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ABSTRACT
We study time evolution of sub-Keplerian transonic accretion flows on to black holes using
a general relativistic numerical simulation code. We perform simulations around the black
holes having non-zero rotation. We first compare one-dimensional simulation results with
theoretical results and validate the performance of our code. Next, we present results of
axisymmetric, two-dimensional simulation of advective flows. In the literature, there is no
solution which describes steady shock solutions in two dimensions. However, our simulations
produce these centrifugal force supported steady shock waves even in presence of strong
dragging of inertial frames. Since the post-shock region could be hot and upscatter photons
through Comptonization, these shock would put imprints on the spectra. Thus, our solutions,
which represent truly new results, could be useful to measure spins through radiation spectrum
of accreting Kerr black holes.

Key words: accretion, accretion discs – black hole physics – hydrodynamics – shock waves –
methods: numerical.

1 IN T RO D U C T I O N

Matter from a companion star in a binary system spirals towards
the primary through a process known as accretion. In the case of
high viscosity, matter injected at the outer boundary would form
a Keplerian disc before entering into the black hole (Chakrabarti
1996b). In this paper, we study what happens when an inviscid flow
of low-angular momentum matter spirals into a rotating black hole,
space–time geometry around which is the well-known Kerr geom-
etry. A low-angular momentum matter would feel the centrifugal
barrier (∼l2/r3, l and r being the specific angular momentum and
the radial distance, respectively) and would slow down, and pile
up eventually making a possible density jump, before entering the
black hole. This is a possibility for inviscid flow, though in presence
of viscosity the result depends on the exact magnitude of viscosity.
These shock waves, just outside the horizon provides an opportu-
nity to study the emission of radiation in a strong gravity limit and
would therefore be of great interest, especially to pinpoint the mass
and the spin of the central object.

In the two-component advective flow (TCAF) scenario
(Chakrabarti & Titarchuk 1995, and references therein), the soft
photons from the Keplerian disc are intercepted by the post-shock
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region and leave the system as hard radiation. The oscillations of
the post-shock region will leave its signature in the outgoing hard
photons. It has been shown using numerical simulations and theo-
retical work (Molteni, Sponholz & Chakrabarti 1996; Chakrabarti,
Acharyya & Molteni 2004; Garain, Ghosh & Chakrabarti 2014;
Chakrabarti, Mondal & Debnath 2015) that when there is a res-
onance between the infall time-scale (compressional heating) and
the cooling time-scale, the shock surface oscillates at a particular
frequency which is approximately inverse to the infall (or, cooling)
time-scale. It was further shown in Garain et al. (2014) that the re-
sulting light curves exhibit quasi-periodic oscillations (QPOs) and
the frequency of the QPOs are consistent with the infall time-scales
(see also Chakrabarti et al. 2015). Since the infall time-scale is pro-
portional to the (radius)3/2 of the shock, larger shock radius produces
lower QPO frequency. In fact, TCAF model has been added as a
local additive table model into HEASARC‘s spectral analysis soft-
ware package XSPEC. Consequently, for outbursting sources where
QPO frequency starts from mHz and continue to increase to a few
tens of Hz, it has been found that the shock forms far away from the
black hole initially and then propagates towards to black hole during
the rising phase (Debnath, Chakrabarti & Mondal 2014; Chatterjee
et al. 2016; Bhattacharjee et al. 2017; Debnath et al. 2017). In the
declining phase, the opposite phenomena occurs, namely, the shock
recedes and the QPO frequency steadily goes down. Several physi-
cal parameters associated with the accretion discs such as accretion
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rates, mass of the black holes, shock locations, and the strength of
the shock are found by analysing the data for various sources (see
above references).

Global solutions of weakly viscous transonic flows in Kerr ge-
ometry have been found in great detail by Chakrabarti (1996a,c).
Complete theoretical studies for accretion and winds are obtained
assuming the flow to be in vertical equilibrium (VE) or in the form
of conical wedge (CF). It was found that for a large region of the
parameter space in each model, a shock wave will form as a distance
depending on the conserved energy, angular momentum, and spin
parameters. These solutions give the closest possible description to
an actual flow dynamics, since a low-angular momentum flow is
likely to be geometrically thick and quasi-spherical far away from
the black hole. However, theoretical works cannot be done in such
cases.

In this paper, we concentrate on the numerical simulations of
these flow in a complete Kerr geometry. Our goal is first to see if
the theoretical results mentioned above are instead stable. This is
because of the fact that a flow actually slows down to a large extent
in the post-shock region, just outside the horizon, itself is very
exciting and it would be important to throw light on their stability
properties. Second, we would also like to prove the effects of the
dragging of inertial frames and eventually, whether such effects
cause precession of outflows and jets. So the code must be tested
against known theoretical solutions. We will test the code for a
conical flow for simplicity. Since the relevant equations are given
in Chakrabarti (1996a,c), we do not repeat them here. Instead we
only mention the key points.

