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A B S T R A C T 

We study the time evolution of sub-Keplerian transonic accretion flow on to a non-rotating black hole using a three-dimensional, 
inviscid hydrodynamics simulation code. Prior two-dimensional simulations show that centrifugal barrier in the accreting matter 
may temporarily halt the nearly free-falling matter and produce a stable, geometrically thick disc that may contain turbulent 
eddies. Our goal in this work is to investigate whether the disc develops any instability because of this turbulence when we 
dynamically acti v ate all three dimensions. We find that the disc remains stable and axisymmetric even close to the central 
black hole. Ho we v er, if we e xplicitly apply non-axisymmetric azimuthal perturbation, the axisymmetric structure of the disc is 
destroyed and instability is developed. 
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 I N T RO D U C T I O N  

resence of a dynamical, geometrically thick, optically slim, hot
dv ectiv e corona surrounding a black hole helps in explaining the
ime-variability of the observed radiations for several X-ray sources
ontaining black holes (Cui et al. 1997 ; Chakrabarti & Manickam
000 ; Radhika et al. 2016 ; Patra et al. 2019 ; Shang et al. 2019 ;
ondal & Chakrabarti 2021 , and references therein). Theoretical

olution of hybrid flow (Chakrabarti 1989a ) containing a standing
hock self-consistently explains the origin of such a corona as the
ost-shock sub-Keplerian accreting matter (Chakrabarti & Titarchuk
995 ). Close to the compact objects, the centrifugal barrier of
his low-angular momentum, super-sonic, adv ectiv e flow causes
t to pass through a shock-transition and subsequently, the flow
roduces the toroidal corona which may launch jet as well. The shock
urface forms the boundary layer of the corona (centrifugal pressure
upported boundary layer or CENBOL, Chakrabarti & Titarchuk
995 ). 
Since the conceptualization of the centrifugal pressure supported

hock formation in the accretion flow (Chang & Ostriker 1985 ;
ukue 1987 ; Chakrabarti 1989b ), several numerical experiments
ave been performed to verify the formation and stability of this
hock surface. To verify their conjectures, Chakrabarti and his
ollaborators initially performed several one and two-dimensional
2D) simulations using different types of simulation codes, such
s smooth particle hydrodynamics (SPH) and schemes based on
nite-difference method (Chakrabarti & Molteni 1993 ; Molteni,
anzafame & Chakrabarti 1994 ; Molteni, Ryu & Chakrabarti 1996b ;
yu, Chakrabarti & Molteni 1997 ). These works demonstrated
 E-mail: sudip.garain@gmail.com , sgarain@iiserkol.ac.in 
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xcellent matching of the theoretical and numerical solutions.
dditionally, the results demonstrate the stability of the shocks

n the accretion flo w. Dif ferent other groups also independently
erformed simulations of low angular momentum, adv ectiv e ac-
retion flow on to black holes (Ha wle y, Smarr & Wilson 1984 ;
yu et al. 1995 ) and found presence of shocks although, in some
ase, shocks were unstable and mo v ed outside the computational 
omain. 
The shocked accretion flow is further studied in presence of various

issipati ve ef fects such as viscosity, radiation, etc. In presence of
ompton cooling, the thermal pressure inside the torus reduces and

he shock mo v es closer to the central object (Molteni, Sponholz &
hakrabarti 1996a ; Chakrabarti, Acharyya & Molteni 2004 ; Okuda,
eresi & Molteni 2007 ; Garain, Ghosh & Chakrabarti 2012 , 2014 ).
n the other hand, outward angular momentum transport through
iscosity pushes the shock outwards and the angular momentum
f the post-shock flow tends to become Keplerian (Chakrabarti &
olteni 1995 ; Lanzafame, Molteni & Chakrabarti 1998 ; Lanzafame

t al. 2008 ; Lee et al. 2016 ). In presence of both cooling and viscous
ransport, it is possible to demonstrate the stable coexistence of
oth optically thick, geometrically thin Keplerian disc and optically
hin, geometrically thick torus of sub-Keplerian matter (Giri &
hakrabarti 2013 ; Giri, Garain & Chakrabarti 2015 ). Numerical

tudies of magnetized sub-Keplerian matter accretion flow has also
een performed to understand the effect of magnetic field on the
hock and the resulting torus (Deb, Giri & Chakrabarti 2017 ; Okuda
t al. 2019 ; Garain et al. 2020 ; Singh, Okuda & Aktar 2021 ).
ll these simulations are performed in two-dimensions (2D) under

xisymmetric assumptions. 
Through all these simulations, it is demonstrated that stable

hock formation is indeed possible under various conditions in low
ngular momentum matter accretion on to a black hole. Although
© 2022 The Author(s) 
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he formation of standing shock solution is found to be the case
n theoretical analysis or even one-dimensional (1D) numerical 
imulations (Chakrabarti & Molteni 1993 ; Kim et al. 2017 , 2019 ), in
ultidimensional simulations, the shock location is generally found 

e dynamic. The collision between the incoming matter and the 
ounced back matter from the centrifugal barrier makes the flow 

urbulent. Dynamic eddies are seen to be self-consistently formed 
nside the post-shock region. These eddies are either advected into 
he black hole or mo v e a way in v ertical direction. It is also realized
hat presence of turbulence pressure push the shock away from their 
redicted location. 
While axisymmetry is used in the abo v e mentioned 2D sim-

lations, there are a few 2D simulations which are performed 
n the equatorial plane (thin-disc approximation), to study shock 
tability against non-axisymmetric azimuthal perturbations (Molteni, 
 ́oth & K uznetso v 1999 ; Nagakura & Yamada 2008 , 2009 ). These
imulations start with an initial steady state, axisymmetric standing 
hock solution. Then, a very small perturbation (1 per cent or less)
n pressure or density is advected along with infalling matter from
uter boundary. This perturbation is applied momentarily on a few 

zimuthal grids. After the flow settles down, it is found that such a
mall amount of non-axisymmetric perturbation produces a shock 
nstability, named as standing accretion shock instability (SASI) 
nd makes the shock non-axisymmetric, even though the inner and 
uter boundary conditions of the simulation remain same as that of
xisymmetric standing shock. Ho we ver, the follo w-up investigations 
ithout thin disc approximation is not reported. 
There are only a few simulations of low angular momentum 

ccretion flow, where all the three dimensions (3D) are dynamically 
ctive. Majority of 3D simulations to study accretion on to black 
oles start from an initial equilibrium torus (Porth et al. 2019 , and
eferences therein). Initial angular momentum of matter inside such a 
orus is very high and hence, significant angular momentum transport 
s required to enable accretion of this matter on to black holes. Janiuk,
roga & K urosa wa ( 2008 ), Janiuk et al. ( 2009 ), and K urosa wa &
roga ( 2009 ) studied the accretion of low angular momentum 

atter using 3D simulations. Here, they started the simulations 
ith spherically symmetric Bondi-type matter distrib ution b ut with 
 small, latitude dependent angular momentum at the outermost 
arts of the Bondi flo w. Ho we ver, these studies do not focus on the
ormation and stability of the standing shocks that are predicted in the
bo v e-mentioned theoretical studies. Sukov ́a, Charzy ́nski & Janiuk 
 2017 ) performed a couple of 3D general relativistic hydrodynamic 
imulation with a focus to study shocks in transonic, low angular mo-
entum flow. Here, they use an initial state with shock solution as the

nitial condition and evolve this system to study the time dependence 
f the shock front. They find that the flow remains axisymmetric and
he shock remains stable for the duration of their run. 

