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ABSTRACT
We carry out a time-dependent numerical simulation where both the hydrodynamics and
the radiative transfer are coupled together. We consider a two-component accretion flow in
which the Keplerian disc is immersed inside an accreting low angular momentum flow (halo)
around a black hole. The injected soft photons from the Keplerian disc are reprocessed by the
electrons in the halo. We show that in presence of an axisymmetric soft-photon source the
spherically symmetric Bondi flow loses its symmetry and becomes axisymmetric. The low
angular momentum flow was observed to slow down close to the axis and formed a centrifugal
barrier which added new features into the spectrum. Using the Monte Carlo method, we
generated the radiated spectra as functions of the accretion rates. We find that the transitions
from a hard state to a soft state is determined by the mass accretion rates of the disc and
the halo. We separate out the signature of the bulk motion Comptonization and discuss its
significance. We study how the net spectrum is contributed by photons suffering different
number of scatterings and spending different amounts of time inside the Compton cloud. We
study the directional dependence of the emitted spectrum as well.

Key words: accretion, accretion discs – black hole physics – hydrodynamics – radiation
mechanisms: general – radiative transfer – methods: numerical.

1 IN T RO D U C T I O N

The spectral and timing properties of a black hole candidate give
away the most vital clues to the understanding of the nature of the
invisible central object. The spectrum of radiation, particularly in
high energies, gives information about the thermodynamic proper-
ties of matter accreting on to a black hole. The timing properties give
information about how these thermodynamic properties are chang-
ing with time. The thermodynamic properties such as the mass
density, temperature, etc. and the dynamic properties such as the
velocity components are the solutions of the governing equations.
Thus, a thorough knowledge of the spectral and timing properties
are essential (e.g. Chakrabarti 1996).

There are several papers in the literature which have devoted
themselves to study the spectral and timing properties of the accre-
tion flows around black holes. Sunyaev & Titarchuk (1980) sug-
gested that the explanation of the emitted spectrum requires the
presence of a Comptonizing hot electron plasma along with the
standard disc of Shakura & Sunyaev (1973). There are several mod-
els in the literature, such as the hot corona on a Keplerian disc
(Haardt & Maraschi 1993), unstable inner edge of the standard disc
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(Kobayashi et al. 2003), hybrid EQPAIR model (Coppi 1992) which
uses both the thermal and non-thermal electrons which empirically
describe the nature of the possible Compton cloud. Other models
include those of Wandel & Liang (1991), Janiuk & Czerny (2000),
Merloni & Fabian (2001) and Zdziarski et al. (2003). In the so-called
two-component advective flow model of Chakrabarti & Titarchuk
(1995), which is based on shock solutions in a sub-Keplerian flow
(Chakrabarti 1989), it was shown that the spectral properties are
direct consequences of variation of accretion rates of the Keplerian
(disc) and sub-Keplerian (halo) components. Subsequently, efforts
were made to explain the timing properties. An important step in
this direction is the theoretical work of Titarchuk & Lyubarskii
(1995) and Lyubarskii (1997) who showed the influence of noise
and turbulences on the power density spectrum. Meanwhile, almost
at the same time, Molteni, Sponholz & Chakrabarti (1996) pointed
out that the resonance effects between the cooling time-scale and
the infall time-scale cause the Chakrabarti shocks (C-shocks) to
oscillate and cause the most important feature of the power density
spectrum, namely the quasi-periodic oscillations (QPOs). Molteni,
Toth & Kuznetsov (1999) showed that these C-shocks are actu-
ally stable even when azimuthal perturbations are given, though a
vortex was shown to rotate anchoring the shocks, causing further
enhancements in QPO power densities. This was further expanded
by Chakrabarti, Acharyya & Molteni (2004) who relaxed the con-
straints on the equatorial symmetry and found that these shocks are
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prone to both vertical and radial oscillations of similar frequencies.
Thus it is generally established that the sub-Keplerian flows are
responsible for both the spectral and timing properties of the black
hole candidates. This has been corroborated by several observations
(Soria et al. 2001; Smith, Heindl & Swank 2002; Wu et al. 2002;
Pottschmidt et al. 2006; Dutta & Chakrabarti 2010).

Given that the two-component flows have been found to be useful
to understand the spectral and timing properties, it will be important
to carry out the numerical simulations of radiative flows around
black holes which also include C-shocks. So far, however, only
bremsstrahlung or pseudo-Compton cooling have been added into
the time-dependent flows (Molteni et al. 1996; Chakrabarti et al.
2004; Proga 2007; Proga, Ostriker & Kurosawa 2008). Inclusion
of the full-fledged Comptonization is prohibitively complex since
the Comptonization efficiency depends on temperature and optical
depth of the surrounding flow, and this would depend on directions
and time as well. In the present paper, we make the first attempt
to incorporate the time-dependent simulation result which includes
both hydrodynamics and radiative transfer. We use the low angular
halo along with a Keplerian disc. We find how the Comptonization
affects the temperature distribution of the flow and how this in turn
affects the dynamics of the flow as well. So far, our solutions have
been steady. We obtain the outgoing spectrum of radiation as well.

In the next section, we discuss the geometry of the soft photon
source and the Compton cloud in our Monte Carlo simulations. The
variation of the thermodynamic quantities and other vital parame-
ters are obtained inside the Keplerian disc and the Compton cloud
which are required for the Monte Carlo simulations. In Section 3 we
describe the simulation procedure, and in Section 4 we present the
results of our simulations. Finally, in Section 5 we make concluding
remarks.