In this paper, we choose Rg = GMBH/c2 as the unit of length, Rgc
as unit of angular momentum, and Rg/c as unit of time. In addition,
we choose the geometric units G = MBH = c = 1 (G is gravitational
constant, MBH is the mass of the central black hole, and c is the
unit of light). Thus Rg = 1, and angular momentum and time are
measured in dimensionless units.

2 A NA LY T I C A L S O L U T I O N

We assume a thin conical wedge shaped adiabatic flow symmetri-
cally placed on both sides of the equatorial plane, θ = π /2, entering
into a Kerr black hole. For analytical studies, we assume the Kerr
metric transformed to the cylindrical coordinate which is written as
follows (Novikov & Thorne 1973):

ds2 = gμνdxμdxν

= − r2�

A
dt2 + A

r2
(dφ − ωdt)2 + r2

�
dr2 + dz2.

(1)

Here,

A = r4 + r2a2 + 2ra2, � = r2 − 2r + a2, ω = 2ar/A,

a being the spin parameter of the black hole and ω represents the
frame dragging due to the rotation of the central black hole.

In absence of viscosity and any heating or cooling, one can find
the conserved specific energy as (Chakrabarti 1996c)

ε = hut = 1

1 − na2
s

ut , (2)

where, n = 1/(
 − 1) is the polytropic index, 
 being the adiabatic
index, and h = 1/

(
1 − na2

s

)
is the enthalpy, as being the sound

speed. Also,

ut =
[

�

(1 − V 2)(1 − �l)(gφφ + lgtφ)

]1/2

. (3)

Here,

� = uφ

ut
= − gtφ + lgtt

gφφ + lgtφ

, (4)

and l = −uφ /ut is the specific angular momentum. Also,

V = V
(1 − �l)1/2 , (5)

where

V =
(

−uru
r

utut

)1/2

. (6)

We rewrite equation (2) as

ε = 1

1 − na2
s

1(
1 − V 2

)1/2 F (r), (7)

where,

F (r) =
[

�

(1 − �l)(gφφ + lgtφ)

]1/2

.

The entropy accretion rate (Chakrabarti 1989, 1996c) can be ob-
tained as

μ̇ =
(

a2
s

1 − na2
s

)n
V(

1 − V 2
)1/2 G(r), (8)

where, G(r) = r�1/2.
We follow the standard solution procedures (Chakrabarti

1996a,c) to calculate V(r) and radial dependence of other required
quantities. By differentiating equations (7) and (8) with respect to
r and eliminating terms involving das/dr, we find following expres-
sion as the gradient of V(r):

dV

dr
= V

(
1 − V 2

) [
a2

s R1 − R2

](
V 2 − a2

s

) , (9)

where, R1 = 1
G(r)

dG(r)
dr

and R2 = 1
F (r)

dF (r)
dr

.
At the sonic point, both numerator and the denominator vanish

and one obtains the so-called sonic point condition as

Vc = as,c; a2
s,c = R2

R1

∣∣∣∣
c

. (10)

Here, subscript c refers to the quantities evaluated at the sonic point
r = rc.

To find a complete solution from the horizon to infinity for a given
black hole spin parameter a, one needs to supply the specific energy
ε and the specific angular momentum l. For Kerr black holes, a
few examples of classification of parameter space spanned by these
two parameters, namely ε and l, has been provided in Chakrabarti
(1996a,c). The accretion or wind solutions may pass through one or
multiple sonic points. Moreover, a solution having more than one
sonic points may form a standing shock. The location of the shock
may be found by solving continuity of energy equation, mass flux
equation, and relativistic momentum balance condition simultane-
ously. These are collectively called the ‘shock conditions’. For more
discussions on these solutions, readers are referred to the aforemen-
tioned references. In this paper, we obtain shock locations in some
flow parameters and compare the results of numerical simulations
to see if the shocks indeed form in a realistic flow.

3 N U M E R I C A L S I M U L AT I O N PRO C E D U R E

In this section, we describe how we can obtain the time dependent
numerical solution using the boundary condition provided in Sec-
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tion 2. Instead of the space–time metric provided in equation (1)
we use the usual Boyer–Lindquist coordinates (t, r, θ , φ) for the
Kerr metric for the numerical simulation (Boyer & Lindquist 1967).
In the ADM 3 + 1 decomposition, the space–time is expressed in
terms of the lapse (α), shift (β i), and spatial metric (γ ij) (Arnowitt,
Deser & Misner 2008). The line element around Kerr black hole
can be expressed as follows:

ds2 = − α2dt2 + γij

(
dxi + βidt

) (
dxj + βj dt

)
= −

(
1 − 2r

ρ2

)
dt2 − 4ar sin2 θ

ρ2
dtdφ

+ ρ2

�
dr2 + ρ2dθ2 + �

ρ2
sin2 θdφ2,

(11)

where

ρ2 = r2 + a2 cos2 θ,

� = r2 − 2r + a2.

