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Finite difference WENO schemes have established themselves as very worthy performers 
for entire classes of applications that involve hyperbolic conservation laws. In this paper we 
report on two major advances that make finite difference WENO schemes more efficient.
The first advance consists of realizing that WENO schemes require us to carry out stencil 
operations very efficiently. In this paper we show that the reconstructed polynomials 
for any one-dimensional stencil can be expressed most efficiently and economically 
in Legendre polynomials. By using Legendre basis, we show that the reconstruction 
polynomials and their corresponding smoothness indicators can be written very compactly. 
The smoothness indicators are written as a sum of perfect squares. Since this is a 
computationally expensive step, the efficiency of finite difference WENO schemes is 
enhanced by the innovation which is reported here.
The second advance consists of realizing that one can make a non-linear hybridization 
between a large, centered, very high accuracy stencil and a lower order WENO scheme 
that is nevertheless very stable and capable of capturing physically meaningful extrema. 
This yields a class of adaptive order WENO schemes, which we call WENO-AO (for adaptive 
order). Thus we arrive at a WENO-AO(5,3) scheme that is at best fifth order accurate by 
virtue of its centered stencil with five zones and at worst third order accurate by virtue of 
being non-linearly hybridized with an r = 3 CWENO scheme. The process can be extended 
to arrive at a WENO-AO(7,3) scheme that is at best seventh order accurate by virtue of its 
centered stencil with seven zones and at worst third order accurate. We then recursively 
combine the above two schemes to arrive at a WENO-AO(7,5,3) scheme which can achieve 
seventh order accuracy when that is possible; graciously drop down to fifth order accuracy 
when that is the best one can do; and also operate stably with an r = 3 CWENO scheme 
when that is the only thing that one can do. Schemes with ninth order of accuracy are also 
presented.
Several accuracy tests and several stringent test problems are presented to demonstrate 
that the method works very well.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Ever since the early papers by Harten et al. [14] and Shu & Osher [29,30] there has been a great deal of interest in 
Essentially Non-Oscillatory (ENO) schemes that can obtain the solution to hyperbolic conservation laws with better than 
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second order accuracy in the vicinity of smooth flows. ENO schemes come in two flavors. The original ENO schemes by 
Harten et al. [14] were based on finite volume discretizations, where the conserved variable is reconstructed using the 
smoothest stencil possible. A more efficient variant of ENO schemes by Shu & Osher [29,30] relies on finite difference 
discretizations, where upwinding is applied directly to the fluxes on a dimension-by-dimension basis. When the physical 
problem develops discontinuities, the ENO schemes rely on non-linear hybridization and upwinding to stabilize the solution. 
The early ENO schemes suffered from their own pathologies. As a result, weighted ENO (WENO) schemes were invented to 
overcome those deficiencies (Liu, Osher & Chan [23], Jiang & Shu [19]). The methods were extended to eleventh order by 
Balsara & Shu [1] and more recently to seventeenth order by Gerolymos, Sénéchal & Vallet [13]. A formulation of WENO 
that preserves accuracy at critical points was presented in Henrick, Aslam & Powers [15], Borges et al. [3] and Castro et al. 
[4]. For a comprehensive review of WENO schemes, see Shu [31]. In this paper we focus on finite difference WENO schemes.

WENO methods achieve their high order by analyzing all the stencils, including the highly one-sided ones, that enable 
one to reconstruct the solution within a zone with rth order polynomials. It was realized that when the flow is smooth, 
all possible stencils provide an equally good reconstruction. Thus in smooth regions of flow, a convex combination of all 
possible stencils may be taken to yield (2r − 1)th order of accuracy. The linear weights that are ascribed to all the different 
stencils are then called optimal linear weights because they help optimize the accuracy of the scheme. The one-sided 
stencils can potentially provide upwinding and stability in the vicinity of shocks, with the result that the reconstruction 
strategy should emphasize the stencil/s that yield the smoothest interpolation in such regions.