2 G E O M E T RY O F TH E E L E C T RO N C L O U D
A N D T H E SO F T- P H OTO N S O U R C E

In Figs 1(a) and (b), we present cartoon diagrams of our simulation
set-up for (a) spherical Compton cloud (halo) with zero angular
momentum (specific angular momentum, i.e. angular momentum
per unit mass, λ = 0) and (b) rotating Compton cloud (halo) with a
specific angular momentum λ = 1. In the first case (a), we have the
electron cloud within a sphere of radius Rin = 200rg, the Keplerian
disc resides at the equatorial plane. The outer edge of this disc is
located at Rout = 300rg, and it extends up to the marginally stable
orbit Rms = 3rg. At the centre of the sphere, a black hole of mass
10 M� is located. The spherical matter is injected into the sphere
from the radius Rin. It intercepts the soft photons emerging out of

the Keplerian disc and reprocesses them via Compton or inverse-
Compton scattering. An injected photon may undergo a single,
multiple or no scattering at all with the hot electrons in between its
emergence from the Keplerian disc and its escape from the halo.
The photons which enter the black holes are absorbed. In the second
case (b), due to the presence of the angular momentum of the flow,
the spherical symmetry of the flow is lost. The other parameters of
the Keplerian disc and the halo remain the same as in case (a).

2.1 Distribution of temperature and density inside
the Compton cloud

A realistic accretion disc is expected to be three-dimensional. As-
suming axisymmetry, we have calculated the flow dynamics using
a finite difference method which uses the principle of total varia-
tion diminishing (TVD) to carry out hydrodynamic simulations (see
Ryu, Chakrabarti & Molteni 1997, and references therein; Giri et al.
2010). At each time-step, we carry out Monte Carlo simulation to
obtain the cooling/heating due to Comptonization. We incorporate
the cooling/heating of each grid while executing the next time-step
of hydrodynamic simulation. The numerical calculation for the two-
dimensional flow has been carried out with 900 × 900 cells in a
200rg × 200rg box. We chose the units in a way that the outer bound-
ary (Rin) is chosen to be unity and the matter density is normalized
to become unity. We assume the black hole to be non-rotating, and
we use the pseudo-Newtonian potential −1/2(r − 1) (Paczyński &
Wiita 1980) to calculate the flow geometry around a black hole (here
r is in the unit of Schwarzschild radius rg = 2GMbh/c2). Velocities
and angular momenta are measured in units of c, the velocity of
light, and rgc, respectively. In Figs 2(a) and (b), we show the snap-
shots of the density and temperature (in keV) profiles obtained in a
steady state purely from our hydrodynamic simulation. The density
contour levels are drawn for 0.65–1.01 (levels increasing by a factor
of 1.05) and 1.01–66.93 (successive level ratio is 1.1). The tempera-
ture contour levels are drawn for 16.88–107.8 keV (successive level
ratio is 1.05).

2.2 Properties of the Keplerian disc

The soft photons are produced from a Keplerian disc whose inner
edge has been kept fixed at the marginally stable orbit Rms, while the
outer edge is located at Rout (= assumed to be at 300rg in this paper).
The source of the soft photons has a multicolour blackbody spectrum
coming from a standard (Shakura & Sunyaev 1973, hereafter SS73)
disc. We assume the disc to be optically thick and the opacity due
to free–free absorption is more important than the opacity due to

Figure 1. Schematic diagram of the geometry of our Monte Carlo simulations for (a) λ = 0 and for (b) λ = 1. Zigzag trajectories and velocity vectors are
typical paths followed by the photons and the velocity vectors of the infalling matter inside the cloud.
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Figure 2. Density (a) and temperature (b) contours inside the spherical halo in the absence of Compton cooling. Here, densities are in normalized unit and
temperatures are in keV. λ = 0 is chosen. See text for details.

scattering. The emission is blackbody type with the local surface
temperature (SS73):

T (r) ≈ 5 × 107(Mbh)−1/2(Ṁd17)1/4(2r)−3/4

[
1 −

√
3

r

]1/4

K, (1)

The total number of photons emitted from the disc surface is ob-
tained by integrating over all frequencies (ν) and is given by

nγ (r) =
[

16π

(
kb

hc

)3

× 1.202057

]
[T (r)]3 . (2)

The disc between radius r to r + δr injects dN (r) number of soft
photons:

dN (r) = 4πrδrH (r)nγ (r), (3)

where H(r) is the half-height of the disc given by

H (r) = 105Ṁd17

[
1 −

√
3

r

]
cm. (4)

In the Monte Carlo simulation, we incorporated the directional ef-
fects of photons coming out of the Keplerian disc with the maximum
number of photons emitted in the z-direction and minimum number
of photons are generated along the plane of the disc. Thus, in the
absence of photon bending effects, the disc is invisible as seen edge-
on. The position of each emerging photon is randomized using the
distribution function (equation 3). In the above equations, the mass
of the black hole Mbh is measured in units of the mass of the Sun
( M�), the disc accretion rate Ṁd17 is in units of 1017 gm s−1. We
chose Mbh = 10 in the rest of the paper.

3 SI M U L AT I O N PRO C E D U R E

In a given run, we assume a Keplerian disc rate (ṁd) and a sub-
Keplerian halo rate (ṁh). The specific energy (ε) of the halo pro-
vides the hydrodynamic (e.g. number density of the electrons and
the velocity distribution) and the thermal properties of matter. Since
we chose the Paczyński & Wiita (1980) potential, the radial veloc-
ity is not exactly unity at r = 1, the horizon. It becomes unity
just outside. In order not to overestimate the effects of bulk motion
Comptonization (Chakrabarti & Titarchuk 1995) which is due to
the momentum transfer of the moving electrons to the horizon, we
kept the highest velocity to be 1. We use the absorbing boundary

condition at r = 1.5 (λ = 0 case) and r = 2.5 (λ = 1 case). These
simplifying assumptions do not affect our conclusions, especially
because we are studying inviscid flow and the specific angular mo-
mentum is constant. Photons are generated from the Keplerian disc
as mentioned before and may be intercepted by the sub-Keplerian
halo [sphere in Fig. 1(a) and cylinder in Fig. 1(b)].

