the north-east diagonal direction of a two dimensional Cartesian domain spanning
[−0.5, 0.5] × [−0.5, 0.5] m2. For a detailed description of the problem set up and the elec-
tromagnetic field initialization, the readers are referred to [14] for three dimensional version
of this test problem and [15] for the two dimensional version of this test problem. Since
the analytical solution is known at any space and time, this test problem is very suitable for
accuracy analysis. We use a CFL of 0.45 and enforce a periodic boundary condition for this
problem. The simulation has been run till a time of 3.5× 10−9 s second and a uniform mesh
has been used in all the runs presented here. Table 1 shows the accuracy analysis for this test
problem. We can see the algorithm meets it designed accuracy for this problem.

5.2 Compact Gaussian Electromagnetic Pulse Incident on a Refractive Disk

In this two dimensional test problem, we study the propagation of a compact Gaussian elec-
tromagnetic pulse that is incident on a refractive disk of refractive index 3.0. The simulation
has been performed on a computational domain spanning [−7.0, 7.0]× [−7.0, 7.0] m2. The
refractive disk of radius 0.75m is placed at the center of the computational domain. More
details about this problem set up and initialization of the compact Gaussian pulse can be
found in [15].

This simulation has been run with a CFL of 0.45 and continuative boundary condition is
enforced for this problem. We stop this simulation at a final time of 2.33 × 10−8 s. For the
simulations presented here, we use a uniform mesh with zones ranging from 120 × 120 to
960 × 960. Since the problem has no analytic solution, we use a 1920 × 1920 mesh solution
as the reference solution for computing the L1 and L∞ errors. Table 2 shows the result of
the accuracy analysis for this problem. The results show that, even for this problem, our
algorithm meets its design accuracy.

Table 1 Accuracy analysis for
multidimensional GRP scheme
for the propagation of an
electromagnetic wave in vacuum.
A CFL of 0.45 was used. The
errors and accuracy in the
y-component of the electric
displacement vector and
z-component of the magnetic
induction are shown

Nx × Ny ‖Dh
y − Dy‖L1 Ord ‖Dh

y − Dy‖L∞ Ord

16 × 16 9.8208e−05 – 1.5146e−04 –

32 × 32 2.2130e−05 2.15 3.4776e−05 2.12

64 × 64 5.5153e−06 2.00 8.6592e−06 2.01

128 × 128 1.3850e−06 1.99 2.1753e−06 1.99

‖Bh
z − Bz‖L1 Ord ‖Bh

z − Bz‖L∞ Ord

16 × 16 4.9235e−02 – 7.8128e−02 –

32 × 32 1.1492e−02 2.10 1.8000e−02 2.12

64 × 64 2.8693e−03 2.00 4.5064e−03 2.00

128 × 128 7.2069e−04 1.99 1.1320e−03 1.99
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Table 2 Convergence of error for
multidimensional GRP scheme
for the propagation of a compact
Gaussian electromagnetic pulse
that is incident on a refractive
disk. A CFL of 0.45 was used.
The errors and accuracy in the
y-component of the electric
displacement vector and
z-component of the magnetic
induction are shown

Nx × Ny ‖Dh
y − Dy‖L1 Ord ‖Dh

y − Dy‖L∞ Ord

120 × 120 4.5549e−05 – 1.7269e−02 –

240 × 240 2.8758e−05 0.66 1.7414e−02 −0.01

480 × 480 1.1046e−05 1.38 6.3582e−03 1.45

960 × 960 2.3549e−06 2.23 1.2758e−03 2.32

‖Bh
z − Bz‖L1 Ord ‖Bh

z − Bz‖L∞ Ord

120 × 120 1.8746e−02 – 2.7283e+00 –

240 × 240 1.0416e−02 0.85 2.9031e+00 −0.09

480 × 480 4.1051e−03 1.34 9.6348e−01 1.59

960 × 960 9.4015e−04 2.13 1.8530e−01 2.38

6 Test Problems

6.1 Refraction of a Compact Electromagnetic Beam by a Dielectric Slab

In this test problem, we study the refraction of a compact electromagnetic beam impinging on
a dielectric slab with a permittivity 2.25ε0 where ε0 is the permittivity of vacuum. Detailed
description about this problem set up and the initialization of the electromagnetic beam can
be found in [15].

We perform this simulation on a two dimensional Cartesian domain spanning [−5.0,
8.0]× [−2.5, 7.0] µm2 using a uniform mesh with 1300 × 950 zones. We use a CFL of 0.45
and stop this simulation at a time of 4.0 × 10−14 s. The result of the simulation is shown in
Fig. 6. The top and bottom rows of Fig. 6 shows Bz, Dx , Dy (from left to right) at the initial
and final time respectively. The solid vertical black line indicates the interface of the vacuum
and the dielectric slab. We have also plotted inclined solid black line to show the angles of
incidence, refraction and reflection. These lines are over-plotted with the field components to
guide our eye. Since the angle of incidence is 45◦ for this case, according to Snell’s law, the
angle of refraction is 28.12◦. We clearly see that our simulation has reproduced the correct
value of angle of refraction.