It is easiest to understand how WENO schemes achieve stability at discontinuities if one briefly considers total variation 
diminishing (TVD) schemes. In TVD methods stability is achieved in the vicinity of discontinuities by picking a one-sided 
slope with the help of a solution-dependent, non-linear limiter. Picking a left-biased slope and a right-biased slope is equiv-
alent to picking a left- and right-biased stencils, each of which has two zones. The limiter provides non-linear hybridization 
by examining the one-sided slopes/stencils and picking out the slope with the smaller absolute value. In WENO schemes 
one first identifies all the possible stencils that cover a zone of interest with a suitably high order reconstruction polynomial. 
The stencils can be one-sided or centered. When the flow is smooth, we wish to pick out the centered stencil or a linear 
combination of all the stencils so as to optimize order of accuracy. When the flow has discontinuities, we wish to pick out 
the stencil with the smoothest possible solution. The choice of stencil is, therefore, made solution-dependent leading to a 
non-linearly hybridized scheme even when the governing equation may perhaps be linear. The non-linear stabilization is 
achieved by assigning a solution-dependent smoothness indicator to each of the stencils. At a technical level, the smooth-
ness indicator for a given stencil is the sum of the squares of all the derivatives that are present in the reconstruction 
polynomial associated with that stencil. The weights assigned to the different stencils are such that if all stencils have the 
same smoothness indicators (i.e. the stencils are equally good interpolants in the vicinity of smooth flow) then the weights 
tend to the optimal linear weights. It is by this device that the accuracy of conventional WENO schemes is improved. How-
ever, when one or a few stencils have substantially smaller smoothness indicators than the rest (i.e., a sub-set of stencils 
are much better interpolants in the vicinity of shocks) then the smoothest stencils carry the highest weight with the non-
smooth stencils carrying a vanishingly small weight. It is by this device that the WENO schemes achieve their non-linear 
hybridization. Recently, Zhu and Qiu [37] have non-linearly hybridized a fifth order reconstruction polynomial with a Van 
Albada-like limiter to arrive at a scheme that is fifth order for smooth flow and second order TVD at discontinuities. In 
situations where the Van Albada limiter is invoked even a little, extrema will be clipped. It is, therefore, desirable to do 
better.

The finite difference WENO schemes described above have shown themselves to be versatile performers. Numerical 
studies of turbulence require careful attention to accuracy and phase errors, as shown in the compact schemes of Lele [21]; 
see also Tam and Webb [35]. Compact-WENO schemes have, therefore, been designed to handle shocks and simultaneously 
increase the phase accuracy by Pirozzoli [27], Shen and Yang [32], Deng and Zhang [7]. See also Hu et al. [18], Martin 
et al. [25] and Johnsen et al. [20] for further information on low dispersion schemes for turbulence. The finite difference 
WENO methods have also been adapted to handle complex geometry by Hu and Shu [16] and Liu and Zhang [24]. We see, 
therefore, that it is very desirable to improve the efficiency and accuracy of this class of schemes. This is done in the next 
two paragraphs.

It is easy to see that rather large stencils need to be analyzed in the course of carrying out WENO reconstruction. Because 
of the size of the stencils being analyzed, it helps to have the most efficient strategies for evaluating the reconstructed 
polynomials as well as the smoothness indicators. The expressions provided in Jiang & Shu [19], Balsara & Shu [1] and 
Gerolymos, Sénéchal & Vallet [13] are not the most compact ones that can be obtained. In particular, Balsara et al. [2]
realized that analyzing the problem in a basis set formed by Legendre polynomials yields a mathematically equivalent 
formulation that is computationally more efficient. While the expressions from Balsara et al. [2] were shown to be useful 
for finite volume WENO schemes up to fourth order, an extension of the same expressions for finite difference WENO 
schemes with increasingly high order of accuracy is extremely valuable. The first goal of this paper is to provide such a 
formulation up to r = 9. The resulting expressions for the reconstructing polynomials are very compact and suitable for 
implementation in numerical codes that use up to seventeenth order accurate finite difference WENO. The expressions for 
the smoothness indicators have a very compact form but they also have the added advantage that they can be written as a 
sum of perfect squares, thus making their positive nature evident.

