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ABSTRACT
We study time evolution of sub-Keplerian transonic accretion flows on to black holes using
a general relativistic numerical simulation code. We perform simulations in Schwarzschild
space–time. We first compare one-dimensional simulation results with theoretical results
and validate the performance of our code. Next, we present results of axisymmetric, two-
dimensional simulation of advective flows. We find that even in this case, for which no complete
theoretical analysis is present in the literature, steady-state shock formation is possible.
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1 IN T RO D U C T I O N

Independent of the source of matter supply, an accretion flow around
a black hole is necessarily transonic, i.e. it must pass through one
or more sonic point(s). An accretion flow on a gravitating star,
whose specific angular momentum is everywhere or almost every-
where lower than that of the local Keplerian value may be termed
as a sub-Keplerian flow. Theoretical calculations as well as numer-
ical simulations of sub-Keplerian transonic accretion flows around
black holes have shown that such flows can have standing shocks
for appropriate choice of the flow parameters such as the spe-
cific energy ε and specific angular momentum l of the accreting
material (Chakrabarti 1989, 1990a, hereafter C89, C90, respec-
tively). Paradoxical as it may sound, the flow decides to slow down
just a few to few tens of gravitational radii away from the hori-
zon, simply because the centrifugal barrier becomes very strong as
compared to the gravity. However, the barrier is not unsurmount-
able and flow simply passes through a shock transition to satisfy
boundary conditions, as is normal in many astrophysical circum-
stances. The shock can be simply standing or propagating away
depending on the flow parameters and the dissipative and cooling
processes present in the flow (C89, C90; Chakrabarti 1996c, and
references therein). Using numerical simulations with smoothed
particle hydrodynamics, these shocks have been shown to be sta-
ble in both one- and two-dimensional simulations (Chakrabarti
& Molteni 1993; Molteni, Lanzafame & Chakrabarti 1994, here-
after CM93, MLC94, respectively). They were found to propagate
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away for high enough viscosity (Chakrabarti & Molteni 1995).
The post-shock region, which is known as CENtrifugal pressure
supported BOundary Layer (or CENBOL), as in any other astro-
physical flows, is found to be extremely useful to explain detailed
spectral properties of the black hole accretion disc quite satisfac-
torily (Chakrabarti & Titarchuk 1995; Chakrabarti 1997, hereafter
CT95, C97, respectively). The so-called two-component advective
flow (TCAF) model, proposed in CT95 and C97, describes the most
general structure of an accretion disc which consists of two tran-
sonic components, namely, an optically thick (optical depth, τ �
1), geometrically thin Keplerian disc and an optically thin (τ < 1),
geometrically thick sub-Keplerian flow. Shock is formed in the sub-
Keplerian component which has higher radial infalling velocity than
the other component. In the post-shock region, i.e. inside the CEN-
BOL, these two components mix up due to turbulence and heat
(CT95) and form an optically slim (τ ∼ 1), geometrically thick disc
and continues its journey towards the central object. The CENBOL
itself becomes responsible for the non-thermal power-law compo-
nent of the observed spectrum.

Recently, TCAF model has been included in HEASARC’s spec-
tral analysis software package XSPEC (Arnaud 1996) and is being
used to study the spectral as well as timing properties of sev-
eral black hole candidates (Debnath, Chakrabarti & Mondal 2014;
Mondal, Debnath & Chakrabarti 2014; Chakrabarti, Mondal &
Debnath 2015; Debnath, Mondal & Chakrabarti 2015a; Debnath
et al. 2015b; Chatterjee et al. 2016; Jana et al. 2016). It has been
demonstrated that this model explains the observed data very well.
In outbursting sources, the shocks were found to be propagating as
well – steadily moving towards the black hole in the rising phase
and moving away from it in the declining phase. Simulations of
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inviscid accretion flow with presence of a power-law cooling show
that shock can oscillate about a certain mean location, particu-
larly when there is resonance between the cooling and the in-
fall time-scales. This may be considered to be an explanation of
the origin of low-frequency quasi-periodic oscillations (LFQPOs;
Molteni, Sponholz & Chakrabarti 1996a; Chakrabarti, Acharyya &
Molteni 2004). Such oscillations have been shown to be present
and stable when real Compton cooling is present in the flow as
well (Garain, Ghosh & Chakrabarti 2012, 2014, hereafter, GGC12,
GGC14, respectively). These intriguing properties of the CENBOL
clearly demand conducting robust numerical experiments, which
we set out to do in a series of papers.