In this work, our goal is to numerically investigate the self-
onsistent formation and stability of the centrifugal pressure sup- 
orted thick torus in sub-Keplerian accretion on to a non-rotating 
lack hole using 3D, inviscid hydrodynamics. Going from axisym- 
etric 1D simulation to axisymmetric 2D simulation, it is realized 

hat turbulence plays a major factor in determining the shape and 
ime-variability of the geometrically thick torus. Also, 2D equatorial 
lane (thin-disc) simulations demonstrate that the shock instability is 
e veloped e ven when small amount non-axisymmetric perturbation 
s introduced in the flow. By performing 3D simulations, we wish
o investigate whether relaxing the imposition of both axisymmetry 
nd thin-disc approximation brings in any non-axisymmetry due to 
resence of post-shock turbulence. 
T  
To keep it simple and faster, we use Paczynski–Wiita pseudo- 
ewtonian potential (P aczy ́nsk y & Wiita 1980 ) to mimic the grav-

tational field. In our earlier 2D, general relativistic hydrodynamic 
imulations around Schwarzschild black holes (Kim et al. 2017 ), we
ave noticed that the conclusions regarding flow-dynamics and shock 
roperties do not differ significantly compared to the simulations per- 
ormed using PW potential. For the numerical calculations presented 
n this paper, we follow the schemes provided in Mignone ( 2014 ).
hese schemes are designed specifically for curvilinear coordinates. 

t has been pointed out (Monchmeyer & Muller 1989 ; Falle 1991 ;
iegler 2011 ) that straightforward application of Cartesian-grid- 
ased numerical schemes to solve the Euler equations, written in 
urvilinear coordinates, suffers from a number of drawbacks and 
nconsistencies. 

F or our inv estigation, we decide to dev elop a hydro-solv er
ncorporating the abo v e-mentioned algorithm, rather than using 
ther publicly available solvers. The advantage of in-house code 
s primarily the familiarity and freedom of modification. We can also
ontrol the size of the code by omitting unnecessary parts and thus
mpro v e the performance. Our accretion disc simulation set-up is
lightly different from the default accretion disc simulation set-up of 
ost publicly available software in the way that we inject matter in

he computational domain through the outer radial boundary rather 
han start from an initial equilibrium torus. To modify other’s code,
ne requires to dig into it and to develop a detailed understanding
f the implementation to a v oid any possible mistake. We found it
asier and time-saving to assemble standard finite-volume algorithms 
or our purpose. It also allowed ease of implementation for our
esired algorithm of MPI, along with designing required boundary 
onditions, data structure, data I/O while parallelizing our code. 
e provide brief description of the algorithms used in our code in

ubsequent sections. 
Our paper is organized in the following order. In the next

ection, we present a brief description on the basic theory of sub-
 eplerian accretion flo w. In Section 3 , we present the fluid dynamics

quations and the numerical method used in our simulations. In 
ection 4 , we present the results of a few 1D and 2D test problems

o demonstrate the code validation. In Section 5 , we present results
f the 3D simulations of sub-K eplerian flo w and finally in Section 6 ,
e present our concluding remarks. 
In this paper, for simulations around black holes, we choose r g =

 GM bh / c 2 as the unit of distance, r g c as unit of angular momentum,
nd r g / c as unit of time. Here, G is the gravitational constant
nd M bh is the mass of the black hole. In addition to these, we
hoose the geometric units 2 G = M bh = c = 1. Thus, r g = 1,
nd angular momentum and time are measured in dimensionless 
nits. 

 T H E O RY  O F  SUB-KEPLERI AN  FLOW  

n this section, we provide a brief discussion on the theoretical
escription of transonic, sub-Keplerian accretion flow. The steady 
tate radial solution of the non-magnetic, inviscid, non-radiative 
ub-Keplerian accretion flow on to a black hole can be derived
sing the energy and accretion rate conservation laws (Fukue 1987 ;
hakrabarti 1989a , 1990 ). Theoretical solutions can be performed 
ssuming various models such as constant height H: disc height 
emains constant everywhere, conical flow C: meridional cross- 
ection of flow geometry is conical and vertical equilibrium V: flow
s in vertical equilibrium everywhere (Chakrabarti & Das 2001 ). 
he conserved specific energy ( ε) of the flow at radius r along the
MNRAS 519, 4550–4563 (2023) 
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M

Figure 1. This figure shows the weak scalability study of our 3D code. Each 
core processes 32 × 40 × 32 = 40 960 number of zones. Scalability study 
has been performed on 8–32 000 cores. 
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quatorial line can be written as 

= 

u 

2 

2 
+ 

l 2 

2 r 2 
+ na 2 + �. (1) 

ere, u is the radial velocity, l is the specific angular momentum, n is
olytropic index, a is the sound speed and � is the gravitational
otential. Also, based on the assumed model, one can write an
xpression for the accretion rate as follow: 

˙
 = ρur h ( r ) , (2) 

here ρ is the mass density and h ( r ) is the local disc height as per
he assumed model: h ( r ) = r for model C, h ( r ) = Constant for model

, and h ( r) = 

√ 

na 2 r 
d �/d r 

for model V. By differentiating equations ( 1 )

nd ( 2 ) w.r.t r and eliminating d a /d r , one can derive an ordinary
ifferential equation (ODE) involving u and r after some algebraic
anipulation. For model H, this ODE can be written as follows: 

d u 

d r 
= 

a 2 

r 
+ 

l 2 

r 3 
+ 

d � 

d r 

u − a 2 

u 

. (3) 

or a general expression for all the above mentioned models, please
ee Chakrabarti & Das ( 2001 ). By solving equation ( 3 ), one can
btain u ( r ) and subsequently a ( r ) using equation ( 1 ) for a given
alue of ε and l . 