While the classical finite difference WENO schemes emphasize high accuracy, there are other WENO-type schemes which 
emphasize stability. The central WENO (CWENO) schemes (Levy, Puppo & Russo [22], Cravero & Semplice [6], Semplice, 
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Coco & Russo [28]), which have also been extended to unstructured meshes by Friedrichs [12], Käser and Iske [17] and 
Dumbser and Käser [10], fall in this category of WENO schemes. Such schemes emphasize the central, and most stable, 
stencil over and above all the other stencils. Thus for smooth flow, the method always tends to the most stable central 
stencil. For non-smooth flow, the smoothness indicators permit the reconstruction to pick out the smoothest one-sided 
stencil. Experience has shown that the r = 3 CWENO is extremely stable, rivaling the stability of TVD schemes. All the 
CWENO schemes also preserve physical extrema if such extrema exist in the flow. This enables us to realize the limitation 
of the WENO-ZQ scheme of Zhu and Qiu [37] which non-linearly hybridized a central stencil with an extrema-clipping Van 
Albada limiter. We avoid the clipping of extrema in this paper by achieving a non-linear hybridization between a central 
fifth order reconstruction polynomial along with the r = 3 CWENO reconstruction. We call such finite difference schemes 
WENO-AO for adaptive order. The resulting adaptive order WENO-AO scheme, which we denote as WENO-AO(5,3), is fifth 
order accurate where it is possible and at least third order accurate in situations where the fifth order accuracy might 
produce unphysical extrema. Because of the non-linear hybridization with the r = 3 CWENO reconstruction, it will also 
be stable while simultaneously avoiding the clipping of physical extrema. Accuracy testing shows that our WENO-AO(5,3) 
scheme can be almost half an order of magnitude more accurate than the WENO-ZQ scheme for certain test problems. We 
also demonstrate a suitable non-linear hybridization between a central seventh order stencil and the three CWENO stencils 
with r = 3. This yields a WENO-AO(7,3) reconstruction strategy with an adaptive order that can range between 7th order (at 
best) and 3rd order (at worst). We then realize that we can recursively make a suitable non-linear hybridization between 
the WENO-AO(7,3) reconstruction strategy and the WENO-AO(5,3) reconstruction strategy. The resulting WENO-AO(7,5,3) 
reconstruction gives us a 100% stable strategy of switching from a seventh order scheme to a fifth order scheme and 
further switching from fifth order to third order. We also show that WENO-AO(9,3) and WENO-AO(9,5,3) schemes can be 
constructed. The second goal of this paper is to catalogue the finite difference WENO-AO schemes of different orders. Please 
note that the nomenclature emphasizes the spatial accuracy of the finite difference WENO schemes since all such schemes 
achieve their temporal accuracy via Runge–Kutta time update methods.

Section 2 presents the formulation of WENO reconstruction in a space of Legendre basis functions. Section 3 catalogues 
efficient WENO-AO schemes with adaptive order. Section 4 presents some accuracy results. Section 5 applies the schemes 
to several stringent test problems. Section 6 presents conclusions.

2. Formulation of WENO reconstruction in Legendre basis

The Legendre polynomials, suitably modified for the domain [−1/2, 1/2], are given by:

L0(x) = 1; L1(x) = x; L2(x) = x2 − 1

12
; L3(x) = x3 − 3

20
x;

L4(x) = x4 − 3

14
x2 + 3

560
; L5(x) = x5 − 5

18
x3 + 5

336
x;

L6(x) = x6 − 15

44
x4 + 5

176
x2 − 5

14784
;

L7(x) = x7 − 21

52
x5 + 105

2288
x3 − 35

27456
x;

L8(x) = x8 − 7

15
x6 + 7

104
x4 − 7

2288
x2 + 7

329472
(2.1)

In the remaining sub-sections we catalogue the WENO reconstruction in the basis space provided by these Legendre 
polynomials for r = 3 to r = 9. In this paper we are only interested in addressing finite difference WENO, so we restrict 
our attention to one-dimensional stencils. The r = 3 to 5 cases have been catalogued in Balsara et al. [2] and are repeated 
here because we wish to show that the emerging pattern in the smoothness indicators is very general and can be used for 
designing WENO schemes with even larger values of “r”. The r = 6 to 9 cases are new.

Potentially, the r = 9 case can lead to the design of classical finite difference WENO schemes with 17th order spatial 
accuracy, i.e. an accuracy that is comparable to the most accurate finite difference WENO schemes in Gerolymos et al. 
[13]. The design of such very high order WENO schemes will be greatly helped by the fact that our expressions for the 
smoothness indicators in this paper are extremely compact. It is not our intention to design 17th order WENO schemes in 
this paper. However, it is our intention to show that a very general procedure has been found for designing WENO schemes 
with adaptive order. In other words, the WENO-AO (for adaptive order) schemes can automatically pick out stencils of 
suitably high order. The goal of the present section is to catalogue the compact expressions for the reconstruction and the 
smoothness indicators. The detailed description of WENO-AO will be provided in the next section.