Several numerical experiments are already present in the lit-
erature which study shock structures in the sub-Keplerian flow
around black holes. For one- and two-dimensional inviscid, adi-
abatic flows, it has been shown that a sub-Keplerian axisym-
metric flow with and without shock is stable (CM93, MLC94;
Molteni, Ryu & Chakrabarti 1996b, hereafter MRC96). New codes
have been tested against such non-linear solutions as well (Toth,
Keppens & Botchev 1998). Numerical simulations of adiabatic vis-
cous flow also demonstrate the stability of these standing shock
waves (Giri & Chakrabarti 2012; Lee et al. 2016). More recently,
two-dimensional axisymmetric numerical simulations of viscous
flow in presence of power-law and Compton cooling show that an
advective flow actually splits into two components when appro-
priate viscosity parameters and cooling processes are chosen (Giri
& Chakrabarti 2013; Giri, Garain & Chakrabarti 2015, hereafter,
GC13, GGC15, respectively). As the sub-Keplerian flow advects
towards the central black hole, angular momentum transport and
condensation due to cooling on the equatorial plane help the flow to
segregate into two distinct advective components, each being sepa-
rately transonic. The component near the equatorial plane has been
shown to have the properties very similar to a standard Keplerian
disc (Shakura & Sunyaev 1973). This component is surrounded by
the sub-Keplerian component which will have the steady shock.
Thus, these results show that a stable TCAF formation is indeed
possible.

In case of magnetized accretion disc, magnetorotational insta-
bility (MRI; Balbus & Hawley 1991; Hawley & Balbus 1992)
can make the disc turbulent and this turbulence may transport
angular momentum outwards efficiently. However, it has been
shown that turbulence triggered by MRI produces the value of
the alpha viscosity parameter ∼0.01 (Brandenburg et al. 1995;
Hawley, Gammie & Balbus 1995, 1996; Smak 1999; Arlt &
Rüdiger 2001; King, Pringle & Livio 2007; Kotko & Lasota
2012). In the literature, many authors from various groups pub-
lished results of analytical viscous solutions as well as viscous
hydrodynamic simulations where it has been shown that the
shock is stable if the viscosity parameter is lower than a criti-
cal viscosity parameter (Chakrabarti 1990b,1996a; Chakrabarti &
Molteni 1995; Lanzafame, Molteni & Chakrabarti 1998; Lanzafame
et al. 2008; Lee, Ryu & Chattopadhyay 2011; Das et al. 2014;
Lee et al. 2016). Also, there have been many stability studies of
shock (Nakayama 1992, 1994; Nobuta & Hanawa 1994; Gu &
Foglizzo 2003; Gu & Lu 2006), but it was shown that even under
non-axisymmetric perturbations, the shock tends to persist, albeit,
as a deformed shock (Molteni, Tóth & Kuznetsov 1999).

Despite all these important developments, almost all the above-
mentioned simulations have been performed using the so-called
pseudo-Newtonian potential (Paczyński & Wiita 1980) which mim-
ics the Schwarzschild space–time. This potential retains the parti-
cle properties of the Schwarzschild geometry in the sense that the