In the absence of any dissipative terms, the flow parameters ε
nd l remain conserved and determine the complete solution from
nfinity to horizon. The accretion flow may pass through single or

ultiple sonic points during it’s journey towards the black hole. If a
olution has more than one sonic point, the flow may pass through
 shock. For the above-mentioned three models, namely model C,
, or V, classification of parameter space for the shock formation is
rovided in fig. 2 of Chakrabarti & Das ( 2001 ). The location of the
hock is found by simultaneously solving the conservation of energy,
ass and momentum balance across the shock location (Chakrabarti

989b ). In presence of dissipation, such as radiation or viscosity, the
olution topology of course changes. For details, readers are referred
o Chakrabarti ( 1996 ). In this paper, we perform 3D simulations of
nviscid sub-Keplerian accretion flow having flow parameters ε and
 from the parameter space corresponding to model V in fig. 2 in
hakrabarti & Das ( 2001 ) and investigate the flow dynamics. 
NRAS 519, 4550–4563 (2023) 
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or numerical simulations, we solve the Euler equations in cylindrical
oordinate system ( R , φ, Z ). The equations can be written in the
onserv ati ve form as follows: 

∂ U 

∂t 
+ 

1 

R 

∂ ( R F R ) 

∂R 

+ 

1 

R 

∂ F φ

∂φ
+ 

∂ F Z 

∂Z 

= S , (4) 

here the vector of conserved variables U , R -flux F R , φ-flux F φ ,
nd Z -flux F Z can be written as 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρ

ρv R 
ρl 

ρv Z 
E 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

; F R = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρv R 
ρv 2 R + P 

ρlv R 
ρv R v Z 

( E + P ) v R 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

; 

F φ = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρv φ
ρv R v φ

R ( ρv 2 φ + P ) 
ρv φv Z 

( E + P ) v φ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

; F Z = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρv Z 
ρv R v Z 
ρlv Z 

ρv 2 Z + P 

( E + P ) v Z 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

nd the source term is 

S = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 
ρv 2 φ

R 
+ 

P 
R 

− ρ ∂� 

∂r 
R 
r 

0 
−ρ ∂� 

∂r 
Z 
r 

−ρ ∂� 

∂r 

( R v R + Z v Z ) 
r 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

ere, ρ is density, v R , v φ , v Z are three components of velocity, P is
ressure, E = 

1 
2 ρ( v 2 R + v 2 φ + v 2 Z ) + 

P 
γ−1 , and l = Rv φ . r represents

he spherical radius and is given by r = 

√ 

R 

2 + Z 

2 . � represents
he gravitational potential that depends on r . The vector of primitive
ariables is denoted by 

V = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρ

v R 
v φ
v Z 
P 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

quation ( 4 ) is solved using finite-volume (FV) method. We fol-
ow the numerical schemes provided in Mignone ( 2014 ). For the
resent work, we use the second-order accurate spatial reconstruction
chemes. We have implemented the modified version of MinMod,
an Leer and MC limiters following section 3.1 of Mignone ( 2014 ).
he zone averaged quantities are placed at the zone centroids.
econstruction is performed on primiti ve v ariables. Interfacial flux

s computed using HLL Riemann solv er. F or temporal update, we use
he second-order, two-stage strong-stability preserving Runge–Kutta
SSP–RK) scheme. The space-averaged source terms are e v aluated
ollowing the schemes provide in section 4.2 of Mignone ( 2014 ).

ultidimensional extension is achieved using fully discrete flux
ifferencing method (LeVeque & Crighton 2002 ). Time-step d t of
he simulations is calculated using the Courant–Friedrichs–Lewy
CFL) condition (Toro 2009 ; Balsara 2017 ): 

 t = C CFL 
d x min 

λmax 
. 

ere, d x min is the minimum length-scale of the mesh and λmax is
aximum characteristic speed in the corresponding mesh. C CFL = 

α
D 

ith constant α < 1 and number of spatial dimension D , is the
FL number. Thus, for our 1D simulations, we take C CFL = 0.9,
D simulations, we take C CFL = 0.45 and three-dimensional (3D)
imulations, we take C CFL = 0.3. 

art/stac3736_f1.eps
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Figure 2. Panel (a) shows the radial variation of P and v φ , while panel (b) shows the L 1 error convergence result in P for equilibrium cylindrical column 
test problem. All three reconstruction schemes, namely, MinMod, MC and v an Leer sho w second-order convergence. MC and v an Leer are found to perform 

equally well in terms of L 1 error and better than MinMod. Panel (c) shows the time variation of relative error for all the different mesh resolution with van Leer 
reconstruction. See the text for details. 

Figure 3. This figure shows the radial variation of Mach number for standing 
shock solution in sub-Keplerian accretion test problem. Solid black line shows 
the analytical solution, whereas the points show the numerical solutions for 
different reconstruction schemes. The zoomed part around the shock location, 
i.e., around 7.89, is shown in the inlet. Both MC and van Leer are found to 
capture the shock exactly at the analytically predicted location. 
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.1 Parallelization and scalability 

he 2D and 3D versions of this simulation code have been par-
llelized using domain decomposition. One-sided, non-blocking 
MA operation (MPI GET, Gropp, Lusk & Skjellum 2014 ; Garain, 
alsara & Reid 2015 ) is used for ghost-zone data exchange and
ux-synchronization. For two-stage SSP-RK method, these two 
perations need to be performed twice per time-step. 
Fig. 1 shows the weak scalability study (doubling of number of

ones with doubling of cores) of the 3D version of this code on KISTI
uper-computer located at KAIST campus, Daejeon, South Korea. 
calability study has been performed on up to 32 000 Intel KNL
ores. We use a patch size of 32 × 40 × 32 zones per core for this
eak scalability study. No saturation is observed up to 32 000 cores.

 C O D E  VA LIDATION  

n the following, we define L 1 error for a variable Q as follows
Mignone 2014 ): 

 1 ( Q ) = 

� i |〈 Q 〉 i − 〈 Q 〉 ref 
i | δV i 

� i δV i 

, 

o  
here the summation o v er i e xtends o v er all the grid zones, 〈 Q 〉 ref 
i is

 olume a verage of reference solution, and δV i is the zone v olume. 

.1 1D test problems 

n this subsection, we present results of a couple of 1D test
roblems to demonstrate the convergence and correctness of our 
mplementation for the second-order algorithms. 

.1.1 Equilibrium cylindrical column 

his 1D test problem is designed to test the balance between the
radient of flux terms and the geometric source terms (gravitational 
otential set to zero) that arise in cylindrical coordinates. Such manu-
actured equilibrium configurations are constructed, e.g. in Mignone 
 2014 ), Ivan et al. ( 2015 ), Balsara et al. ( 2020 ) to demonstrate
he accurac y conv ergence of the designed schemes. We solve the
ollo wing conserv ation laws in one dimension: 

∂ 

∂t 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ

ρv R 
ρRv φ
ρv Z 
E 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

1 

R 

∂ 

∂R 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

R 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρv R 
ρv 2 R + P 

ρRv φv R 
ρv R v Z 

( E + P ) v R 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 
ρv 2 φ
R 

+ 

P 
R 

0 
0 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(5) 

s an initial condition, we choose an equilibrium rotating column 
ith constant specific angular momentum Rv φ = 1 and constant 
ensity ρ = 1. The R and Z components of the velocity are assumed
o be zero: v R = v Z = 0. Equilibrium pressure P is chosen such that
he gradient of radial flux term 

1 
R 

∂ 
∂R 

R 

(
ρv 2 R + P 

)
exactly balances 

he source term 

ρv 2 φ+ P 

R 
. Solving this equality, we find equilibrium 

olution for pressure as P ( R) = P in + 

ρRv φ

2 

(
1 

R 2 in 
− 1 

R 2 

)
. Here, P in 

s the pressure at inner radius R in . Fig. 2 (a) shows the radial variation
f P ( R ) and v φ( R ) inside the column at the initial time ( t = 0). 
This 1D test problem has been run on a computational domain

ith radial extent [1:10] with 128–4096 uniformly divided zones. 
quation ( 5 ) is evolved till a time of t = 10. P in = 1 and γ = 5/3 are
ssumed. Initial analytical values are maintained in the ghost zones 
n both the inner and the outer radial boundaries (fixed boundary
MNRAS 519, 4550–4563 (2023) 
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Figure 4. This figure shows the initial (a) and final (b) density distribution for rotating thick torus. A mesh size of 1024 × 1024 and van Leer reconstruction 
are used for this simulation. 