2.1. r = 3 WENO reconstruction

We focus on the reconstruction problem in a zone labeled by a subscript “0”. Consider the neighboring zone-averaged 
variables {u−2, u−1, u0, u1, u2}. A third order reconstruction over the zone labeled “0” can be carried out by using the 
left-biased stencil Sr3, the centered stencil Sr3 and the right-biased stencil Sr3 that rely on the variables {u−2, u−1, u0}, 
1 2 3
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{u−1, u0, u1} and {u0, u1, u2} respectively. In this paper we label our stencils with a superscript that denotes the rth order 
of the polynomial and a subscript that denotes the stencil for that r-value. Specification of these two numbers always allows 
us to specify a precise reconstruction polynomial with a specified smoothness indicator. The ith reconstructed polynomial 
corresponding to stencil Sr3

i is then expressed as

Pr3
i (x) = u0 + uxL1(x) + ux2L2(x) (2.2)

The stencil Sr3
1 gives

ux = −2u−1 + u−2/2 + 3u0/2, ux2 = (u−2 − 2u−1 + u0)/2 (2.3)

The stencil Sr3
2 gives

ux = (u1 − u−1)/2, ux2 = (u−1 − 2u0 + u1)/2 (2.4)

The stencil Sr3
3 gives

ux = −3u0/2 + 2u1 − u2/2, ux2 = (u0 − 2u1 + u2)/2 (2.5)

The smoothness indicator for each of the three stencils can then be written in a very compact form which is a sum of two 
squares as

βr3 = (ux)
2 + 13

3
(ux2)

2 (2.6)

For each stencil Sr3
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.6) to denote that it corresponds to a 

specific stencil.

2.2. r = 4 WENO reconstruction

In considering the r = 4 WENO reconstruction problem in a zone labeled by a subscript “0”, we focus on the neighboring 
zone-averaged variables {u−3, u−2, u−1, u0, u1, u2, u3}. The fourth order reconstruction can be carried out by using four sten-
cils Sr4

1 , Sr4
2 , Sr4

3 and Sr4
4 that rely on the variables {u−3, u−2, u−1, u0}, {u−2, u−1, u0, u1}, {u−1, u0, u1, u2} and {u0, u1, u2, u3}

respectively. The ith reconstructed polynomial corresponding to stencil Sr4
i is then expressed as

Pr4
i (x) = u0 + uxL1(x) + ux2L2(x) + ux3L3(x) (2.7)

The stencil Sr4
1 gives

ux = (−177u−1 + 87u−2 − 19u−3 + 109u0)/60,

ux2 = −5u−1/2 + 2u−2 − u−3/2 + u0,

ux3 = (−3u−1 + 3u−2 − u−3 + u0)/6 (2.8)

The stencil Sr4
2 gives

ux = (−63u−1 + 11u−2 + 33u0 + 19u1)/60,

ux2 = u−1/2 − u0 + u1/2,

ux3 = (3u−1 − u−2 − 3u0 + u1)/6 (2.9)

The stencil Sr4
3 gives

ux = (−19u−1 − 33u0 + 63u1 − 11u2)/60,

ux2 = u−1/2 − u0 + u1/2,

ux3 = (−u−1 + 3u0 − 3u1 + u2)/6 (2.10)

The stencil Sr4
4 gives

ux = (−109u0 + 177u1 − 87u2 + 19u3)/60,

ux2 = u0 − 5u1/2 + 2u2 − u3/2,

ux3 = (−u0 + 3u1 − 3u2 + u3)/6 (2.11)

Because of the formulation in Legendre basis, the smoothness indicator for each of the four stencils has the same expression. 
Unlike the expressions given in Balsara & Shu [1], it can be written as a sum of perfect squares as shown below

βr4 = (ux + ux3/10)2 + 13
(ux2)

2 + 781
(ux3)

2 (2.12)

3 20
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For each stencil Sr4
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.12) to denote that it corresponds to a 

specific stencil. Notice that the above expression is considerably more compact that the corresponding expression in Balsara 
& Shu [1], though the expressions are mathematically equivalent.