6.2 Total Internal Reflection of a Compact Electromagnetic Beam by a Dielectric Slab

In this test problem, we study the total internal reflection of a compact electromagnetic
beam when it is incident on the interface separating a dielectric disk of permittivity 4ε0 and
vacuum at an angle of 45◦ which is more than the critical angle 30◦ for such system. For
a detailed description of the problem set up, readers are referred to [15]. We perform this
simulation on a rectangular xy-domain using a uniformmesh with 700× 850 zones.We use a
CFL of 0.45 for this simulation run and stop the simulation at a final time of 5.0×10−14 s. The
top and bottom rows of Fig. 7 show the initial and final configuration of Bz, Dx , Dy (from
left to right) respectively. The solid vertical black line identifies the interface of the dielectric
slab and vacuum. The inclined solid black lines are over-plotted on the field components
to guide our eye. The result clearly shows that the incident beam has suffered total internal
reflection.
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Fig. 6 Refraction of a compact electromagnetic beam by a dielectric slab on a mesh of 1300 × 950 cells.
The vertical black line indicates the surface of the dielectric slab. The inclined solid black lines demarcate
the angle of incidence, the angle of refraction and the angle of reflection. Top row and bottom row shows
Bz , Dx , and Dy at the initial time and at final time 4.0 × 10−14 s respectively

Fig. 7 Total internal reflection of a compact electromagnetic beam by a dielectric slab on a mesh of 700 ×
850 cells: The vertical black line indicates the surface of the dielectric slab. The inclined solid black lines
demarcate the angle of incidence and the angle of reflection. Top row and bottom row shows Bz , Dx , and Dy

at the initial time and at final time 5.0 × 10−14 s respectively

6.3 Compact Electromagnetic Beam Impinging on a Conducting Slab

This test problem is designed to demonstrate the capability of the present algorithm to
handle stiff source term. In this test problem, we study the reflection of a compact electro-
magnetic beam impinging on a slab made up of copper having a conductivity of 5.9× 107 S
m−1. The problem set up is described in detail in [15].
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Fig. 8 Compact electromagnetic beam impinging on a conducting slab. Simulation were performed on 1500
× 4000 cells. The conductor is located at x = 0 in the figure and is shown by the vertical black line. Top row:
Bz , Dx , and Dy at the initial time. Bottom row: Bz , Dx , and Dy at the final time 1.83 × 10−7 s when the
beam has reflected off the surface of the conductor

We perform this simulation on a rectangular xy-domain using a uniform mesh with 1500
× 4000 zones. For this simulation, we use a CFL of 0.40 and stop the simulation at a time of
1.83 × 10−7 s. The top and bottom rows of Fig. 8 show the initial and final configuration of
Bz, Dx , Dy respectively. The solid vertical black line represents the surface of the conducting
slab. We can notice the development of interference pattern between the incident wave and
the reflected wave close to the surface of the conducting slab.
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6.4 Decay of a SinusoidalWave Inside a Conductor

Due to the finite skin depth of a conductor, a fraction of the incident wave penetrates it and
decays inside it. However, for the meshes used in the previous test problem, we are unable to
resolve the skin depth of the copper. Therefore, in this test problem, the simulation set up is
designed in a way so that we can resolve the skin depth and study the decay of a sinusoidal
wave. The details of the set up and the initialization of the electromagnetic field can be found
in [15].

Here, we show results of two one dimensional simulations. In one simulation, we study
the decay of the sinusoidal wave inside amorphous carbon having a conductivity of σ =
2.0× 103 Sm−1 and in the other, we study the same inside copper. For both the simulations,
we use a one dimensional domain spanning [0, 10δ] where δ represents the skin depth of the
conductor and auniformmeshwith 100 zones. For carbon,we initialize a sinusoidalwavewith
frequency ν = 1.679×1013 Hz,which gives δ = 3.44×10−6 m.We use aCFLof 0.90 for this
run and stop this simulation at a time of 4.76×10−13 s. For copper, we initialize a sinusoidal
wave with frequency ν = 1.0 × 1013 Hz, which gives δ = 2.06 × 10−8 m. We use a CFL of
0.75 for this run and stop this simulation at a time of4.0×10−13 s. Solid black lines in top left
and top right panels of Fig. 9 show the variation of Bz with radial distance inside the carbon
and copper, respectively. The solid red lines represent the numerically evaluated decaying
envelopes. In bottom left and bottom right panels of Fig. 9, we compare the numerically
evaluated decaying envelopes (red crosses) with analytically obtained envelopes (blue solid

Fig. 9 The top left panel and right panel show the radial variations of Bz (black lines) and the decaying
envelopes (red lines) inside carbon and copper, respectively. The bottom left, and the bottom right panel
present the structure of the envelopes (red lines) and the theoretical plots on a semi-log scale for carbon and
copper, respectively (Color figure online)
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line) on a semi-log scale for carbon and copper, respectively. We can see that our numerical
results match very well with the analytical results.