� = (
r2 + a2

)2 − a2� sin2 θ.

Then, the lapse, α, and shift, β i, in equation (11) are

α =
√

ρ2�

�
,

βr = βθ = 0, βφ = −2ar

�
.

(12)

In this paper, we do not consider the evolution of the space–time
metric by the influence of the accreting matter. In other words, we
assume that the accretion mass is too light to affect the space–time
metric of the central black hole. For typical accretion disc around a
central black hole of Mass 10 M�, the mass accretion rate (Ṁ) of
one Eddington rate, when expressed in the unit of M�, comes out
to be ∼10−15 M� s−1. Such a small accretion rate cannot increase
the mass or change the angular momentum of the central black
hole within our simulation time (∼a few 10 ms). Therefore, we can
rightly neglect the self-gravity of the disc.

For the evolution of the accreting matter (hydrodynamic simu-
lation), we adopt the Valencia formulation which is written as a
flux conservative form in the 3 + 1 decomposition of space–time
(Banyuls et al. 1997). In our coordinate system, the conservative (q)
and primitive (w) variables are,

q =

⎛
⎜⎜⎜⎜⎝

D

Sr

Sθ

Sφ

τ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ρ0W

ρ0hW 2vr

ρ0hW 2vθ

ρ0hW 2vφ

ρ0hW 2 − P − D

⎞
⎟⎟⎟⎟⎠ , w =

⎛
⎜⎜⎜⎜⎝

ρ0

vr

vθ

vφ

P

⎞
⎟⎟⎟⎟⎠ . (13)

Here, ρ0 is the fluid rest mass density, P is the pressure, and h is the
specific enthalpy. They are measured in the co-moving frame of the
fluid. vi is the fluid velocity measured by Eulerian reference frame

i.e., vi = ui

αut + βi

α
. W is the Lorentz factor and defined as W =

αut = 1/
√

1 − γij vivj . Here, γ ij are the spatial part of the metric
components gμν . The radial and angular velocity in the Eulerian
frame can be expressed in terms of V in equation (6) and � in
equation (4),

vr =
√

−gtt + gtφ�

grrα2
V

vφ = 1

α

(
� − βφ

)
.

(14)

Assuming axisymmetry ( ∂
∂φ

= 0), the hydrodynamic equations in
the curved space–time that are described in equation (11) can be

written as follows:

∂
(√

γ q
)

∂t
+ ∂

(√−gf r
)

∂r
+ ∂

(√−gf θ
)

∂θ
= √−gS, (15)

where

f r =

⎡
⎢⎢⎢⎢⎣

Dvr

Srv
r + P

Sθv
r

Sφvr

τvr + Pvr

⎤
⎥⎥⎥⎥⎦ ,

f θ =

⎡
⎢⎢⎢⎢⎣

Dvθ

Srv
θ

Sθv
θ + P

Sφvθ

τvθ + Pvθ

⎤
⎥⎥⎥⎥⎦ ,

S =

⎡
⎢⎢⎢⎢⎣

0
1
2 T μν∂rgμν
1
2 T μν∂θgμν

0
α
(
T μt∂μ(ln α) − T μν
t

μν

)

⎤
⎥⎥⎥⎥⎦ . (16)

Here Tμν is the stress energy tensor of the perfect fluid which is
defined as Tμν = ρ0huμuν + Pgμν .

√
γ and

√−g are the determi-
nants of spatial and space–time metric, respectively. From the Kerr
metric shown in equation (11), we have

√
γ =

√
ρ2�

�
sin θ,

√−g = α
√

γ = ρ2 sin θ. (17)

As we see in equation (16), this formulation is not strictly a flux
conservative form due to the non-zero source terms in S. The source
terms, however, contain spatial derivatives of the metric components
only (they come from the Christoffel symbols) and they do not have
any derivatives of the hydrodynamic variables. Note that even for
the general time dependent metric, the time derivative of metric
components can be substituted by their spatial derivatives from the
Einstein equation. Therefore, the source term does not have time
derivatives.