To begin the Monte Carlo code, we randomly generated soft
photons from the Keplerian disc. The energy of the soft photon at
radiation temperature T(r) is calculated using the Planck’s distri-
bution formula, where the number density of the photons [nγ (E)]
having an energy E is expressed by

nγ (E) = 1

2ζ (3)
b3E2(ebE − 1)−1, (5)

where b = 1/kT(r) and ζ (3) = ∑∞
1 l−3 = 1.202, the Riemann zeta

function.
Using another set of random numbers we obtained the direction

of the injected photon, and with yet another random number we
obtained a target optical depth τ c at which the scattering takes
place. The photon was followed within the electron cloud till the
optical depth (τ ) reached τ c. The increase in optical depth (dτ )
during its travelling of a path of length dl inside the electron cloud
is given by dτ = ρnσ dl, where ρn is the electron number density.

The total scattering cross-section σ is given by Klein–Nishina
formula:

σ = 2πr2
e

x

[(
1 − 4

x
− 8

x2

)
ln (1 + x) + 1

2
+ 8

x
− 1

2 (1 + x)2

]
,

(6)

where x is given by

x = 2E

mc2
γ

(
1 − μ

v

c

)
, (7)

re = e2/mc2 is the classical electron radius and m is the mass of the
electron.

We have assumed here that a photon of energy E and momentum
E
c
�̂ is scattered by an electron of energy γ mc2 and momentum

p = γmv, with γ = (1 − v2

c2 )−1/2 and μ = �̂.v̂. At this point, a
scattering is allowed to take place. The photon selects an electron
and the energy exchange is computed using the Compton or inverse-
Compton scattering formula. The electrons are assumed to obey
relativistic Maxwell distribution inside the Compton cloud. The
number dN (p) of Maxwellian electrons having momentum between
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p to p + d p is expressed by

dN ( p) ∝ exp
[−(p2c2 + m2c4)1/2/kTe

]
d p. (8)

We take a steady-state flow profile from a hydrodynamics code
to start the Monte Carlo simulation. When a photon interacts with
an electron via Compton or inverse-Compton scattering, it loses
or gains some energy (�E). At each grid point, we compute �E.
We update the energy of the flow at this grid by this amount and
continue the hydrodynamic code with this modified energy. This, in
turn, modify the hydrodynamic profile. Thus the Monte Carlo code
for radiative transport and numerical code are coupled together. In
case the final state is steady, the temperature of the cloud would be
reduced progressively to a steady value from the initial state where
no cooling was assumed. If the final state is oscillatory, the solution
would settle into a state with Comptonization.

3.1 Details of the coupling procedure

Once a steady state is achieved in the non-radiative hydrodynamic
code, we compute the spectrum using the Monte Carlo code. This
is the spectrum in the first approximation. To include cooling in the
coupled code, we follow the following steps. (i) We calculate the
velocity, density and temperature profiles of the electron cloud from
the output of the hydrodynamic code. (ii) Using the Monte Carlo
code we calculate the spectrum. (iii) Electrons are cooled (heated
up) by the inverse-Compton (Compton) scattering. We calculate the
amount of heat loss (gain) by the electrons and its new temperature
and energy distributions and (iv) taking the new temperature and
energy profiles as initial condition, we run the hydrodynamic code
for a period of time. Subsequently, we repeat the steps (i)–(iv). In
this way, we get an opportunity to see how the spectrum is modified
as the iterations proceed. The iterations stop when two successive
steps produce virtually the same temperature profile and the emitted
spectrum.

3.1.1 Calculation of energy reduction using Monte Carlo code

For Monte Carlo simulation, we divide the Keplerian disc into dif-
ferent annuli of width D(r) = 0.5. Each annulus is characterized by
its central temperature T(r). The total number of photons emitted
from the disc surface of each annulus can be calculated using equa-
tion (3). This total number comes out to be ∼1039−40 for ṁd = 1.0.
In reality, one cannot inject this much number of photons in Monte
Carlo simulation because of the limitation of computation time.
Therefore, we replace this large number of photons by a low num-
ber of bundles, say, Ncomp(r) ∼ 107 and calculate a weightage factor:

fW = dN (r)

Ncomp(r)
.

Clearly, from each annulus, the number of photons in a bundle will
vary. This is computed exactly and used to compute the change
of energy due to Comptonization. When this injected photon is
inverse-Comptonized (or Comptonized) by an electron in a volume
element of size dV , we assume that f W number of photons has
suffered similar scattering with the electrons inside the volume
element dV . If the energy loss (gain) per electron in this scattering
is �E, we multiply this amount by f W and distribute this loss (gain)
among all the electrons inside that particular volume element. This
is continued for all the 107 bundles of photons and the revised
energy distribution is obtained.