6.5 Long-Distance or Long-Time Propagation of Electromagnetic Radiation

Long-time or long-distance wave propagation is crucial for many problems in electrody-
namics. Therefore, it is highly desirable to devise CED schemes with minimal dispersive
errors. This test problem is designed to demonstrate the numerical dispersion behavior of our
numerical scheme. It is also compared with FDTD to prove its superior numerical dispersion
behavior over the FDTD scheme. The setup of the problem is analogous to the similar test
problem in Section 5.8 of [16].

To replicate the long-time and long-distance propagation of electromagnetic plane waves,
we make electromagnetic plane waves propagate in a small computational domain with
periodic boundary conditions in multiple cycles. We choose a computational domain that
spans [− r

2 ,
r
2 ] × [− r

2 ,
r
2 ] in the xy-plane with r = 6 divided into a 180 × 180 meshes with

uniform mesh size and periodic boundary conditions. The exact expression for the electric
flux density and the magnetic flux intensity vector fields are given as follows:

D = c ε0
(− ny cos(φ)êx + nx cos(φ)êy

)
, B = cos(φ)êz

where φ = 2π
ny

(nx x + ny y − ct) and n̂ = nx êx + nyêy is the direction of propagation of the
plane wave.

As it is well known that wave propagation along the mesh lines or 45◦ is simpler to
replicate, we test the dispersion behaviour of our scheme by choosing the direction of wave
propagation along n̂ = ( 1√

r2+1
, r√

r2+1
) which implies that the plane wave are made to

propagate at angle tan−1( 1r ) = tan−1( 16 ) = 9.462◦ with respect to the y-axis.
Simulation was performed until 4.05× 10−7 s with a CFL number of 0.45. The final time

corresponds to 20 cycles on the periodic mesh, equivalent to propagating the electromagnetic
wave over 3600 zones of a uniform mesh.

The left panel of Fig. 10 shows the variation of Bz normalized by the corresponding
amplitude of the sinusoid as a function of x along y = 0 at the final time. The right panel
of Fig. 10 depicts the same, however, as a function of y along x = 0. In Fig. 10, results
obtained using multidimensional GRP, FDTD are compared with analytical solutions, and

Fig. 10 Long-time propagation of electromagnetic radiation. Bz normalized by the amplitude for multidimen-
sional GRP, FDTD schemes and analytical solution at the final time. Left panel shows the variation along the
x-axis at y = 0, while the right panel shows the variation along the y-axis at x = 0
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we can observe that analytical results and multidimensional GRP-computed results are close
to each other whereas FDTD-computed results lagged in the left relative to them by 1 m
distance. Similar result has also been reported in [16].

7 Conclusions

In this paper, we have designed an approximate, multidimensional generalized Riemann
problem (GRP) solver. The multidimensional Riemann solver takes the four states that come
together at an edge as input states and provides the resolved state (traditionally called a
strongly-interacting state) andmultidimensional fluxes as output. The output can then be used
to extend the strongly-interacting state and its fluxes in time. The edge-based arrangement
of electric and magnetic fields for CED in Fig. 1 shows that the multidimensional GRP
solver provides exactly the desired edge-based data at the very location this data is needed.
This highlights the special utility of the multidimensional GRP solver for CED and other
involution-constrained applications. In this paper, we have designed such an approximate,
multidimensional GRP solver for linear hyperbolic systems with stiff, linear source terms.
As a result, a one-step update that is temporally second order accurate is achieved.

Our formulation produces an overall constraint-preserving time-stepping strategy based on
the GRP that is provably L-stable in the presence of stiff source terms. Our multidimensional
GRP formulation, while specialized for CED, is generally applicable to any linear hyperbolic
system with stiff, linear source terms.

The multidimensional GRP presented here is intended to be a building block for low
dispersion, low dissipation higher order schemes for CED. It could also find utility in aeroa-
coustics. We also recognize that multidimensional Riemann solvers have found great utility
as nodal solvers in Arbitrary Lagrangian Eulerian (ALE) schemes [68, 69]. The availabil-
ity of multidimensional GRP solvers is expected to greatly simplify the design of higher
order ALE schemes because the GRP provides a more accurate trajectory of the strongly-
interacting state at each node. Likewise, the Taylor series-based schemes that result from the
multidimensional GRP indeed reduce the number of reconstruction stages in ALE schemes.
In subsequent papers we will pursue such innovations as well as further develop the field of
CED.
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