We use the ideal gas equation of state which can be written in the
following form:

P = (
 − 1) ρ0e, (18)

where e is the specific internal energy. The above equation of state
provides the expression of specific enthalpy,

h = 1 + 



 − 1

P

ρ0
. (19)

In this paper, we solve the hydrodynamic equations in (15) and (16)
using a numerical code developed by Kim et al. (2012). The details
of the code can be found in Kim et al. (2012). The most useful prop-
erty of this code is that it can be applied to any space–time metric
in any coordinate system. Although the original code by Kim et al.
(2012) is written in the so-called ‘pseudo-Newtonian’ metric, we
can easily apply the code to the Kerr geometry. This code uses fi-
nite volume method to enforce local conservation of the fluid in the
computational grid. Therefore, the code can guarantee total mass
and angular momentum conservations which appear in the first and
fourth rows of equation (16). For the treatment of the discontinuous
solution of the fluid such as shocks, rarefactions, or contact discon-
tinuities, the High Resolution Shock Capturing (HRSC) techniques
are applied in the code. We use the third order slope limiter pro-
posed by Shibata (2003) which is based on the minmod function.
For the flux approximation, we use the HLL method that takes care
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of maximum and minimum wave speed (Harten, Lax & van Leer
1983). The HLL method has some dissipation but the results are
very stable. For the time integration, we use the third order three
stage Strong Stability-Preserving (SSP) Runge–Kutta method by
using method of line. It is known as Shu–Osher method (Shu &
Osher 1988).

4 R ESULTS

4.1 One-dimensional conical accretion flow

First we test the code by reproducing theoretically obtained steady
non-linear solutions using the code. We test for both the accretion
and winds. In the first case, the accreting matter starts from a large
distance and after passing through a sonic point, it passes through
the standing shock where many of the flow variables jump abruptly.
After that, it passes through another mandatory sonic point before
disappearing behind the horizon supersonically. In the second case,
the wind starts from an accretion flow and due to thermal pres-
sure, it is pushed out to infinity after successively passing through
the innermost sonic point, a shock, and the outer sonic point. The
challenges faced by a code are to test if (i) the shocks are actually
formed, and if yes, (ii) whether the jump in Mach number occurs
in a very narrow region and exactly at the same place as predicted,
since theoretically, the shocks in an inviscid flow are infinitesimally
thin. Once the tests are successful, one could explore unknown ter-
ritories, such as geometrically thick, fully two-dimensional flows.

In Fig. 1(a)–(c) we show the results of three numerical simulations
for the prograde flows. There were 300 logarithmically spaced radial
grids for all the one-dimensional simulations presented here. For
accretion solutions, the outer and inner boundaries are located at
rout = 200 and rin = 1.2, respectively. We use a = 0.95 for all three
cases. In Fig. 1(a), we consider the flow parameter from the ‘No
Shock in Accretion’ (NSA) region (fig. 2 of Chakrabarti 1996c).
If a flow starts with parameters from this region, then the shock
conditions are not satisfied and the flow passes through the outer
sonic point and enters into the black hole smoothly. This particular
case is with the parameter pair of ε = 1.004 and l = 2.2. The solid
black curves give the theoretical distribution of the Mach number
(V/as) as a function of the radial distance. The upper branch is
complete in the sense that it connects the black hole horizon with
a large distance, while the lower (subsonic) branch is an isolated
solution which does not connect flows at a large distance. Red
‘+’ signs signify the results of numerical simulations. Matter is
injected at rout = 200 with the radial velocity and sound speed as
in the theoretical solution. We find that the steady solution exactly
matched with the theoretical solution branch.

In the next simulation (Fig. 1b), we choose the injected parame-
ter from a region called ‘Shock in Accretion’ (SA) of Chakrabarti
(1996c). We choose ε = 1.004 and l = 2.25 in this case. The ana-
lytical solution is exactly reproduced by the numerical simulation
with the shock thickness about a grid size which is the smallest re-
solvable length scale. The shock is formed at r = 4.05. The reason
why the flow chose to jump on the lower branch is that the entropy
of the flow which passes through the inner sonic point is higher than
that of the upper branch and flow chose that branch for stability.
In Fig. 1(c), we carry out a simulation with flow parameters from
the ‘Shock in Winds’ (SW) region. Here the parameters are ε =
1.02 and l = 2.3. The matter is injected from a radius rin = 1.5
outwards on the equatorial plane assuming there is a matter source
(such as a disc). It immediately passes through the sonic point, but
reaches to a large distance only after passing through a shock wave.

When comparing with the theoretical solution, we note that there
is a slight deviation at a large distance. On inspection, we find that
this is due to finite resolution of the grid. A small error (which is
equivalent to a large fractional error) in the location of shock wave
(which is grid resolution limited) is propagated downstream and af-
fect the numerical results. The error in thermodynamic quantities in
the shock location does not propagate backward in the supersonic
region, and thus does not affect the pre-shock branch at all. The
shock is located at 2.77. Clearly the error would be reduced with
the reduction of the grid size.