3.1.2 Computation of the temperature distribution after cooling

Since the hydrogen plasma considered here is ultrarelativistic (γ =
4/3 throughout the hydrodynamic simulation), thermal energy per
particle is 3kBT where kB is Boltzmann constant, T is the tem-
perature of the particle. The electrons are cooled by the inverse-
Comptonization of the soft photons emitted from the Keplerian
disc. The protons are cooled because of the Coulomb coupling with
the electrons. Total number of electrons inside any box with the
centre at location (ir, iz) is given by

dNe(ir, iz) = 4πrne(ir, iz) dr dz, (9)

where ne(ir, iz) is the electron number density at (ir, iz) location,
and dr and dz represent the grid size along r- and z-directions, re-
spectively. Therefore the total thermal energy in any box is given by
3kBT (ir, iz) dNe(ir, iz) = 12πrkBT (ir, iz)ne(ir, iz) dr dz, where
T(ir, iz) is the temperature at (ir, iz) grid. We calculate the total en-
ergy loss (gain) �E of electrons inside the box according to what is
presented above and subtract that amount to get the new temperature
of the electrons inside that box as

kBTnew(ir, iz) = kBTold(ir, iz) − �E

3dNe(ir, iz)
. (10)

3.2 Details of the hydrodynamic simulation code

As mentioned above, after every spell of cooling by the Monte
Carlo code for a very short time-step, the hydrodynamic code is
run without assuming cooling. This procedure is repeated. While
running the hydrodynamic code the following process is followed.

To model the initial injection of matter, we consider an axisym-
metric flow of gas in the pseudo-Newtonian gravitational field of
a black hole of mass Mbh located at the centre in the cylindrical
coordinates [R, θ , z]. We assume that at infinity, the gas pressure is
negligible and the energy per unit mass vanishes. We also assume
that the gravitational field of the black hole can be described by
Paczyński & Wiita (1980):

φ(r) = − GMbh

(r − rg)
,

where r = √
R2 + z2, and the Schwarzschild radius is given by

rg = 2GMbh/c
2.

We also assume a polytropic equation of state for the accreting
(or outflowing) matter, P = Kργ , where P and ρ are the isotropic
pressure and the matter density respectively, γ is the adiabatic index
(assumed to be constant throughout the flow, and is related to the
polytropic index n by γ = 1 + 1/n) and K is related to the specific
entropy of the flow s. The details of the code is described in Ryu
et al. (1997) and in Giri et al. (2010).

Our computational box occupies one quadrant of the R–z plane
with 0 ≤ R ≤ 200 and 0 ≤ z ≤ 200. The incoming gas enters the box
through the outer boundary, located at Rin = 200. We have chosen
the density of the incoming gas ρ in = 1 for convenience, since, in
the absence of self-gravity and cooling, the density is scaled out,
rendering the simulation results valid for any accretion rate. As we
are considering only energy flows while keeping the boundary of the
numerical grid at a finite distance, we need the sound speed a (i.e.
temperature) of the flow and the incoming velocity at the boundary
points. For the spherical flow with zero angular momentum (Bondi
flow), we have taken the boundary values from standard pseudo-
Bondi solution. We injected the matter from both the outer boundary
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Table 1. Parameters used for the simulations and a summary of results.

Case λ ε ṁd ṁh Ninj Nsc Nunsc Nbh (per cent) p (per cent) t0 (s) α

1a 0 22E-4 1 1 4.3E+40 8.7E+39 3.5E+40 0.119 20.030 228.3 1.15, 0.99
1b 0 22E-4 2 1 1.5E+41 2.9E+40 1.2E+41 0.120 20.023 63.6 1.30, 1.0
1c 0 22E-4 5 1 7.3E+41 1.5E+41 5.9E+41 0.121 19.942 12.4 1.40, 0.96
1d 0 22E-4 10 1 2.5E+42 5.0E+41 2.0E+42 0.121 19.816 4.2 1.65, 0.90
1e 0 22E-4 1 0.5 4.3E+40 4.7E+39 3.9E+40 0.070 10.886 380.0 1.57
1f 0 22E-4 1 2 4.3E+40 1.5E+40 2.8E+40 0.230 34.324 118.9 1.1
1g 0 22E-4 1 5 4.3E+40 2.6E+40 1.8E+40 0.502 59.012 48.0 0.7
1h 0 22E-4 1 10 4.3E+40 3.3E+40 1.1E+40 0.699 75.523 35.1 0.45

2a 1 3E-4 1 1 6.3E+40 1.2E+40 5.1E+40 0.285 19.199 79.7 0.88
2b 1 3E-4 2 1 2.1E+41 4.1E+40 1.7E+41 0.283 19.278 21.9 0.94
2c 1 3E-4 5 1 1.0E+42 1.9E+41 8.1E+41 0.283 19.205 4.3 1.03
2d 1 3E-4 10 1 3.6E+42 6.9E+41 2.9E+42 0.289 18.941 1.4 1.17
2e 1 3E-4 10 0.5 3.6E+42 3.9E+41 3.2E+42 0.190 10.768 1.9 1.37
2f 1 3E-4 10 1.5 3.6E+42 9.3E+41 2.7E+42 0.372 25.492 1.1 1.01
2g 1 3E-4 10 2 3.6E+42 1.1E+42 2.5E+42 0.443 30.758 0.9 0.95
2h 1 3E-4 10 5 3.6E+42 1.8E+42 1.7E+42 0.690 51.073 0.7 0.59

of R and z coordinate. In order to mimic the horizon of the black hole
at the Schwarzschild radius, we placed an absorbing inner boundary
at r = 1.5rg, inside which all material is completely absorbed into
the black hole. For the background matter (required to avoid division
by zero) we used a stationary gas with density ρbg = 10−6 and sound
speed (or temperature) the same as that of the incoming gas. Hence
the incoming matter has a pressure 106 times larger than that of
the background matter. All the calculations were performed with
900 × 900 cells, so each grid has a size of 0.22 in units of the
Schwarzschild radius.