marginally bound and marginally stable orbits are located at exactly
the same places as in general relativistic (GR) calculation. However,
several properties in the strong gravity limit just outside of the hori-
zon are not retained with precision. For instance, the energy released
at the marginally stable orbit or the velocity of matter on the hori-
zon is different. Thus, though the results were satisfactory, it was
difficult to judge if any of the effects observed were artefacts of the
potential. Fortunately, even in GR framework, in Kerr space–time,
such shocks have been shown to exist (C90; Chakrabarti 1996b,
hereafter C96b). And it became clearer that the shocks in black hole
accretion are indeed possible only because of the presence of the
inner sonic point between the marginally bound and marginally sta-
ble orbits where strong gravity is important. Strong gravity forces
the flow to have an inner sonic point. Most importantly in accretion
flow configurations, the solution passing through the inner sonic
point has higher entropy than that passing through the outer sonic
point. So the flow generates entropy at the shock and then passes
through the inner sonic point. The location of the sonic point is the
closest indicator of a stable fluid (unlike the marginally stable orbit,
which is the closest indicator for a particle trajectory). Thus, there
are all the more reasons to verify these results using a full relativistic
framework. In this work, we perform a GR simulation of the sub-
Keplerian flow in Schwarzschild space–time. To our knowledge, no
numerical experiment has so far been performed which tests the
possibility of a stable CENBOL formation in general relativity.

This paper is organized as follows. In Section 2, we present the
analytical method to calculate the one-dimensional flow proper-
ties in Schwarzschild space–time. In Section 3, we present the GR
equations which are solved numerically and the numerical proce-
dure we use for doing this. In the next section, we present the results
for one- and two-dimensional simulations. Finally, we present our
conclusions.

In this paper, we choose Rg = GMBH/c2 as the unit of distance,
Rgc as the unit of angular momentum and Rg/c as the unit of time.
In addition, we choose the geometric units G = MBH = c = 1
(G is gravitational constant, MBH is the mass of the black hole and c
is the unit of light). Thus, Rg = 1, and angular momentum and time
are measured in dimensionless units.

2 A NA LY T I C A L S O L U T I O N

The GR study of transonic flows has been done extensively by
Chakrabarti (C90, C96b). Therefore, we do not describe all the
details here. However, for completeness, we mention only the im-
portant equations for Schwarzschild space–time.

For this calculation, we use Boyer–Lindquist coordinates (t, r,
θ , φ). The line element in Schwarzschild space–time is given as
follows:

ds2 = gμνdxμdxν

= −
(

1 − 2

r

)
dt2 +

(
1 − 2

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2.

(1)

We are interested in the flow close to the equatorial plane, so θ =π/2
is assumed for analytical study.

In absence of viscosity and any heating or cooling, one can find
the conserved specific energy as (C96b)

ε = hut = 1

1 − na2
ut , (2)
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where, n = 1/(	 − 1) is the polytropic index, 	 being the adiabatic
index and h = 1/(1 − na2) is the enthalpy, a being the sound speed.
Also,

ut =
[

1 − 2
r

(1 − V 2)(1 − 
l)

]1/2

. (3)

Here,


 = uφ

ut
= − lgtt

gφφ

= l

r2

(
1 − 2

r

)
, (4)

and l = −uφ/ut is the specific angular momentum. Also,

V = v

(1 − 
l)1/2 , (5)

where

v =
(

−uru
r

utut

)1/2

. (6)

The entropy accretion rate (C89, C96b) is given by

μ̇ =
(

a2

1 − na2

)n

V (1 − 
l)1/2 ut r
2. (7)

We follow the usual solution procedures use in transonic flows
(C89, C90) to calculate V(r) and radial dependence of other required
quantities. By differentiating equations (2) and (7) with respect to r
and eliminating terms involving da/dr, we find following expression
as the gradient of V(r):

dV

dr
= V

(
1 − V 2

) [
1 − 2ra2 + 3a2 − 
l

1−
l
(r − 3)

]
r (r − 2)

(
a2 − V 2

) . (8)

We can readily see that for l = 0, we recover the similar expression
for Bondi flow on to a black hole (equation 1.29 of C90). At the
sonic point, both numerator and the denominator vanish and one
obtains the so-called sonic point condition as

Vc = ac,

and

a2
c = 1

2rc − 3

[
1 − 
l

1 − 
l
(rc − 3)

]
, (9)

where, rc, is called the sonic radius.
To find a complete solution from the horizon to infinity, one needs

to supply the specific energy ε and the specific angular momentum
l. If the supplied parameters allow the accretion solution to have a
shock in the sense that Rankine Huguniot conditions are satisfied,
then the shock location can be found by determining a constant, C,
which remains invariant across the shock (C89, C90). It is found
that this invariant quantity is the same in Schwarzschild space–time
and in pseudo-Newtonian potential (C90), as this is a local equation.
Therefore, we use the following expression,

C = [	M + (1/M)]2

2 + (	 − 1) M2
(10)

to determine the shock location for this calculation (Chakrabarti &
Das 2001). Here, we use M = V/a as the definition of Mach number.