Figure 5. Figure shows the L1 error convergence result in density for 
rotating thick torus test problem. All three reconstruction schemes, namely, 
MinMod, MC, and van Leer show second order convergence. MC and van 
Leer are found to perform equally well in terms of L 1 error and better than 
MinMod. 
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ondition, Mignone 2014 ; Balsara et al. 2018 , 2020 ). Source term is
alculated at the centroid of the mesh. 

Fig. 2 (b) shows the convergence result of L 1 error in P for Min-
od, MC and Van Leer limiters. All the three schemes achieve

he desired second-order accuracy. Min-Mod converges slowly com-
ared to the other two schemes. Fig. 2 (c) shows the time variation
f the relative error of P at R = 5, which is defined as ( P ( R = 5, t )

P ( R = 5, t = 0))/ P ( R = 5, t = 0), for different mesh resolution.
his figure is drawn for the runs where van Leer limiter is used for

econstruction. This result demonstrates that errors are converged by
he end time of the simulation. 

.1.2 Standing shock solution in sub-Keplerian accretion 

n this test problem, we compare the analytical and numerical shock
olutions of sub-Keplerian accretion flow on to non-rotating black
NRAS 519, 4550–4563 (2023) 

s

oles. We repeat the test problem presented in Fig. 1 of Molteni et al.
 1996b ). Numerical solution is performed in one-dimension (radial
irection) on a computational domain of uniformly divided 256 zones
n radial extent [0:50]. Simulations are run till a stopping time of
 = 5000. Matter enters the computational domain at R = 50 with
 = (1.0, −0.08361221, 0.036, 0, 0.010590145). We maintain these
alues in the outer radial boundary ghost zones. This V corresponds
o a specific energy ε = 0.036 and a specific angular momentum l =
.8 at R = 50. These parameters are chosen from the parameter space
orresponding to model H of Chakrabarti & Das ( 2001 ). To bring in
he shock in the 1D simulation, a perturbation at the outer boundary
s required as explained in Chakrabarti & Molteni ( 1993 ). Here,
e apply the perturbation in the form of increasing the pressure
omentarily at the outer boundary ghost zones by a factor of 4

etween time t = 1000 and t = 1010. We use pseudo-Newtonian
otential (P aczy ́nsk y & Wiita 1980 ) to mimic the gravitational field
round the non-rotating black hole. At the inner radial boundary,
bsorbing boundary condition is used to mimic the sucking of matter
y the back hole. Thus, we set density and pressure to floor values
floor = 10 −6 , P floor = 10 −8 , and the velocity components to zero
t all the zones inside the absorbing boundary re gion. F ollowing
olteni et al. ( 1996b ), we apply this absorbing conditions inside 
 = 1.5. 

The radial variation of Mach number ( M = v R / a s ) is shown in
ig. 3 . The radial range [0:30] is displayed here. The inner plot
hows the zoomed in region around the shock location. Solid line
hows the analytical solution and the different point styles show
he zone-averaged numerical solutions at each grid for different
chemes. According to theoretical calculations, the outer sonic point,
hock location and inner sonic point are located at 27.9, 7.89, and
.563, respectively. As can be seen, MC and van Leer capture all
hese points very well and follow the analytical solution mostly
e xcept v ery close to inner boundary where curvature is very high).
t this resolution (256 uniform zones), ho we ver, MinMod fails to

ollow the analytical solution starting from the shock location to
he inner boundary. We have checked that at higher resolution, the
atching for MinMod becomes better and at 1024 uniform zones or

eyond the matching is acceptable (i.e. convergence of MinMod is 
lower). 
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Figure 6. This figure shows the results for Bondi accretion test problem at the final time t = 20 000. Left-hand panel (a) shows the density distribution. Middle 
panel (b) shows the contour of constant Mach number ( u / a s ). Both these results demonstrate that the code can retain spherical symmetry. On the right-hand 
panel (c), we show comparative plot of the radial variation of Mach numbers along the diagonal direction. Solid line shows the analytical solution and the points 
show the numerical solution. A very good match is observed even at the inner radii, where slope of the graph increases significantly. 

Table 1. Parameters used for the 3D simulations. 

ID ε l Domain ( R , Z ) N R , N Z t stop u r a s Comments 

A1 0.003 1.65 50, 50 320, 640 10 000 0.07604 0.05706 Uniform mesh; analytically no shock in accretion 
A2 0.003 1.70 50, 50 320, 640 15 000 0.07552 0.05708 Uniform mesh; analytically shock at ∼ 13 
A3 0.0022 1.75 100, 50 320, 640 20 000 0.04822 0.04448 Ratioed mesh in R with δ = 1.003944; analytically 

shock at ∼ 27 
A4 0.0012 1.80 200, 100 440, 440 37 000 0.03375 0.03216 Ratioed mesh in R & Z (symmetric about Z = 0) with 

δ = 1.004235; analytically shock at ∼ 48 
A5 0.0022 1.75 100, 50 320, 640 27 000 0.04822 0.04448 Extended run A3 with non-axisymmetric density 

perturbation; momentarily 3 per cent increase in mass 
accretion rate 

A6 0.0022 1.75 100, 50 320, 640 27000 0.04822 0.04448 Extended run A3 with non-axisymmetric density 
perturbation; momentarily 1.4 per cent increase in mass 
accretion rate 
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.2 Two-dimensional test problems 

n this subsection, we present results of another couple of 2D test
roblems to demonstrate the convergence and correctness of our 
mplementation in multidimension. 

.2.1 Rotating thick torus 

n this test problem, we numerically study the equilibrium con- 
guration of the Newtonian thick torus. For this test problem, 
e assume Newtonian potential � ( R , Z ) = −1 / 

√ 

R 

2 + Z 

2 . The
quilibrium solution can be found analytically by removing the time- 
ependence ∂ 

∂t 
terms. We further assume axisymmetry and remo v e 

∂ 
∂φ

term also. The torus is supported by the balance between the 
nward gravitational pull and the combined outward push of pressure 
radient and centrifugal force (Chakrabarti 1996 ): 

1 

ρ
∇ P = −∇ � + 

l 2 

R 

3 
∇ R, (6) 

here, l = Rv φ is the angular momentum. For equation of state P =
 ργ with K as a constant measuring entropy and l ( R ) = l 0 , a constant,
e can solve equation ( 6 ) to find 

 ( R , Z ) + � ( R , Z ) + 

l 2 0 

2 R 

2 
= C, (7) 

here h is fluid specific enthalpy defined as h = 

γ

γ−1 
P 
ρ

with γ =
.0/3.0 and C is an integration constant. For our case, we assume
 = −0.06 and l 0 = 2, which gives us initially a torus as shown in
ig. 4 (a). Colours show the density. The density maximum for this

orus is located at ( R , Z ) = (4, 0). The torus is embedded in a static
ackground matter of constant density ρfloor = 10 −8 and pressure 
 floor = 10 −13 . The background matter is free to ev olve, b ut the
ensity and pressure are floored according to the initial state (Porth
t al. 2017 ). 