In Fig. 1(d), we present the results of our simulation for a ret-
rograde accretion flow. We choose ε = 1.004, l = 4.0, and spin
parameter a = −0.95 in this case. The outer and inner boundaries
are located at rout = 200 and rin = 1.6, respectively. Analytical
method predicts the shock to form at r = 22.45. As in the prograde
flow, here also, we find the analytical solution is exactly reproduced
by the numerical simulation with the shock thickness about a grid
size.

4.2 Two-dimensional Bondi accretion flow

Having convinced ourselves that the numerical code has repro-
duced theoretical non-linear solution exactly, we turn our attention
to solve the simplest possible two-dimensional problem which does
not have any theoretical solution. For all the two-dimensional flows
presented here, there were 300 logarithmically spaced radial grids
and 90 equal spaced grids along the polar angle. We study the spher-
ically symmetric flow (at a large distance) on a Kerr geometry which
is a special case of Chakrabarti (1996c) solution for l = 0. Earlier
Michel (1972) solved for Bondi flows on a Schwarzschild geom-
etry which remained spherically symmetric even on the horizon.
However, as we show below, due to the dragging of inertial frame
the flow becomes necessarily axisymmetric rather than spherically
symmetric close to the black hole. Our goal would be to see how
the dragging of the inertial frame would modify the symmetry of
the flow.

To show the effects of dragging of frames due to spin of the
black hole, we run the same case twice: for the Kerr (a = 0.95) and
the Schwarzschild (a = 0) geometries and then take the difference
in density distribution in the two cases. We injected matter with
radial velocity 0.02288 and sound speed 0.08053 at rout = 200
(Kim et al. 2017). However, for Schwarzschild black hole case, the
inner boundary is placed at rin = 2.1 and for Kerr black hole, rin =
1.5.

In Fig. 2(a), we plot colours of the density difference. We see that
the difference is higher along the axis. This is expected since the
effects of spin on space–time is the highest at the pole. In Fig. 2(b),
we plot the ratio of the radial distance for a given density divided by
that on the polar axis as a function of the polar angle. The contours
of density 50, 100, 150, 200, and 250 are shown (from bottom to
top). Clearly, higher the density, i.e., closer the flow to the horizon,
the difference between the equatorial value and axial values are
higher. Dragging of the inertial frame induces a little rotation (� ∼
2.375 × 10−7) at the outer boundary of the grid on the equatorial
plane where r = 200.

4.3 Two-dimensional accretion flow with non-zero angular
momentum

We now apply the code to a more complex case where the accreting
matter has some angular momentum. Such situations occur in wind-
fed systems as in Cygnus X-1. In the context of pseudo-Newtonian
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Figure 1. Comparison of radial Mach number (V/as) variation for one-dimensional axisymmetric accretion and wind solutions around a rotating black hole.
The black solid lines are obtained using analytical method, whereas red points are the simulation results. In (a), we present an accretion solution without a
shock. ε = 1.004 and l = 2.2 are chosen for this solution (NSA region). (b) An example of an accretion solution where a shock is formed. ε = 1.004 and
l = 2.25 are chosen for this solution (SA region). According to analytical calculation, shock location is found to be at r = 4.05. (c) An example of the wind
solution where a shock is formed at r = 2.77. The parameters for this solution are ε = 1.02 and l = 2.3 (SW region of parameter). The spin parameter a = 0.95
for all three cases. (d) An example of an accretion solution where a shock is formed for a retrograde flow. ε = 1.004, l = 4.0, and spin parameter a = −0.95
are used for this case. Analytically, the shock location is found to be at r = 22.45. Numerical simulations clearly captured the shocks exactly where theoretical
shock location was predicted.

geometry, Molteni, Lanzafame & Chakrabarti (1994) first carried
out this simulation using Smoothed Particle Hydrodynamics (SPH)
code and found that a standing shock is formed with an outflow
along the polar direction. However, in the context of a complete
Kerr geometry the code has never been tested, which formed non-
linear shocks right outside a black hole horizon. We take a = 0.95
black hole which means the horizon is located at r = 1.31. We inject
matter at the outer edge at r = 200 and the inner absorbing boundary
is chosen at rin = 1.5. We choose 300 logarithmically spaced radial
grid and 90 equispaced polar grids as before. In Table 1, we present
the parameters for all the two-dimensional runs presented here.
For run R1, we inject the flow with specific energy and angular
momentum ε = 1.001 and l = 2.25, respectively. This pair of
parameters produces a standing shock when vertical equilibrium
model is used (Chakrabarti 1996a). At the outer radius, the injection
velocity and sound speed are V = 0.0634 and as = 0.0362 in this
case. We run for a time of 2.6 × 104, which is about 10 times of the
in-fall time.