All the simulations are carried out assuming a stellar mass black
hole (M = 10 M�). The procedures remain equally valid for mas-
sive/supermassive black holes. We carry out the simulations till
several thousands of dynamical time-scales are passed. In reality,
this corresponds to a few seconds in physical units.

4 R ESULTS AND DISCUSSIONS

In Table 1, we summarize all the cases for which the simulations
have been presented in this paper. In column 1, various cases are
marked. Columns 2 and 3 give the angular momentum (λ) and
the specific energy (ε) of the flow. The Keplerian disc rate (ṁd)
and the sub-Keplerian halo rate (ṁh) are listed in columns 4 and
5. The number of soft photons, injected from the Keplerian disc
(N inj) for various disc rates can be found in column 6. Column 7
lists the number of photons (Nsc) that have suffered at least one
scattering inside the electron cloud. The number of photons (Nunsc),
escaped from the cloud without any scattering are listed in column 8.
Columns 9 and 10 give the percentages of injected photons that
have entered into the black hole (Nbh) and suffered scattering (p =
Nsc/N inj), respectively. The cooling time (t0) of the system is defined
as the expected time for the system to lose all its thermal energy with
the particular flow parameters (namely, ṁd and ṁh). We calculate
t0 = E/Ė in each time-step, where E is the total energy content of
the system and Ė is the energy gain or loss by the system in that
particular time-step. We present the energy spectral index α [I(E) ∼
E−α] obtained from our simulations in the last column.

4.1 Compton cloud with no angular momentum

First we discuss the results corresponding to the cases 1(a–d) of
Table 1. In Figs 3(a–d) we present the changes in density distribution

as the disc accretion rates are changed: ṁd = (a) 1, (b) 2, (c)
5 and (d) 10, respectively. We note that as the accretion rate of
the disc is enhanced, the density distribution loses its spherical
symmetry. In particular, the density at a given radius is enhanced
in a conical region along the axis. This is due to the cooling of
the matter by Compton scattering. To show this, in Figs 4(a–d) we
show the contours of constant temperatures (marked on curves) of
the same four cases. We note that the temperature is reduced along
the axis (where the optical depth as seen by the soft photons from
the Keplerian disc is higher) drastically after repeated Compton
scattering.

In Figs 5(a–d), we show the hydrodynamic and radiative prop-
erties. In Fig. 5(a), we show the sonic surfaces. The lowermost
curve corresponds to theoretical solution for an adiabatic flow (e.g.
Chakrabarti 1990). Other curves from the bottom to the top are the
iterative solutions for the case 1d mentioned above. As the disc
rate is increased, the cooling increases, and consequently, the Mach
number increases along the axis. Of course, there are other effects:
the cooling causes the density to go up to remain in pressure equi-
librium. In Fig. 5(b), the Mach number variation is shown. The
lowermost curve (marked 1) is from the theoretical consideration.
Plots 2–4 are the variation of Mach number with radial distance
along the equatorial plane, along the diagonal and along the verti-
cal axis, respectively. In Fig. 5(c), the average temperature of the
spherical halo is plotted as a function of the iteration time until
almost steady state is reached. The cases are marked on the curves.
We note that as the injection of soft photons increases, the average
temperature of the halo decreases drastically. In Fig. 5(d), we have
plotted the energy dependence of the photon intensity. We find that,
as we increase the disc rate and keeping the halo rate fixed, the num-
ber of photons coming out of the cloud in a particular energy bin
increases and the spectrum becomes softer. This is also clear from
Table 1: N inj increases with ṁd, thereby increasing α. We find the
signature of double slope in these cases. As the disc rate increases,
the second slope becomes steeper. This second slope is the signa-
ture of bulk motion Comptonization. As ṁd increases, the cloud
becomes cooler [plot 5(c)] and the power-law tail due to the bulk
motion Comptonization (Chakrabarti & Titarchuk 1995) becomes
prominent.

In Fig. 6(a), we show the variation of the energy spectrum with the
increase of the halo accretion rate, keeping the disc rate (ṁd = 1)
and angular momentum of the flow (λ = 0) fixed. The injected
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Figure 3. Changes in the density distribution in presence of cooling. λ = 0 and ṁh = 1 for all the cases. Disc accretion rate ṁd used is (a) 1, (b) 2, (c) 5 and
(d) 10, respectively [cases 1(a–d) of Table 1]. The density contours are drawn using the same contour levels as in Fig. 2(a).

multicolour blackbody spectrum supplied by the Keplerian disc is
shown (solid line). The dotted, dashed, dash–dotted, double dot–
dashed and double dash–dotted curves show the spectra for ṁh =
0.5, 1, 2, 5 and 10, respectively. The injected multicolour blackbody
spectrum supplied by the Keplerian disc is shown (solid line). The
spectrum becomes harder for higher values of ṁh = 1 as it is difficult
to cool a higher density matter with the same number of injected
soft photon. In Fig. 6(b), we show the directional dependence of the
spectrum for λ = 0, ṁh = 2, ṁd = 1 (case 1f). The solid, dotted
and dashed curves are for observing angles (a) 2◦, (b) 45◦ and (c)
90◦, respectively. All the angles are measured with respect to the
rotation axis (z-axis). As expected, the photons arriving along the
z-axis would be dominated by the soft photons from the Keplerian
disc while the power-law would dominate the spectrum coming
edge-on.