The simulations are run on a computation domain [1:20] ×
 −10:10] with 128 × 128 to 2048 × 2048 uniform zones. For
nitialization of zone averaged quantities, we use 5-point Gaussian 
uadrature. All three types of reconstructions, namely MinMod, MC, 
nd van Leer have been tried. Source terms are evaluated at centroid
f the zones for this test problem. The simulations are run till a
topping time of t = 50 which corresponds to nearly one full rotation
eriod at the density maximum. Fig. 4 (b) shows the density of the
orus at the final time. 

Fig. 5 shows the convergence result for all the three reconstruction
rocedures. L 1 errors are shown for density variable. All of them
chieve desired second-order accuracy. MinMod is found to have 
ore dissipative solution. MC and van Leer perform equally well. 

.2.2 Bondi accretion in pseudo-Newtonian potential 

n this test problem, we study the spherically symmetric, non- 
adiative Bondi accretion on to a non-rotating black hole. We use
aczynski–Wiita pseudo-Newtonian potential to mimic the gravita- 
MNRAS 519, 4550–4563 (2023) 
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Figure 7. This figure shows the density clips for all the cases A1-A4 (a: A1, 
b: A2, c: A3, d: A4) at the final time t stop as listed in Table 1 . Black colour 
sho ws lo wer density and red colour sho ws higher density. 
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ional field around the non-rotating black hole, which is defined as
ollows: 

 ( R , Z ) = − 1 

2 
(√ 

R 

2 + Z 

2 − 1 
) . (8) 

he simulation is run in one quadrant of the R −Z plane on a domain of
0:50] ×[0:50] using a uniform mesh of 256 × 256 zones. van Leer
imiter is used for reconstruction. The source terms are e v aluated
t the centroid of each zone. Reflection boundary conditions are
sed on the axis (i.e. R = 0) and the equatorial plane (i.e. Z = 0).
dditionally, absorbing boundary condition is applied inside r = 1.5
here r = 

√ 

R 

2 + Z 

2 . Density and pressure are set to respective floor
alues, and velocities are set to zero on all the zones whose centroids
all inside r = 1.5 (Molteni et al. 1996b ; Garain et al. 2012 ). At the
entroid of the outer boundary ghost zones (both R and Z boundaries),
rimiti ve v ariables are computed follo wing the analytical solution
nd maintained throughout the simulation. Analytical solution for
ondi accretion in pseudo-Newtonian potential has been done

ollowing section 2.1 of Ghosh et al. ( 2010 ). Solving equation ( 4 )
f this reference, we can compute radial velocity u ( r) = 

√ 

v 2 R + v 2 Z 

nd subsequently, the sound speed a s ( r ) at radius r . This solution
equires only one parameter, namely the specific energy ε of the
NRAS 519, 4550–4563 (2023) 
ow. For the present case, we choose ε = 0.015. Density at r =
0 is normalized to 1, i.e. ρ( r = 50) = 1.0. This normalization
llows us to find the density ρ( r ) at the centroid of the ghost zones
ince the accretion rate ṁ = 4 πρur 2 is assumed to be a constant.
ext, assuming adiabatic equation of state and a 2 s = 

γP 

ρ
, we can

 v aluate P ( r ) at the ghost zone centroids. We assume γ = 

4 
3 for this

imulation. For spherically symmetric Bondi accretion, v φ = 0. 
Initially, the interior is filled with a very low density, static matter

ith density ρfloor = 10 −6 and pressure P floor = 10 −10 . Within a
ynamical time (i.e. time required for the matter at outer boundary
o reach the inner boundary), this background matter is washed away
nd steady state is reached within a couple of dynamical time. 

Fig. 6 (a) shows steady state density map on log scale at a final time
 = 20000. This figure has been drawn on −50 ≤ R ≤ 50, −50 ≤ Z

50 domain using reflection symmetry, although the computation
as been performed only on the first quadrant. Fig. 6 (b) shows the
abeled contours of constant Mach numbers. The contours are plotted
etween 0.5 at the outer part to 4 at the inner part. The circular
ature of the contours is well maintained, even close to the axis and
lose to the absorbing boundary. Fig. 6 (c) shows the comparison of
ach numbers for the simulated flow and the analytical solution.

or the numerical result, Mach number variation along the diagonal
irection is drawn. Excellent matching between the two solutions
an be observed. 

 3 D  SI MULATI ONS  

n this section, we present the results of the 3D simulations of
he geometrically thick, sub-K eplerian, advecti ve accretion flow on
o a non-rotating black hole. We use van Leer limiter for all the
imulations. The source terms are e v aluated at the centroid of the
ones. Paczynski-Wiita pseudo-Newtonian potential, as in the Bondi
ccretion test problem, is used to mimic the gravity for these cases
s well. 

We present results for a total of six simulations. Out of these, four
imulations are done with axisymmetric inflow boundary condition
t outer radial boundary and two simulations are done with non-
xisymmetric perturbation applied. The details of the boundary
onditions and the nature of perturbation is discussed in the following
ubsections. For a few simulations, we use ratioed mesh: d x i + 1 =
d x i , where d x i represents the grid size of i th zone in any direction
nd δ > 1 represents the common ratio. 

.1 Simulation set-up and boundary conditions 

.1.1 Simulation set-up 

imulation parameters are documented in Table 1 . Runs A1-A4 are
one with axisymmetric inflow boundary condition and runs A5-A6
re extensions of run A3 with the inclusion of non-axisymmetric
erturbation. Since the 3D simulations are very time-consuming, we
udiciously choose four set of flow parameters ε and l (Columns
 and 3 of Table 1 ) from different parts of the parameter space.
s mentioned in Section 2 , we focus on the parameter space

orresponding to model V of fig. 2 in Chakrabarti & Das ( 2001 ).
low parameters for run A1 have been picked up from the region

ust outside of the left boundary of the parameter space. Thus,
nalytically, this set of parameters does not produce a standing shock
olution. Parameters for run A2, A3, and A4 have been picked up
rom the region just inside of the left boundary, mid-area and just
nside of the right boundary of the parameter space, respectively.
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Figure 8. (a) and (b) show two slice plots of l distribution, o v erplotted with the ( v R , v Z ) vector field, at two different φ = constant slices for run A4. Figures are 
drawn in radial range 0 ≤ R ≤ 100. As expected, l remains mostly constant at the value 1.8 except slight redistribution in some part of post-shock regions. This 
is caused by the presence of post-shock turbulence which is demonstrated by the presence of in-plane vortices in the vector field. These two figures, drawn for 
two mutually perpendicular slices, are identical. (c) shows contours of constant log 10 ρ, o v erplotted with ( v R , v φ ) vector field, at Z = 0 plane. Exact circular 
structure of the contours confirms the axisymmetry of density distribution. Additionally, the velocity vector field shows rotation dominated velocity field inside 
the post-shock region. 