3 N U M E R I C A L S I M U L AT I O N P RO C E D U R E

We use so-called Valencia formulation to numerically solve the rel-
ativistic hydrodynamic equation (Banyuls et al. 1997). This formu-
lation gives flux conservative form of the system of hydrodynamics

equation in the framework of 3 + 1 formalism. It has been applied
very successfully in computational fluid dynamics. In our coordi-
nate system, the conservative variables (q) and primitive variables
(w) are

q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D

Sr

Sθ

Sφ

τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρW

ρhW 2vr

ρhW 2vθ

ρhW 2vφ

ρhW 2 − P − D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ

vr

vθ

vφ

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Here, ρ is the fluid rest mass density, P is the pressure and h is the
specific enthalpy. They are measured in the comoving frame of the
fluid. vi is the fluid velocity measured by Eulerian observer. W is
the Lorentz factor and defined as W = 1/

√
1 − γij vivj . Here, γ ij

are the spatial part of the metric components gμν . The radial and
angular velocity in the Eulerian frame can be expressed in terms of
v in equation (6) and 
 in equation (4):

vr = ur

W
=

(
1 − 2

r

) 1
2

v (12)

vφ = uφ

W
=

(
1 − 2

r

)− 1
2


. (12)

Assuming axisymmetry ( ∂
∂φ

= 0), the hydrodynamical equations
in the curved space–time which is described in equation (1) can be
written as follows:

∂
(√

γ q
)

∂t
+ ∂

(√−gf r
)

∂r
+ ∂

(√−gf θ
)

∂θ
= √−g
, (13)

where

f r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Dvr

Srv
r + P

Sθv
r

Sφvr

τvr + Pvr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

f θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Dvθ

Srv
θ

Sθv
θ + P

Sφvθ

τvθ + Pvθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,


 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

− ρhW 2

r

(
1

r−2 (1 + vrv
r ) − vθv

θ − vφvφ
) + 2P

r

cot θ
(
ρhW 2vφvφ + P

)
0

− ρhW 2vr

r(r−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Here,
√

γ and
√−g are the determinants of spatial and space–

time metric, respectively. From the Schwarzschild metric shown
in equation (1), we have

√
γ = r2 sin θ (1 − 2/r)−1/2, and

√−g =
r2 sin θ . For the spherically symmetric cases, ∂

∂θ
= 0. Equation

(14) consists of the continuity, three momentum and energy equa-
tions. We clearly see the conservation of total rest mass (baryon
number) and angular momentum in the first and fourth rows of
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equation (14). Particularly, the terms of 
 in the momentum
equation contain the gravitational and the centrifugal forces. The
gravitational force which is purely radial in the Schwarzschild met-
ric is shown in the first term of the second row of 
. The second
and third terms in the second row as well as the first term in the
third row represent the centrifugal force by the rotation velocity.
Since the centrifugal force, exerted by the vφ , is not purely radial,
it contributes to both r − and θ − momentum equations. (cf. the
centrifugal force exerted by the vθ is purely radial. Therefore, it
appears only in the radial momentum equation.) Note that the last
terms in the 
 of the momentum equations are the additional terms
in the spherical polar coordinates system. The fifth row of 
 is the
sink or source of the energy contributed by gravity.