We now study the dependence of spectrum on the time delay
between the injected photon and the outgoing photon. Depending on
the number of scatterings suffered and the length of path travelled,
different photons spend different times inside the Compton cloud.
The energy gain or loss by any photon depends on this time. Fig. 6(c)
shows the spectrum of the photons suffering different number of
scatterings inside the cloud. Here, 1, 2, 3, 4, 5 and 6 show the
spectrum for six different ranges of number of scatterings. Plot 1
shows the spectrum of the photons that have escaped from the
cloud without suffering any scattering. This spectrum is nearly the
same as the injected spectrum, only difference is that it is Doppler-
shifted. As the number of scattering increases (spectrum 2, 3 and

4), the photons are more and more energized via inverse-Compton
scattering with the hot electron cloud. For scatterings more than
19, the high-energy photons start losing energy through Compton
scattering with the relatively lower energy electrons. Components 5
and 6 show the spectra of the photons suffering 19–28 scatterings
and the photons suffering more than 28, respectively. Here the flow
parameters are ṁd = 1, ṁh = 10 and λ = 0 (case 1h, Table 1).

In Fig. 6(d), we plot the spectrum emerging out of the electron
cloud at four different time ranges. In the simulation, the photons
take 0.01–130 ms to come out of the system. We divide this time
range into four suitable bins and plot their spectra. Case 1h of Table 1
is considered. We observe that the spectral slopes and intensities of
the four spectra are different. As the photons spend more and more
time inside the cloud, the spectrum gets harder (plots 1, 2 and 3).
However, very high energy photons which spend maximum time
inside the cloud lose some energy to the relatively cooler electrons
before escaping from the cloud. Thus the spectrum 4 is actually the
spectrum of Comptonized photons.

4.2 Compton cloud with very low angular momentum

We now turn our attention to the case where the cloud is formed
by a low angular momentum flow. In this case, the flow is already
axisymmetric and due to centrifugal force a weak shock wave or at
least a density wave would be formed. In Figs 7(a–b), we show the
contours of constant density [Fig. 7(a)] and temperature [Fig. 7(b)]
when no radiative transfer is included. Here the specific angular
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Figure 4. Changes in the temperature distribution in presence of cooling. λ = 0 and ṁh = 1 for all the cases. Disc accretion rate ṁd used is (a) 1, (b) 2, (c) 5
and (d) 10, respectively [cases 1(a–d) of Table 1]. Contours are drawn using the same levels as in Fig. 2(b).

momentum of λ = 1 was chosen. Density contour levels are drawn
from 0.001–55.35 (the successive level ratio is 1.5) and 55.35–73.73
(successive level ratio is 1.1). Temperature contour levels are drawn
from 2.3–11.64 (successive level ratio is 1.5) and 11.64–64.71 (suc-
cessive level ratio is 1.1). We note that a shock has been formed
which bends outwards away from the equatorial plane (Ryu et al.
1997; Giri et al. 2010.). In Figs 8(a–d), we show results of inserting
a Keplerian disc in the equatorial plane. The inner edge is located
at 3rg, the marginally stable orbit. Here, ṁh = 1 and ṁd =(a) 1,
(b) 2, (c) 5 and (d) 10, respectively [cases 2(a–d) of Table 1]. The
densities used to draw the contours are the same as that in Fig. 7(a).
As the Keplerian disc rate is increased, the intensity of the soft
photons interacting with the high optical depth (post-shock) region
is increased. In Fig. 8(d), we observe that the conical region around
the axis is considerably cooler. Thus, the density around the shock
is enhanced. However, most importantly, with the increase in disc
accretion rate, i.e. cooling, the shock location moves in closer to
the black hole. This result has been already shown in the context
of the bremsstrahlung cooling (Molteni et al. 1996). In Figs 9(a–d),
we present the corresponding temperatures. The parameters are the
same as in Figs 8(a–d) and the temperatures used to draw the con-
tours are the same as that in Fig. 7(b). The Comptonization in the
shocked region cools it down considerably. Otherwise, not enough
visible changes in the thermodynamic variables are seen. To under-
stand the detailed effects of the radiative transfer on the dynamics of
the flow, we take the differences in the pressure and velocity at each

grid point of the flow for cases 1d and 2d of Table 1. In Figs 10(a–b),
we show the difference between the results of a purely hydrodynam-
ical flow and the results by taking the Comptonization into account.
Fig. 10(a) is for the flow with no angular momentum, and Fig. 10(b)
is drawn for the specific angular momentum λ = 1. The contours
are of constant �P = Pc − Pa, where P is the pressure and the
subscripts ‘c’ and ‘a’ represent the pressure with and without cool-
ing, respectively. The arrows represent the difference in velocity
vectors in each grid. As expected, in both the cases, the changes
are maximum near the axis. The fractional changes in pressures and
velocities are anywhere between ∼0 (outer edge) and ∼25 per cent
(inner edge and near the axis). Because of shifts of the shock loca-
tion towards the axis, the variation of the velocity is also highest in
the vicinity of the shock. Most importantly, the matter starts to fall
back after losing the outward drive. This is the Chakrabarti & Man-
ickam (2000) mechanism which is believed to decide the nature of
the light curves of objects containing outflows. Thus we prove that
not only the symmetry is lost by the insertion of an axisymmetric
soft-photon source, but the cooling process also plays a major role
in deciding the dynamics of the flow.