Figure 9. This figure shows the radial variation of Mach number, log 10 ρ (left y -axis) and ne gativ e values of v R (right y -axis) along the equator at the final time 
for runs A1–A4 (a: A1, b: A2, c: A3, d: A4). 
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Figure 10. This figure shows the time variation of the shock location at the 
equator for cases A1–A4. All the simulations are run till a quasi-steady state 
is achieved. 
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nalytically, standing shocks are expected at R sh ∼ 13, 27, and 48
or runs A2, A3, and A4, respectively. 

Column 4 of Table 1 shows the radial [0: R ] and vertical domain
 −Z : Z ] of our simulation. In the azimuthal direction, domain is
l w ays [0:2 π ]. The choice of individual domain size for each run
s to ensure that the shock surface remains well inside the domain
or respective run. We also wish to study the dynamics of the
urbulent post-shock region and therefore, choose the domain such
hat the post-shock region occupies a significant fraction of the entire
omputational domain and is well resolved. R sh values provide an
dea of the radial extent of the post-shock region, although prior

ultidimensional simulations showed that shock surface is located
urther out due to the presence of post-shock turbulence. Thus, we
hoose the radial domain size to be ∼4 × R sh . 

Column 5 shows the number of zones, N R and N Z , in R and Z
irections, respectively. In φ direction, we al w ays use 180 uniform
ones. For runs A1 and A2, we use uniform zones in all directions.
or run A3 (also A5 and A6), we use ratioed mesh in R direction
ith common ratio of 1.003944 between successive radial zones.
or run A4, we use ratioed mesh in both R and Z with common ratio
.004235. In Z direction, ratioing is done symmetrically about Z = 0.

.1.2 Boundary condition 

t upper and lower Z-boundaries, we use outflow boundary condi-
ion. Thus, we copy the primitive variables from the active zones to
he adjacent ghost zones along these boundaries. Periodic boundary
ondition is enforced along the φ direction. On the axis (i.e. at R =
), reflective boundary condition is used: all the primitive variables
xcept v R are symmetric across the axis (even function of R near R =
), whereas v R takes minus sign across the axis (odd function of R
ear R = 0). To mimic the absorption of matter by black hole, an
bsorbing boundary, as discussed in 2D Bondi accretion problem, is
laced inside r = 1.8. Placement of this inner boundary at r = 1.8
oes not affect the dynamics of the post-shock flow much since the
ow becomes supersonic between r = 2 and 2.5. 
At the upper radial boundary, we place inflow boundary condition.
atter enters the computational domain axisymmetrically through

ll the zones with same radial velocity u r = 

√ 

v 2 R + v 2 Z and sound
peed a s (Molteni et al. 1996b ). The density ρ of the incoming matter
s normalized to 1 at the outer boundary. Next, assuming adiabatic
quation of state and a 2 s = 

γP 

ρ
, we can e v aluate pressure P at the outer

adial boundary. We assume γ = 

4 
3 for all the simulations. Using the
NRAS 519, 4550–4563 (2023) 
pecific angular momentum values l , we can compute v φ = l / R at the
host zones. 
The radial velocity u r and sound speed a s of the incoming matter

re computed using the parameters ε and l . These u r and a s values are
abulated in Column 7 and 8, respectively. We maintain the primitive
ariables V = ( ρ = 1.0, v R , v φ , v Z , P ) at all the ghost zones of
he upper radial boundary throughout the simulation This implies a
ondition of constant accretion rate through outer radial boundary
hroughout the duration of our simulation. 

.1.3 Initial condition 

or simulations A1–A4, the interior is initially filled with a very
ow density, static background matter with density ρfloor = 10 −6 

nd pressure P floor = a 2 s ρfloor /γ . Thus, the incoming matter initially
ushes to the central black hole through nearly free space. Within a
ynamical time or so, this background matter is w ashed aw ay and a
uasi-steady state is achieved soon after. These simulations are run
ill a stopping time of t stop , documented in column 5 of Table 1 . 

For runs A5 and A6, we take the final solution of run A3 as the
nitial condition. To apply perturbation, we follow similar simulation
rocedure as in Molteni et al. ( 1999 ), namely, perturb a (quasi-)steady
tate solution several units upstream of the shock and advect in the
erturbation with the flow. We perturb the density in a small region
t the upper radial boundary: ghost zone density is increased by a
mall factor for a small time duration and then maintained at the
riginal value. We also maintain same boundary conditions as run
3 at upper and lower Z -boundaries and at the axis (i.e. R = 0).
erturbation is applied for the time duration 21 000 ≤ t ≤ 21 100 and
ubsequently the simulations are run till a stopping time of t stop =
7 000. 

.2 Results with axisymmetric inflow boundary 

ig. 7 shows the final state density clips for cases A1–A4. Normalized
ensity values (normalized to 1 at outer radial boundary) on log scale
re represented by colour. Black colour represents the floor density,
hereas, the red colour represents the higher density. For all the

ases, a region surrounding the rotational axis ( Z -axis) is devoid of
atter primarily because of the non-zero angular momentum of the
atter. On the other hand, higher density matter is found to be present

n the region surrounding the equatorial area and close the central
lack hole. Flow density increases primarily for two reasons. First,
entrifugal barrier slows down nearly free-falling, sub-Keplerian
ncoming material as it approaches the central object. Because
f this slow down, a density jump is observed (colour becomes
ark er) somewhat aw ay from the black hole. Secondly, because
f the gravitational pull of the black hole, matter subsequently
ushes towards the central part and hence, geometric compression
urther increases the density. The thermal pressure simultaneously
ncreases, which puffs up the disc in the vertical direction. Thus, the
enser matter forms the geometrically thick torus. Size of this torus
epends on the specific angular momentum value: higher the angular
omentum, larger is the size of the torus. Outer boundary layer of

his torus is named CENBOL. 
The torus remains axisymmetric for all the four runs A1–A4.

ig. 7 shows symmetric density distribution in the right half ( + ve Y-
oordinates) and left half (-ve Y-coordinates). In fact, the axisymme-
ry can be investigated in any of the primitive fluid variables. Figs 8 (a)
nd (b) show the l distribution, o v erplotted with v elocity v ector field
 v R , v Z ), at two mutually perpendicular R −Z slices φ = 0 and φ =

art/stac3736_f10.eps
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Figure 11. This figure shows the time variation of total masses M 1 and M 2 in two halv es, abo v e and below the equator, respectively, for cases A1–A4 (a: A1, 
b: A2, c: A3, d: A4). For higher angular momenta runs (i.e. for A3 and A4), we see that the plots for M 1 and M 2 are 180 ◦ out of phase. This implies a vertical 
oscillation of the disc matter about the equator. 
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/2 at the final time for run A4. Length of an arrow is proportional to
he logarithm of vector magnitude. Inner radial range 0 ≤ R ≤ 100 is
hown here. l ( = 1.8) is supposed to remain conserved, which we find
lmost ev erywhere e xcept at most 3 per cent change in the outflowing
atter and some places in the post-shock region. This redistribution 

f l is done by the turbulent eddies developed in the post-shock
e gion. The v ector field demonstrates the presence of such in-plane
ddies. We compute zone-by-zone difference in the all the primitive 
ariables for these two slices. For every zones and all variables, 
he result is zero, showing that these two slices are identical. This
onfirms that the fluid configuration remains axisymmetric. 