We now show the results, including the initial transient phase
when the matter rushed towards the black hole. In Fig. 3(a), we
show the inner region of the computational grid to show details of

what happened after quasi-steady state is achieved. We plot density
contours superposed with velocity vectors. The length of the arrow
is proportional to the logarithm of the velocity magnitude. For a
thin flow in a vertical equilibrium, a shock would be expected at
r = 7.5. However, we are using a geometrically thick flow which
after passing through the oblique shock off the equatorial plane,
converges towards the black hole and hits the centrifugal barrier
and bounce back which then interacts with matter in-flowing on the
equatorial plane. This turbulent pressure along with the excess heat
generated due to the fall of matter from off the equatorial plane
pushes the shock outwards to a distance ∼22. Fig. 3 (b) shows
the variation of the shock location on the equatorial plane. There
is a small amplitude oscillation mostly driven by the inequality
between the sum of the pressures in the pre- and post-shock re-
gions. Note the formation of a strong outflow from the surface of
the in-flowing post-shock region. Due to dominance of the cen-
trifugal force, this region is also called the CENtrifugal pressure
Supported BOundary Layer, or CENBOL, which truly acts like a
boundary layer of stars from which winds originate and which up-
scatters seed photons to higher energy (Chakrabarti & Titarchuk
1995).
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Figure 2. Breaking of symmetry of the flow due to dragging of inertial
frame is demonstrated here. (a) Distribution of difference in flow density
with identical initial condition at the outer grid at r = 200 between a Kerr
(a = 0.95) black hole and a Schwarzschild (a = 0) black hole even if matter
is accreted spherically symmetrically far from the central object. We note
that while near the equatorial plane the difference is very little, highest
difference occurs on the pole. In (b) we plot the contours of constant density
in the simulation result as a function of the polar angle and the ratio of the
distance (of a given density) divided by the distance (of the same density)
along the pole. We see that the same high density 250 occurs on the pole at
about 7 per cent distance less than the distance on the equatorial plane. The
contours are, from bottom to top, 50, 100, 150, 200, and 250, respectively.

Table 1. Parameters used for the two-dimensional simulations.

Case ε, l a V as

R1 1.001, 2.25 0.95 0.0634 0.0362
R2 1.001, 4.0 − 0.95 0.0609 0.0363
R3 1.001, 2.21 0.95 0.0634 0.0362
R4 1.001, 2.63 0.95 0.06299 0.0362

For this case, we can estimate the velocity of the outflowing
matter at rout and compare it with the escape velocity of at that
radius. The escape velocity at the outer computational domain is

vesc =
√

2

r
. (20)
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Figure 3. (a) Zoomed snapshot of density contours overplotted with veloc-
ity vectors for two-dimensional flow around a Kerr (a = 0.95) black hole.
The parameters corresponding to run R1 are used. The length of the arrow is
proportional to the logarithm of the velocity magnitude. (b) Time variation
of shock location on the equatorial plane. A small amplitude oscillation is
seen around a mean location ∼22. See text for details.

Accordingly, the escape velocity at the computational boundary
(rout = 200) is vesc = 0.1. The fluid velocity is given by,

v =
√

γij vivj . (21)

Fig. 4 shows the fluid velocity at the outer boundary as a function
of the polar angle for the case R1. The horizontal line shows the
escape velocity for the comparison. The numbers show that the
fluid velocity is higher than the escape velocity at some locations
close to the pole. Near the pole, the fluid actually escapes from the
vicinity of the black hole by forming a jet whereas the fluid at all
other parts may fall back and become part of the accreting matter.
In our case, the outflow is launched from the post-shock region by
the combined effects of thermal pressure and centrifugal pressure.
As the flow passes through the shock, the matter becomes hotter
and entropy rises. This hotter, rotating flow is further squeezed into
a small volume due to compression as it further moves towards the
black hole. High entropy forces the flow to have the inner sonic
point very close to the black hole, where it becomes supersonic.
It subsequently expands and expelled in the vertical direction as a
strong outflow.
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Figure 4. Fluid velocity as a function of polar angle at the computational
outer boundary (rout = 200). The dotted horizontal line represents the escape
velocity at rout = 200.

In Figs 5(a)–(b) we show analogous results to Fig. 3 when the
black hole is spinning in the opposite direction as that of the ac-
cretion (run R2). We choose a = −0.95 in this case. We choose,
ε = 1.001 and l = 4.0 which gives V = 0.0609 and as = 0.0363
at rout = 200 for a model flow in vertical equilibrium. We use this
velocity to inject matter at the outer boundary. Theoretical location
of the shock for these input parameters is 25.8. However, presence
of turbulence pushes the shock to about 58. There is also a small
amplitude oscillation. Because of the effects of dragging of the in-
ertial frame close to the black hole, forcing the matter to co-rotate
with it, there is a large turbulent cell in the CENBOL region. Also
note that the oblique and triple shock being weaker in this case,
the flow tends to be deflected to form a stronger wind. It is thus
possible that the contra-rotating black holes would produce more
profuse winds and this phenomenon certainly deserves attention.