We now turn our attention to the dynamical variables and spectral
behaviour of the rotating flow. In Fig. 11(a), we show the variation
of the average temperature of the Compton cloud as a function of
the iteration time of the coupled code [cases 2(a–d), Table 1]. With
the increase in the disc rate, the temperature of the Compton cloud
saturates at a lower temperature. Fig. 11(b) shows the effect of the
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Figure 5. (a) Sonic surfaces at different stages of iterations. The final curve represents the converged solution. The initial spherical sonic surface becomes
prolate spheroid due to cooling by the Keplerian disc at the equatorial plane. Parameters are for case 1d (Table 1). (b) Mach number variation as a function of
distance after a complete solution of the radiative flow is obtained. Plot 1 corresponds to the solution from adiabatic Bondi flow. Plots 2–4 are the solutions
along the equatorial plane, the diagonal and the axis of the disc. Parameters are for case 1d (Table 1). (c) Variation of the average temperature of the Compton
cloud as the iteration proceeds when the disc accretion rate is varied, ṁh = 1. The solid, dotted, dashed and dot–dashed plots are for ṁd = 1, 2, 5 and 10,
respectively. Case numbers (Table 1) are marked. With the increase of disc rate, the temperature of the Compton cloud converges to a lower temperature. (d)
Variation of the spectrum with the increase of disc accretion rate. Parameters are the same as in (c). With the increase in ṁd, the intensity of the spectrum
increases due to the increase in Ninj (see Table 1). The spectrum is softer for the higher value of ṁd. Spectral slopes for each of these spectra are listed in
Table 1.

decrease in cloud temperature on the spectrum due to the increase
in disc rate. As we increase the disc rate, keeping the halo rate fixed,
the spectrum becomes softer.

In Fig. 12, we show the effects of the increase of the electron
number density (due to the increase of ṁh) for a fixed disc rate. The
spectrum becomes harder as we increase the halo rate keeping the
number of injected soft the photons the same.

We observe that the emerging spectrum has a bump, especially at
higher accretion rates of the halo, at around 100 keV [e.g. the spectra
marked 1g, 1h in Fig. 6(a) and the spectrum marked 2h in Fig. 12]. A
detailed analysis of the emerging photons having energies between
50 to 150 keV was made to see where in the Compton cloud these
photons were produced. In Fig. 13(a), we present the number of
scatterings inside different spherical shells within the electron cloud
suffered by these photons (50 < E < 150 keV) before leaving the
cloud. Parameters used are ṁd = 1, ṁh = 10 and λ = 0. The
light and dark shaded histograms are for the cloud with and without
bulk velocity components, respectively. We find that the presence
of bulk motion of the infalling electrons pushes the photons towards
the hotter and denser [Figs 2(a–b)] inner region of the cloud to suffer
more and more scatterings. We find that the photons responsible for

the bump suffered maximum number of scatterings around 8rg.
From the temperature contours, we find that the cloud temperature
around 8rg is ∼100 keV. This explains the existence of the bump.
In Fig. 13(b), we consider all the outgoing photons independent
of their energies. The difference between the two cases is not so
visible. This shows that the bulk velocity contributes significantly
to produce the highest energy photons.

In Fig. 14, we explicitly showed the effects of the bulk velocity
on the spectrum. We note that the bump disappears when the bulk
velocity of the electron cloud is chosen to be zero (curve marked 2).
This fact shows that the region around 8rg in presence of the bulk
motion behaves more like a blackbody emitter, which creates the
bump in the spectrum. Since the photons are suffering large number
of scatterings near this region (8rg), most of them emerge from the
cloud with the characteristic temperature of the region. The effect
of bulk velocity in this region is to force the photons to suffer
larger number of scatterings. This bump vanishes for lower density
cloud (low ṁh) as the photons suffer lesser number of scatterings.
The photons which are scattered close to the black hole horizon
and escape without any further scattering produce the high-energy
tail in the output spectrum. Curve 3 of Fig. 14 shows the intensity
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Figure 6. (a) Variation of the spectrum with the increase of the halo accretion rate, keeping the disc rate (ṁd = 1) and angular momentum of the flow (λ =
0) fixed. The dotted, dashed, dash–dotted, double dot–dashed and double dash–dotted curves show the spectra for ṁh = 0.5, 1, 2, 5 and 10, respectively. The
injected multicolour blackbody spectrum supplied by the Keplerian disc is shown (solid line). (b) Directional dependence of the spectrum: λ = 0, ṁh = 2 and
ṁd = 1 are the flow parameters. The solid, dotted and dashed curves are for observing angles 2◦, 45◦ and 90◦, respectively. All the angles are measured with
respect to the rotation axis (z-axis). Intensity of spectra emerging from the cloud after suffering various number of scatterings (c) and at four different times (d)
immediately after the injection of soft photons. Case 1h is assumed. The spectra of the photons suffering 0, 1–2, 3–6, 7–18, 19–28 and more than 29 scatterings
are shown by the plots 1, 2, 3, 4, 5 and 6 [Fig. 6(c)] respectively, within the cloud. Curve 1h is the net spectrum for which these components are drawn. As the
number of scattering increases, the photons gain more and more energy from the hot electron cloud through inverse-Comptonization process. The spectra of
the photons spending 0.01–1, 1–40, 40–100 and more than 100 ms time inside the electron cloud are marked by 1, 2, 3 and 4 [Fig. 6(d)], respectively.

spectrum of case 1h (Table 1), when there are zero bulk velocity
inside 3rg. We find that in the absence of bulk velocity inside 3rg,
the high-energy tail in the curve 1h vanishes. This is thus a clear
signature of the presence of bulk motion Comptonization near the
black hole horizon.