The axisymmetric distribution of density is also confirmed by the 
ensity contours on a R −φ slice ( Z = constant plane). In Fig. 8 (c),
e plot labelled density contours (logarithm base 10 of ρ) along 
ith ( v R , v φ) v elocity v ectors at Z = 0 plane. Density contours are
erfectly circular both inside and outside the shock radius (contour 
arked 1.0). The vectors show rotational motion of the infalling 
aterial. Inside the shock radius, v R becomes very small and rotation 

ominates. Ho we ver, as matter approaches towards the centre, v R 
alue starts increasing. For our simulation, angular momentum l 
emains nearly conserved. Therefore, v φ = l / R also increases along
ith v R . 
At CENBOL, radial gradient of different quantities such as density, 

adial velocity, Mach number, etc., changes abruptly. In Figs 9 (a)–
d), we plot the radial variation of these quantities along the equator
or runs A1–A4, respectively. On left y -axis, Mach number and log
ase 10 values of ρ are shown. On right y -axis, ne gativ e values
f v R values are shown. These plots are drawn, again, at the
espective t stop time. The shock location can be identified by the
brupt supersonic ( M > 1) to subsonic ( M < 1) transition point as
ne mo v es inward from the outer radial boundary. Flow again makes
nother subsonic to supersonic transition closer to the black hole 
efore disappearing through the inner radial boundary. Ho we ver, 
his transition is smooth. At the shock location, ρ value increases by
 factor of 2–4 (as found in these plots) because of the equi v alent
ecrease in v R value to maintain mass conservation. Corresponding 
eduction in kinetic energy is converted into thermal energy and 
he flow temperature increases. Thus, the immediate post-shock 
egion becomes hotter and denser. With reducing R values, ρ further 
ncreases by order of magnitude, primarily because of geometric 
ompression. 

The shock location is found to be dynamic, which makes the entire
ost-shock torus dynamic as well. Fig. 10 shows the time variation
f the shock location for cases A1–A4. Size of the dynamical eddies
hat form inside the post-shock region determines the amplitude of 
ariation. Figs 8 (a) and (b) show examples of such in-plane eddies.
or run A4, the variation in radial distance is found to be very

arge. Such oscillations of the post-shock torus are found in prior
imulations and are believed to be the origin of low frequency quasi-
eriodic oscillations seen in many black hole X-ray binaries (Molteni 
t al. 1996a ; Chakrabarti et al. 2004 ; Garain, Ghosh & Chakrabarti
014 ; Sukov ́a & Janiuk 2015 ; Sukov ́a et al. 2017 ). As can be seen in
his figure, all the runs reached a quasi-steady state by the simulation
nd time. Also, it is evident that the average shock location is at
MNRAS 519, 4550–4563 (2023) 
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M

Figure 12. This figure shows the density clips for (a) A5 and (b) A6 at the 
final time t stop = 27 000. Black colour shows lower density and red colour 
shows higher density. 

Figure 13. This figure shows the slice plots of l distribution, o v erplotted 
with ( v R , v Z ) vector field, at φ = 0 slice in the inner part 0 ≤ R ≤ 25 and −25 
≤ Z ≤ 25 of the simulation domain for (a) A5 and (b) A6 at the final time 
t stop = 27 000. At the outer boundary, l = 1.75 for these runs. Ho we ver, we 
observe significant redistribution of l in the inner part. 
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arger radial distance than the analytically predicted location (see
he last column of Table 1 ). This was already understood in earlier

ultidimensional simulations that turbulent pressure additionally
ush the shock surface radially outward. 
Because of the turbulence, the torus develops asymmetry about

he equatorial plane, as found earlier (Chakrabarti et al. 2004 ; Deb,
iri & Chakrabarti 2016 ; Sukov ́a et al. 2017 ). This asymmetry in
NRAS 519, 4550–4563 (2023) 
ensity becomes prominent for the run A4 from Fig. 7 (d). In order
o quantify the density asymmetry about the equatorial plane, we
ompute the total mass abo v e ( M 1 ) and below ( M 2 ) the equator at
ny time t . We define these two quantities as follows: 

 1 ( t) = 

∫ Z out 

0 

∫ 2 π

0 

∫ R out / 2 

0 
ρ( t) R d R d φd Z , 

 2 ( t) = 

∫ 0 

−Z out 

∫ 2 π

0 

∫ R out / 2 

0 
ρ( t) R d R d φd Z , 

here, R out and Z out represent, respectively, the radial and vertical
ndpoints of the computational domain. Since ρ is higher in the
egion surrounding the equator and close to the black hole, major
ontribution in the abo v e inte grals comes from this part. Fig. 11
hows the time variations of M 1 and M 2 for runs A1–A4. For runs
1 and A2 (i.e. Figs 11 a and b), we do not observ e an y significant

symmetry throughout the simulation. Ho we v er, we observ e the
ifference in M 1 and M 2 for runs A3 and A4 (i.e. Figs 11 c and d)
fter the runs reach a quasi-steady state. Interestingly, the two plots
re 180 ◦ out of phase, i.e. when mass increases in one half, same
mount decreases in other half. This implies a vertical oscillation of
he disc matter about the equator. 

.3 Flow with density perturbation 

n this subsection, we present results of the simulations with non-
xisymmetric azimuthal perturbation. Two simulations are con-
ucted with different magnitude of perturbations. For run A5, we
ncrease the ghost zone density momentarily by a factor of 1.2 in
 small region of azimuthal width �φ = π /10 centred around φ =
/4 and vertical width � Z = 50 centred about equatorial plane.
his density perturbation corresponds to a momentarily 3 per cent

ncrease in the mass accretion rate through the outer radial boundary.
or run A6, we increase the ghost zone density momentarily by a
actor of 1.1 in a small region of azimuthal width �φ = π /10 centred
round φ = π /4 and vertical width � Z = 25 centred about equatorial
lane. This density perturbation corresponds to a momentarily 1.4
per cent increase in the mass accretion rate through the outer radial
oundary. 
Both the simulations show that the axisymmetric shape of the

hock surface is deformed, possibly due to the occurrence of
ASI. The actual mechanism for SASI is not yet fully understood.
oglizzo & Tagger ( 2000 ) argue that an entropic-acoustic cycle in

he post-shock region triggers the instability. In this model, an inward
ropagating entropy perturbation (which is caused by the increased
ensity in our simulation) triggers an outward propagating acoustic
ave. After reaching the shock surface, this acoustic wave triggers
ew inward propagating entropy wave and the cycle continues.
uccessive outward propagating acoustic waves lead to the instability
f the shock surface. On the other hand, Blondin & Mezzacappa
 2006 ) argued that purely acoustic waves originating from the density
or pressure) inhomogeneities can produce SASI. 