Two-dimensional simulations reveal many new aspects of the
physics of accretion flows. For instance, the presence of turbulence
may change the topology of the solutions altogether. We show ex-
ample of one such case (run R3) in the next simulation, where we
inject a flow which is not supposed to have any standing shock
in the vertical equilibrium model (i.e., from the region ‘NSA’ of
Chakrabarti 1996a). Here we choose a = 0.95 and inject with flow
parameters of ε = 1.001 and l = 2.21 which gives V = 0.0634 and
as = 0.0362 at rout = 200. The flow is injected with this velocity as
before. We observe that a shock forms nevertheless, but it does not
remain steady. Rather, it exhibits a large amplitude oscillations.

In Figs 6(a)–(b), we plot the density contours superposed with
velocity vectors. In Fig. 6(a), the shock is located at ∼15 while in
Fig. 6(b), the shock is located at ∼20. In Fig. 6(c), instantaneous
shock locations are plotted. This oscillation of shock is very impor-
tant from the observational point of view, since these are believed
to be responsible for QPO of X-rays amplitudes from black hole
accretion discs.

In Figs 7(a)–(b) we show results of another case (run R4), where
the flow parameter is from ‘O∗’ region (Chakrabarti 1996a). The
flow parameters are chosen as ε = 1.001 and l = 2.63 which yields
V = 0.06299 and as = 0.0362 at rout = 200 from the transonic
solution. In this case, since the specific angular momentum is larger
than the marginally bound value, the steady flow in vertical equilib-
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Figure 5. Analogous figure to Fig. 3 for the retrograde case (a = −0.95).
We choose parameters corresponding to run R2 for this case. Analytically,
for these parameters, a steady shock is found to be formed at 25.8. However,
in numerical simulation, a shock is found to be formed at ∼58.

rium model does not even extend till the horizon and thus a steady
flow is impossible. When a time dependent simulation is run we
see a very interesting behaviour. The flow is found to be full of
turbulence in large and smaller scales, as the branch to enter the
black hole is practically blocked due to high centrifugal barrier.
Indeed without accretion, and mostly rotating, the isodensity con-
tours assume the shape of thick accretion discs (Paczyńsky & Wiita
1980; Chakrabarti 1985). The flow tries to enter into the black hole
but is unable to do so resulting in accretion of a very little matter.
From the simulation, we compute the mass absorption rate, Ṁabs,
at which the matter is absorbed by black hole through the inner
boundary of the computational domain and the mass outflow rate,
Ṁout, at which the matter leaves the computational domain through
the outer boundary as outflow or jet. Ṁin measures the mass inflow
rate of the incoming matter through the in-flowing boundary.

In Fig. 7(a), we show the contours of constant density superposed
with velocity vectors. In Fig. 7(b), the blue curve shows the ratio of
the mass absorption rate to the mass inflow rate (Rabs = Ṁabs/Ṁin).
The red curve shows the ratio of the mass outflow rate to the mass
inflow rate (Rout = Ṁout/Ṁin). As we can see, nearly no matter is
absorbed by the black hole for this case. Instead, almost all the
matter is leaving through the outer boundary of the computational
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Figure 6. Results of our simulation when the parameters ε and l are not
supposed to have shocks in a flow in vertical equilibrium (run R3). (a)–
(b): Snapshots of density contours overplotted with velocity vectors at two
different times 38500 and 38100, respectively. The time variation of shock
location on the equatorial plane is shown in (c) which show very large
amplitude shock oscillations. (a) and (b) are drawn at the times marked by
the arrows on (c).
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Figure 7. Results of a case with the parameters chosen from O∗ region (run
R4). (a) Density contours overplotted with velocity vectors showing a thick
accretion disc pattern in the absence of accretion. (b) Ratio of the mass ab-
sorption rate to the mass inflow rate (Rabs = Ṁabs/Ṁin) is shown in blue and
Ratio of the mass outflow rate to the mass inflow rate (Rout = Ṁout/Ṁin)is
shown in red. Nearly no matter is absorbed by the black hole and almost
all the matter is leaving through the outer boundary of the computational
domain. Occasional Rout > 1 indicates that the disc is evacuated at that time.

domain (the ratio is around unity for red line). Sometimes, this ratio
is more than one showing that the accumulates disc matter may also
be evacuated in this case. Fig. 6(b) is drawn in logarithmic scale in
order to show small and sudden inflows into the black hole, possibly
because of transport of angular momentum of some matter to those
leaving the system. Such transports are common in turbulent discs
through turbulent viscosity.