We use the ideal gas equation of state which can be written in the
following form:

P = (	 − 1) ρe, (15)

where e is the specific internal energy. The above equation of state
provides the expression of specific enthalpy:

h = 1 + 	

	 − 1

P

ρ
. (16)

In this paper, we solve the above hydrodynamic equations using a
numerical code developed by Kim et al. (2012). The details of the
code can be found in Kim et al. (2012). The most useful property
of this code is that it can be applied to any space–time metric in any
coordinate system. This code uses finite volume methods to ensure
local conservation of the fluid in the computational grid. Therefore,
the code can guarantee total mass and angular momentum conserva-
tions which appear in the first and fourth rows of equation (14). For
the treatment of the discontinuous behaviours of the fluid such as
shocks, rarefactions or contact discontinuities, the high-resolution
shock-capturing techniques are applied in the code. We use the third-
order slope limiter proposed by Shibata (2003) which is based on
the minmod function. For the flux approximation, we use the HLL
method (Harten, Lax Peter & van Leer 1983). The HLL method has
some dissipation but the results are very stable. For the time integra-
tion, we use the third-order three-stage strong stability-preserving
Runge–Kutta method which is known as Shu–Osher method (Shu
& Osher 1988).

4 R ESULTS

We use inflow boundary condition at the outer boundary located
at rout = 100. The inner boundary is placed at rin = 2.1 and we
use the extrapolated values of the primitive variables for the in-
ner ghost cells. These inner ghost cells are located outside of the
event horizon. In this paper, we present results of one-dimensional
and two-dimensional simulations. For better resolution close to the
central black hole, we logarithmically binned the radial direction
in 300 zones for all the simulation results presented here. For two-
dimensional simulations, in addition to above-mentioned radial bin-
ning, we used 100 equi-spaced zones in polar direction. The inner-
most radial zone (�r) has a size of 2.72 × 10−2 and the outermost
zone has a size of 1.28.

For these simulations, we need values of the primitive variables
(see equation 11) at r = rout. For all the simulations, we set vθ = 0.
The density of the incoming matter at rout is normalized to 1. In
the absence of self-gravity and heating or cooling, the density is
scaled out and the simulation results remain valid for any accretion
rate (MRC96; Giri at al. 2010, hereafter GCSR10). We evaluate
V(r = rout) by solving equation (8) for a given pair of conserved

Figure 1. Comparison of radial Mach number variation for Bondi accretion
flow. Black solid line is obtained using analytical method, whereas red plus
signs are the simulation results after steady state is reached. They appear to
be indistinguishable.

flow variables. Subsequently, the sound speed aout = a(r = rout) is
evaluated using equation (2). Next, using equations (5), (6) and (12),
we evaluate vr(r = rout) and vφ(r = rout). Pressure of the incoming
matter is evaluated from the sound speed aout using equation (16).
These values are maintained in the ghost zones of the outer boundary
of our computational domain. As an initial condition, we put floor
values for the density to be ρfloor = 10−10 (in normalized unit) and
the corresponding floor value of pressure inside the computational
domain. Floor value of the pressure is chosen such that the sound
speed (or temperature) of the background matter is same as that
of incoming matter (MRC96, GC13). Thus, once we know aout,
we evaluate the value of the pressure floor using equation (16)
by substituting ρ = 10−10 in this equation. Then, the value of
pressure floor is Pfloor = na2

outρfloor/[(1 − na2
out)(n + 1)]. Initially,

the velocity components in the floor grids are set to zero. Thus,
initially, as the matter rushes towards the black hole, it fills the
vacuum rapidly. After the matter reaches the inner boundary, the
flow starts to feel the pressure and centrifugal force.