Fig. 12 shows the final state density clips for runs A5 (a) and A6
b) at time t stop = 27 000. These clips can be compared with the
on-perturbed counterpart in Fig. 7 (c). Clearly, a deformation in the
hape of the outer boundary of the density torus is identifiable. For
hese figures, the shock surface coincides with the outer boundary of
he density torus. The outer boundary also mo v ed radially outwards.

ore deformation is seen in the case of A5 compared to A6 because
he initial perturbation strength is higher for A5. The axisymmetric
tructure of density distribution is also seen to be broken. Density
istribution in the right half ( + ve Y -coordinates) and left half ( −ve
 -coordinates) is clearly different. We also notice that some region
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Figure 14. This figure shows Mach number colour maps o v er plotted with density contours at the equatorial plane at successive times: (a) 22 000, (b) 23 000, 
(c) 24 000, (d) 25 000, (e) 26 000, and (f) 27 000 for run A5. Contours are drawn for ρ values 1.1 (outermost), 1.3, 8, and 30 (innermost). Towards the end of 
the simulation, we find that, in addition to the outer shock (super-sonic to subsonic transition), flow develops internal shock as well. 

Figure 15. This figure shows the time variation ( X -axis) of amplitudes (colours) for different modes m ( Y -axis) for run (a) A5 and (b) A6. We see dominance 
of m = 1 and 2 towards the end of our simulations. 
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bo v e and below the black hole and surrounding the rotational
xis is occupied by low-density matter. This is mostly low angular 
omentum, infalling matter as explained in the next paragraph. 
o we ver, the presence of this matter causes the simulation time-

teps d t to reduce by two orders of magnitude since the length-scale
 d φ close to the axis is very small and Courant condition picks up d t
rom this region. 

Flow is found to be more turbulent in comparison to its non-
erturbed counterpart in Fig. 7 (c). This turbulence results significant 
mount of angular momentum re-distribution inside the post-shock 
egion. We plot the specific angular momentum ( l ) distribution on
= 0 slice in the range 0 ≤ R ≤ 25 and −25 ≤ Z ≤ 25. Colours

n Figs 13 (a) and (b) show the l distribution for cases A5 and A6,
espectively. We also overplotted the ( v R , v Z ) vector field in these
lots. Length of an arrow is proportional to the logarithm of vector
agnitude. The vector field demonstrates the presence of in-plane 

urbulent eddies. 
Fig. 14 shows the Mach number colour maps o v erplotted with

abelled density contours for run A5 at the equatorial plane at
uccessive times: (a) at time 22 000, (b) at 23 000, (c) at 24 000,
d) at 25 000, (e) at 26 000, and (f) at 27 000. The shock is clearly
ndentifiable from the colour contrast. Initial density perturbation, 
ntroduced at t = 21 000 at the outer radial radial boundary, reaches
he shock surface at around t = 22 000 (see the deformation of density
ontour in the post-shock region in (a)). As the perturbation enters the
ubsonic region, the shock front gets slightly distorted and very small
MNRAS 519, 4550–4563 (2023) 
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mplitude oscillations sets in. In the post-shock region, rotational
otion is dominated o v er radial motion. Therefore, the perturbation

ets elongated as it further advects towards the black hole. At
he same time, geometrical compression of the dense gas produce
coustic waves which travel upstream towards the shock front and
dd up to the existing small amplitude oscillations. Ho we ver, we
o not observe any significant distortion of shock front during it’s
adial mo v ement upto the inner sonic point at R ∼ 2 (see Fig. 14 (b)).
fter this point, between time t = 23000 and 24000 (i.e. between
igs 14 (b) and (c)), significant acoustic feedback originating from the

nterior regions travels upstream and reach the shock front. Our modal
nalysis (see below) confirms the presence of different oscillation
odes of nearly equal amplitude around this time. Because of the

on-linear mode mixing during this time, the distortion of the shock
urface starts growing (see Fig. 14 (c)). With increasing time, the
nstability further grows. 

We also perform the modal analysis of this equatorial shock front
scillation. Following Nagakura & Yamada ( 2008 ), we utilize follow-
ng formula to calculate the Fourier amplitude a m ( t ) corresponding
o mode m at time t : 

 m 

( t) = 

∫ 2 π

0 
R sh ( φ, t)e imφd φ. (9) 

Colours in Fig. 15 show the amplitude | a m | as a function of time ( X -
xis) for modes 1–8 ( Y -axis). Panel (a) represents the modal analysis
or run A5 and panel (b) represents the same for run A6. With
ncreasing time, we find the increasing amplitude in various modes.
owards the end of the simulations, we find the dominance of m =
 and 2 modes. This is consistent with the findings of Yamasaki &
oglizzo ( 2008 ) who also found dominance of m = 1 and 2 modes

n SASI for cylindrical accretion shock structure in the context of
ore-collapse supernova. 

 SUMMARY  A N D  C O N C L U D I N G  R E M A R K S  

n this work, we investigate the dynamics of the sub-Keplerian
atter accretion on to a non-rotating black hole using 3D inviscid

ydrodynamics. Specifically, we aim to study through numerical
imulations whether the centrifugal pressure shock surface remains
table or not when all three dimensions are dynamically active.

ajority of the previous numerical simulations of such accretion
isc are done with axisymmetric or thin disc assumptions and are
onducted with at most two dynamically active dimensions. We
lso want to see whether the turbulence, present inside the post-
hock region, induce any non-axisymmetric perturbation to the shock
urface. Prior analyses reported that such perturbation might lead to
ASI inside the accretion disc. 
F or the abo v e-mentioned inv estigation, we dev elop an inviscid

uler equations solver in cylindrical coordinates following the
umerical algorithms given in Mignone ( 2014 ). To validate the
orrect implementation and performance of our code, we perform
onvergence tests using known equilibrium solutions. We also test
he shock capturing capability by reproducing the analytic solution
f standing shock formation in sub-Keplerian matter accretion on to
 non-rotating black hole. 

Having performed the benchmark test problems, we apply our
ode for the 3D simulation of sub-Keplerian matter accretion. Below
e list our main findings: 

(i) The sub-Keplerian accreting matter is found to self-consistently
orm the centrifugal barrier supported shock surface. Inside the
ost-shock region, matter velocity is primarily rotation dominated
NRAS 519, 4550–4563 (2023) 
esembling a property of geometrically thick discs. Ho we ver, as the
atter mo v es more towards the black hole, the magnitude of radial

elocity increases. 
(ii) The dynamical vortices seem to form as it is seen in ax-

symmetric 2D simulation. Ho we ver, relaxing the axisymmetric
ssumption does not introduce any non-axisymmetry or instability
nside the thick disc. 

(iii) Vertical oscillations of the disc matter is found as is reported
arlier in Chakrabarti et al. ( 2004 ), Deb et al. ( 2016 ), Sukov ́a et al.
 2017 ). 

(iv) By introducing explicit non-axisymmetric density perturba-
ion, we find that SASI is developed inside the accretion disc. 

Radiative process such as inverse-Compton cooling of electrons
nside the post-shock matter can produce inhomogeneous temper-
ture and pressure distribution. This can induce non-axisymmetric
erturbation to the shock surface and produce SASI. Coupling the
D space between hydro and simulation: hydro simulation with a
onte Carlo based radiative transfer code (Garain et al. 2012 , 2014 )

ould provide us an opportunity to investigate the occurrence of SASI
nside the sub-Keplerian flow in presence of radiative cooling. We
ish to take up such work in future. 
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