For all the cases presented in Table 1, we can estimate Comp-
ton y-parameter (Rybicki & Lightman 1979) in the pre- and post-
shock regions. Assuming a mass accretion rate ∼ 0.1 Eddington rate
around a 10 M� black hole, the values of the Compton y-parameter
are found to be ypre-shock ∼ 0.0016 and ypost-shock ∼ 10. Precisely,
such consideration is used to study spectral properties by the TCAF
solution (Chakrabarti & Titarchuk 1995).

In our two-dimensional simulations, we also notice the formation
of the outflow from the surface of the CENBOL. In order to under-
stand what fraction of injected matter can be swallowed by black
hole and what fraction can leave as outflow, we plotted the radial
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Figure 8. Inflow–Outflow rates, normalized by the mass accretion rate . Min at rout, as a function of radius for all the cases presented in Table 1. The blue,
solid curve shows the inflow rate and red, dashed curve shows the outflow rate. (a), (b), (c), and (d) correspond to cases R1, R2, R3, and R4, respectively.

variation of the corresponding rates for all the four runs presented in
Table 1. Fig. 8 shows the results in the steady state for all the cases.
In order to find the total inflow rate at a particular radial point, we
integrated the inward pointing mass flux in the angular direction at
that radius. Similarly, to find the total outflow rate at a particular
radial point, we integrated the outward pointing mass flux in the
angular direction at that radius. From Figs 8(a), (b), and (c), we
find that the flow is mostly accreting at all radii and a small fraction
(∼5 per cent) of injected matter points away from the black hole.
Fig. 8(d), on the other hand, shows that at all radii, the inward and
the outward mass rate are roughly equal.

Please note that in this paper, our primary goal is to verify whether
the numerical solutions are consistent with the theoretical solutions
provided in Chakrabarti (1996a,c). During the process, we also find
from our simulations that outflow can originate from the post-shock
region. Although, our current simulations show that the outflow
rate is not significant for the parameters that we use, the rate can be
enhanced for accreting flow with higher l (see e.g., Molteni et al.
1994).

5 C O N C L U S I O N S

Accretion processes on a black hole continues to remain a fascinat-
ing subject and with the advent of better observational tools it has
become possible to prove models of accretion flows. It is widely
understood that an astrophysical black hole may not have any sig-
nificant Keplerian disc in most of the time and the accretion may be
wind driven, i.e., have low-angular momentum. This is especially
true for high mass X-ray binaries and active galactic nuclei. It is
also found that most of the black holes have spins (see review by

McClintock, Narayan & Steiner 2014). So it is essential to carry
out the studies in full Kerr geometry. In the literature, systematic
studies have been presented (Chakrabarti 1996a,c) when the low-
angular momentum flow is steady and geometrically thin modelled
as a conical wedge flow or a flow in vertical equilibrium. However,
no theoretical study is either present or possible in Kerr geometry
for a geometrically unrestricted flow.

In this paper, for the first time, we present results of a fully gen-
eral relativistic flow. We first tested the code in one dimension (i.e.
on the equatorial plane) and showed that the code exactly repro-
duced the corresponding flow solutions with and without a shock
transition, in both accretion and winds. We then applied the code
for a two-dimensional Bondi flow and found that due to dragging
of the inertial frame, even a spherically symmetrically injected flow
at the outer grid boundary takes an oblate shape and the isoden-
sity contours show this deformity. Finally, we ran several cases of
two-dimensional flows with finite specific angular momentum. We
chose input parameters and compared the results with steady solu-
tions from vertical equilibrium model. We discover that turbulent
pressure is much stronger for a rapidly spinning black hole and
pushes the shock by a large amount. This effect was much weaker
in Schwarzschild black hole modelled with pseudo-Newtonian po-
tential (Molteni et al. 1994). We also carried out simulations with
contra-rotating black holes and show that the flow is very turbulent
close to the horizon, especially because of the dragging of matter
in the opposite direction by the black hole. We also showed that
because of this turbulence, the shock is located much further out.
Finally, we considered a case which is not supposed to be accreting
according to vertical equilibrium model. Indeed, we find that the
accretion is very low and almost all the matter is ejected as winds,
often partially evacuating the disc itself when the outflow rate is
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higher than the inflow rate. In a realistic and generalized accretion
process scenario on a black hole, one often finds signatures of two
components where the viscous accretion discs are surrounded by
low-angular momentum flows such as those we used in this paper
(Chakrabarti 1996b; Giri & Chakrabarti 2013; Chakrabarti et al.
2015; Giri, Garain & Chakrabarti 2015). In future, our goal would
be to introduce viscosity and radiative processes to produce self-
consistent spectrum out of discs around a rotating black hole. In
that case the spin parameter may also be determined from the value
of frequency at which the shocks oscillate. These would be carried
out in future.
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