4.1 One-dimensional, spherically symmetric Bondi accretion

For a given ε, the analytical structure of a spherically symmetric
Bondi accretion flow is completely determined (l = 0 for this flow).
For the comparative study, we choose ε = 1.015. This choice gives
V = 0.053 and a = 0.088 at rout, and the sonic point at r = 54.04. Note
that, just the energy was sufficient to determine all the quantities as
the other conditions come from transonicity (equation 9, C90). In
Fig. 1, we compare the radial variations of Mach number, defined
as M(r) = V(r)/a(r). The black solid line represents the analytical
result, whereas the red plus signs represent the numerical simulation
result. Clearly, they are indistinguishable. Dynamical time, tdyn (de-
fined as the time required for matter to reach inner boundary from
rout in steady state), is found to be tdyn ∼ 991 for this simulation and
we ran the simulation for more than 20tdyn (t ∼ 19 800). Also, we
ran some more cases by varying the number of radial zones ranging
from 150 to 600 and verified that the results remained converged.
Note that the inner boundary places at rin = 2.5 for the lower res-
olution case in order to prevent the inner ghost cells from locating
inside the event horizon.
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Figure 2. Comparison of radial Mach number variation for one-
dimensional axisymmetric accretion flows. (a) represents results where
shock is present and (b) represents results where no shock formed and
the flow is supposed to pass only through the outer sonic point. Black solid
line is obtained using analytical method, whereas red plus signs are the
simulation results.

4.2 One-dimensional accretion flow with non-zero
angular momentum

When angular momentum is present, the flow structure changes
significantly depending on its strength. As discussed earlier, de-
pending on the values of ε and l, the accretion flow may or may
not have any shock. In this section, we present the results of two
simulations in one dimension. One solution has a shock and the
other does not. As discussed in C89 (see Fig. 3); C90 (see Chaps
3 and 6), the accretion solution having a shock first passes through
the outer sonic point, makes a transition to the sub-sonic branch at
the shock and then passes through the inner sonic point just before
being supersonically accreted by the black hole. On the other hand,
when ε and l are such that it is not possible to have a shock, the flow
passes only through the outer or inner sonic point before disappear-
ing behind the horizon. However, such a flow still can slow down
as it approaches the black hole because of the centrifugal force. In
Fig. 2(a), we present the radial variation of Mach number, M(r),
at the final steady state for the accretion flow which has a shock.
As before, the black solid line represents the analytical result and
the red plus signs represent the simulation result. ε = 1.007 and
l = 3.4 are chosen for this simulation. Analytical calculation gives
V = 0.0645 and a = 0.0691 at r = 100. The outer sonic point,
shock and inner sonic point are located at r = 89.59, 26.98 and

Figure 3. Results of rerun for the case presented in Fig. 2(a) by moving
rout to 200, 500, 1000 and 2000. Green, blue, magenta and cyan (cross,
star, open square and filled square) points represent the simulation results
for rout = 200, 500, 1000 and 2000, respectively. We can clearly see that the
shock locations do not get affected if we change rout. In the inset, we show
the zoomed in part around the shock location.

5.38, respectively. As can be seen, our 1D simulation has captured
all the locations properly. For this case, dynamical time is found to
be 1150 and the simulation was run till 20tdyn (t ∼ 23 000). We have
also computed ε and l from the simulation result and verified that
these two quantities remain constant along the flow.

Fig. 2(b) shows the radial variation of M for a case where there
is no shock in the accretion solution and is expected to pass only
through the outer sonic point. We choose ε = 1.007 and l = 3.25
to compute the outer boundary values for this simulation. For this
case, dynamical time is found to be 920 and the simulation was run
till 20tdyn (t ∼ 18 400). The outer sonic point is located at r = 91.92
for these parameters. As can be seen from the figure, analytical
and numerical results are nearly inseparable and hence, we see that
numerical simulation has captured this location very well. We may
mention in passing that the simulations presented in the literature
are primarily for supersonic injection to save computational time.
However, our efficient method allows us to inject the flow at sub-
sonic Mach number.

In order to verify that the shock location is not affected by the
outer boundary, we rerun the case presented in Fig. 2(a) by moving
rout to 200, 500, 1000 and 2000. All these simulations have been run
using 300 zones in the radial direction. In Fig. 3, we present these
simulation results. Green, blue, magenta and cyan (cross, star, open
square and filled square) points represent the simulation results for
rout = 200, 500, 1000 and 2000, respectively. In the inset, we show
the zoomed in part around the shock location. Comparison of shock
location for various rout shows that it does not get affected if we
change rout. Slight mismatch for rout = 1000 and 2000 may be due
to the grid size variation at the shock location.