5 SUMMARY AND DISCUSSIONS

In this paper, we have extended our previous work using Monte
Carlo simulations (Ghosh, Chakrabarti & Laurent 2009; Ghosh
et al. 2010) to include the effects of Comptonization on the dy-
namics of the accreting halo having zero and very low angular
momentum. We studied the properties of the emerging spectrum
from the Chakrabarti–Titarchuk model of a two-component flow,
one component being the Keplerian disc on the equatorial plane
and the other component is the low angular momentum accreting
halo, which is acting as the Compton cloud. In Table 1, we have
given the parameters of all the cases which were run. We note that
as we enhance ṁd, N inj (∼ ṁ

3/4
d ; see Section 2.2) is also enhanced,

increasing the number of photons Nsc undergoing Compton scatter-
ing. If we keep the halo rate ṁh fixed, then increasing ṁd increases
Nunsc, the number of photons escaping from the disc while keeping
p almost unchanged. For cases 1(a–d) and 2(a–d), the percentage of

photons undergoing scattering p is ∼20 and ∼19 per cent, respec-
tively. When we increase ṁh, keeping ṁd constant, this percentage
increases rapidly due to the decrease in Nunsc. We see from Ta-
ble 1, as ṁh is increased from 0.5 to 10, keeping ṁd = 1 [cases 1e,
1a, 1(f–h)], percentage of scattered photon increases from ∼11 to
∼76 per cent. The same situation prevails for the λ = 1 cases [cases
2e, 2d, 2(f–h)], where p increases from ∼11 to ∼51 per cent, for
the increase in ṁh from 0.5 to 5, keeping ṁd = 10. Nbh remains
almost constant if we keep the halo rate constant. If we increase the
halo rate, Nbh increases rapidly, because increase in ṁh increases
the density of the cloud and thus pushes the photons towards the
black hole. As we increase ṁd, the cooling time t0 decreases, since
with the increase of ṁd number of soft photon increases. Thus, the
cloud cools down at a faster rate. We also note that t0 decreases as
ṁh increases, due to the increase of Nsc. Spectral index α increases
with the disc rate for a fixed halo rate, and it decreases with halo
rate for a fixed ṁd. This can be explained by the fact that as we
increase ṁd, the electron cloud becomes cooler, the spectrum gets
softened. On the other hand, when we increase the number of hot
electron inside the cloud (i.e. ṁh), for the same N inj we get a hotter
system. This makes the spectrum harder. These results are con-
sistent with the Chakrabarti–Titarchuk scenario of two-component
accretion.
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Figure 7. Density (a) and temperature (b) contours inside the halo (λ = 1) in the absence of Compton cooling. Densities are in normalized unit and temperatures
are in keV. See text for details.

Figure 8. Change in the density contours in presence of cooling (λ = 1) (see text for details). The conical region between the axis and shock wave becomes
denser as the accretion rate of the Keplerian disc is increased.
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Figure 9. Change in the temperature contours in presence of cooling. The parameters are the same as in Figs 8(a–d). The temperature values used to draw the
contours are the same as in Fig. 7(b). Note that the shock shifts closer to the axis with the increase in disc accretion rate.

Figure 10. Difference in pressure and velocities between the flow with Comptonization and without Comptonization. Other parameters remain exactly the
same. The cases are (a) case 1d and (b) case 2d of Table 1, respectively.

Our major conclusions are the followings.

(i) In the presence of an axisymmetric disc which supplies soft
photons to the Compton cloud, even an originally spherically sym-
metric accreting Compton cloud becomes axisymmetric. This is
because, due to the higher optical depth, there is a significant cool-
ing near the axis of the intervening accreting halo between the disc
and the axis.

(ii) Due to the cooling effects close to the axis, the pressure
drops significantly, which may change the flow velocity up to
25 per cent. This effect becomes more for low angular momen-
tum flows which produce shock waves close to the axis. The
post-shock region cools down and the outflow falls back to the
disc. This shows that the Chakrabarti & Manickam (2000) mech-
anism of the effects of Comptonization on outflows does take
place.
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Figure 11. Variation of (a) average temperature of the Compton cloud with iteration time and (b) spectrum with the increase of disc accretion rate. λ = 1 and
ṁh = 1 are used. The solid, dotted, dashed and dash–dotted plots are for ṁd = 1, 2, 5 and 10, respectively. With the increase in the disc rate, the temperature of
the Compton cloud saturates at lower temperature. The solid, dotted, dashed and dash–dotted curves show the spectrum for ṁd = 1, 2, 5 and 10, respectively.
The spectrum is softer for higher value of ṁd.

Figure 12. Variation of the spectrum with the increase of the halo accretion
rate, keeping the disc rate (ṁd = 10) and angular momentum of the flow
(λ = 1) fixed. The case number for which a spectrum is drawn is marked
on it. The unmarked plot is the injected spectrum. The resulting spectrum
becomes harder for the higher values of ṁh.

Figure 14. The spectrum for the case 1h. The curves marked 2 and 3 give
the spectra when the bulk velocity of the electron is absent for the whole
cloud and for the cloud inside 3rg, respectively. The curve marked 1 gives the
injected spectrum. The bulk motion Comptonization of the photons inside
the 3rg radius creates the hard tail. The bump near 100 keV is a combined
effect of the temperature and bulk velocity of the rest of the cloud.

Figure 13. Number of scatterings inside the spherical shell between R to R + δR (δR ∼ 1.4). The light and dark shaded histograms are for the cloud with and
without bulk velocity, respectively. (a) Only the photons emerging from the cloud with energies E, where 50 keV < E < 150 keV, are considered here. (b) All
the photons emerging from the cloud are considered here. Parameters used: ṁd = 1, ṁh = 10 and λ = 0.
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(iii) The emitted spectrum is direction-dependent. The spectrum
along the axis shows a large soft bump, while the spectrum along
the equatorial plane is harder.

(iv) Photons which spend more time (up to 100 ms in the case
considered) inside the Compton cloud produce harder spectrum as
they scatter more. However, if they spend too much (above 100 ms)
time, they transfer their energies back to the cooler electrons while
escaping. These results would be valuable for interpreting the timing
properties of the radiation from black hole candidates.
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