4.3 Two-dimensional simulations

Realistically, an accretion disc is three dimensional. However, as-
suming axisymmetry, we can study the disc structure in two di-
mensions. On the other hand, the theoretical formalism of transonic
flows (Chakrabarti 1996b) is developed for flows in vertical equi-
librium which is quite thin. Indeed, the shock location and Mach
number variation depend on the model assumption. Most interest-
ingly, it was shown (GCSR10) that the pre-shock flow behaves as
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Figure 4. Contours of normalized density, overplotted with velocity vectors at four different time. Snapshots (a), (b), (c) and (d) are plotted at times 158, 496,
2250 and 30 000, respectively. The corresponding dynamical times are 0.11, 0.33, 1.5 and 20, respectively. See text for details.

a conical flow, while the post-shock behaves as a flow in vertical
equilibrium. So, a direct comparison with theoretical result is not
possible in a two-dimensional simulation. On the other hand, in
Section 4.2, we showed that our simulation result matches with the
theory very well. Thus, the results obtained in two dimensions may
be trusted.

For the results presented here, we do the simulation in (r, θ ) co-
ordinates. Simulation domain extends from rin = 2.1 to rout = 100
in radial direction and [0 : π/2] in polar direction. The incoming
matter enters the simulation box at rout through one-tenth of polar
zones starting from equatorial plane (GCSR10, GGC12, GGC14).
For this simulation, we evaluate the outer boundary values using
vertical equilibrium model. We choose ε = 1.0022 and l = 3.36,
and this choice gives V = 0.0825 and a = 0.0526 at rout. For these
parameters, the one-dimensional analytical calculation predicts the
shock to be located at 15.77. However, in a full 2D simulation, pres-
ence of turbulence due to centrifugal barrier is expected to shift the
shock farther out. As the incoming matter hits the centrifugal bar-
rier, some matter bounce back and interact with the incoming matter.
Thus a turbulence is generated. This turbulent pressure seems to be

comparable to the other pressure effects, such as thermal and ram
pressure (MLC94, MRC96). This turbulent pressure shifts the lo-
cation of the shock further out compared to the location which we
calculate using one-dimensional analytical method. Interestingly
this is precisely what we see.

In Fig. 4, we present the contours of normalized density inside
the accretion disc at four different times. Associated colour bar
represents the values of the normalized density. Velocity vectors are
overplotted with density. The length of a vector is proportional to
the magnitude of velocity at that location. The simulation is carried
out till the time of 30 000 and we measure the dynamical time
to be tdyn ∼ 1500. Thus, the simulation continued for at least 20
dynamical times without any significant time evolution and hence,
we believe that the system has reached a steady state.

Fig. 4(a) shows the density and velocity vectors at time 158
(tdyn ∼ 0.11), a little after the simulation started. Fig. 4(b) shows
the same at time 496 (tdyn ∼ 0.33), soon after matter reaches rin.
It can be seen that a shock structure already started forming by
this time. The shock front can be identified by the jump in density
colour contour close to the axis and also a sudden reduction of
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Figure 5. Mach number contours at the final time, overplotted with velocity
vectors. It can be seen that the high-velocity outflow leaves the computational
domain supersonically.

velocity vector lengths. The contours clearly look like those of
a thick accretion disc as discussed in MLC94 also for a pseudo-
Newtonian simulation. As we move up in the vertical direction
from the equatorial plane, the shock front bends outwards. This is
explained in MRC96; Chakrabarti 1996d as due to the reduction
of gravitational pull with height, while the centrifugal force which
remains almost the same, pushes the shock outward. This shock
front moves away radially from the black hole and stabilizes at
a radial distance of ∼33.8. This can be seen in Fig. 4(c) which
is a snapshot at nearly 1.5 dynamical times, i.e. 2250. Fig. 4(d)
shows the snapshot at a final time of 30 000 (tdyn ∼ 20). There
appears to be practically no change in the shock location or the flow
behaviour at this period of the simulation. We ran this simulation at
600 × 200 resolution and found that the results presented here are
converged. We also ran this simulation at 150 × 50 resolution by
placing rin at 2.5. Even for this lower resolution, the shock location
and the overall structure of the disc is found to be very similar to
the presented results. Velocity vectors in Figs 4(c) and 4(d) also
show that a strong outflow emerges from the post-shock region
or CENBOL. In order to prove that it indeed leaves the system
supersonically, we plot in Fig. 5 the contours of radial Mach number.
As the colour code would indicate, the inward flow became highly
supersonic in the pre-shock region and highly subsonic in the post-
shock region. It became supersonic again closer to the black hole
as it moves to satisfy the boundary condition on the horizon. The
outflow behaves exactly the opposite way. It starts subsonically from
CENBOL surface and becomes supersonic by the time it reaches at
about 10 Schwarzschild radii. The raggedness of the contours on
the funnel-like vortex surface close to the axis is due to the artefact
of finite-sized grids whose size increases with radial distance from
the black hole. In Fig. 6, we present the time evolution of the shock
location close to the equatorial plane. We dynamically compute the
shock location by picking up the position where the Mach number
changes from M > 1 to M < 1. We have omitted the initial transient
time from this plot when the floor grids were being filled by the
incoming flow for the first time. Fig. 6 shows that the shock location
has achieved a steady state, although it oscillates slightly about its
mean location of r ∼ 33.8, possibly due to the finite grid size at this
distance.

Figure 6. Time variation of shock location. The shock structure is steady,
although it oscillates slightly about its mean location of ∼33.8.

5 C O N C L U S I O N S

It has been demonstrated that TCAF model explains spectral and
temporal properties of the black hole accretion discs very well. The
CENBOL region, which is primarily responsible for emission of
hard photons and the outflows, relies on the formation of shock in
the sub-Keplerian component in this model. However, the formation
of CENBOL was taken for granted only using simulations carried
out in pseudo-Newtonian geometry although its genesis lies in prop-
erties of an advective flow in the strong gravity limit. In this paper,
we performed numerical simulations in fully GR framework in
Schwarzschild space–time to see whether a steady shock formation
is still possible or not. We presented results of one-dimensional and
two-dimensional simulations. For one-dimensional simulations, we
tested the code by comparing our results with the steady-state results
obtained using analytical methods. We ran our code for sufficiently
long time (over 20 dynamical times) the steady state was found to
be achieved. Comparisons of radial Mach number variations were
shown for spherically symmetric Bondi accretion flow as well as
for axisymmetric accretion flow with and without shock. We found
a very good match between the two methods even at moderate res-
olution and these validated the performance of our simulation code.
This gave us confidence to delve into unchartered territory of run-
ning the code in two-dimensions, where, strictly speaking, a fully
self-consistent theoretical result was missing. Here again, we found
steady shock formation and the post-shock region can be easily
identified to be the CENBOL region used by CT95. We found that
a centrifugal force–driven supersonic jet is formed from the surface
of the CENBOL. We also plotted the time variation of the shock
location close to the equatorial plane. We found that the location
slightly oscillates about a mean value of ∼33.8, but overall structure
is steady.

The results presented here were obtained from purely hydrody-
namical simulations in Schwarzschild space–time. Analytically, it
has been shown in C90, C96b that the presence of black hole ro-
tation will affect the structure of an accretion disc. The parameter
space of the shock formation is different for prograde and retro-
grade flows, and locations of the sonic points as well as shock
can be closer or away depending on whether the so-called ‘spin–
orbit’ coupling term (arising out of the product of the spin vec-
tor of the black hole and the orbital angular momentum vector of
the matter) is positive or negative. We will numerically study the
effects of black hole rotation on the accretion disc and shock be-
haviour. Our code would be easily used to study the dragging of
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inertial effects also which is expected to affect the outflows and
CENBOL behaviour. Furthermore, in the presence of dissipations,
such as viscosity and/or heating/cooling, the structure and the lo-
cation of the CENBOL will change significantly as shown by pre-
vious simulations (GGC12, GGC14, GC13, GGC15), performed
using pseudo-Newtonian potential. We will explore the effects of
these dissipations in future studies using our GR numerical sim-
ulation codes and study how the segregation of the flow into two
components may happen in GR framework.
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