2.3. r = 5 WENO reconstruction

When considering the r = 5 WENO reconstruction problem in zone “0”, we focus on the neighboring zone-averaged 
values {u−4, u−3, u−2, u−1, u0, u1, u2, u3, u4}. A fifth order reconstruction for the zone labeled “0” can be carried out by 
using five stencils Sr5

1 , Sr5
2 , Sr5

3 , Sr5
4 and Sr5

5 that rely on the variables {u−4, u−3, u−2, u−1, u0}, {u−3, u−2, u−1, u0, u1}, 
{u−2, u−1, u0, u1, u2}, {u−1, u0, u1, u2, u3} and {u0, u1, u2, u3, u4} respectively. The ith reconstructed polynomial correspond-
ing to stencil Sr5

i is then expressed as

Pr5
i (x) = u0 + uxL1(x) + ux2L2(x) + ux3L3(x) + ux4L4(x) (2.13)

The stencil Sr5
1 gives

ux = (−462u−1 + 336u−2 − 146u−3 + 27u−4 + 245u0)/120,

ux2 = (−240u−1 + 262u−2 − 128u−3 + 25u−4 + 81u0)/56,

ux3 = (−18u−1 + 24u−2 − 14u−3 + 3u−4 + 5u0)/12,

ux4 = (−4u−1 + 6u−2 − 4u−3 + u−4 + u0)/24 (2.14)

The stencil Sr5
2 gives

ux = (−192u−1 + 66u−2 − 11u−3 + 110u0 + 27u1)/120,

ux2 = (10u−1 + 12u−2 − 3u−3 − 44u0 + 25u1)/56,

ux3 = (12u−1 − 6u−2 + u−3 − 10u0 + 3u1)/12,

ux4 = (6u−1 − 4u−2 + u−3 − 4u0 + u1)/24 (2.15)

The stencil Sr5
3 gives

ux = (−82u−1 + 11u−2 + 82u1 − 11u2)/120,

ux2 = (40u−1 − 3u−2 − 74u0 + 40u1 − 3u2)/56,

ux3 = (2u−1 − u−2 − 2u1 + u2)/12,

ux4 = (−4u−1 + u−2 + 6u0 − 4u1 + u2)/24 (2.16)

The stencil Sr5
4 gives

ux = (−27u−1 − 110u0 + 192u1 − 66u2 + 11u3)/120,

ux2 = (25u−1 − 44u0 + 10u1 + 12u2 − 3u3)/56,

ux3 = (−3u−1 + 10u0 − 12u1 + 6u2 − u3)/12,

ux4 = (u−1 − 4u0 + 6u1 − 4u2 + u3)/24 (2.17)

The stencil Sr5
5 gives

ux = (−245u0 + 462u1 − 336u2 + 146u3 − 27u4)/120,

ux2 = (81u0 − 240u1 + 262u2 − 128u3 + 25u4)/56,

ux3 = (−5u0 + 18u1 − 24u2 + 14u3 − 3u4)/12,

ux4 = (u0 − 4u1 + 6u2 − 4u3 + u4)/24 (2.18)

The smoothness indicator for each of the five stencils has the same expression and can be written as

βr5 = (ux + ux3/10)2 + 13

3

(
ux2 + 123

455
ux4

)2

+ 781

20
(ux3)

2 + 1421461

2275
(ux4)

2 (2.19)

For each stencil Sr5
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.19) to denote that it corresponds 

to a specific stencil. Notice that eqn. (2.19) is also a sum of perfect squares. Furthermore, compare eqn. (2.19) to eqn. 
(2.12) to observe that all the moments up to ux3 carry the same coefficients in the two equations. The two equations only 
differ by terms involving the moment ux4 in such a way that all the lower moments, i.e. ux , ux2 and ux3, have the same 
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coefficients. This illustrates the general pattern that emerges when constructing smoothness indicators in Legendre basis. 
The smoothness indicator for each new value of “r” differs from the smoothness indicator for “r − 1” by terms that only 
involve the newest moment that is added. We will see this pattern borne out in the next sub-section.

It is also worth pointing out that the central stencil Sr5
3 contains all the zones that would be used for the 

composite stencil of the r = 3 WENO. This property will be utilized later to design WENO schemes with adap-
tive order. In other words, a suitable non-linear hybridization between the stencil Sr5

3 and the three CWENO sten-
cils with r = 3 will give us a WENO-AO(5,3) reconstruction strategy with an adaptive order that can range be-
tween 5th order (at best) and 3rd order (at worst). When a 5th order reconstruction using the stencil Sr5

3 is likely 
to become excessively oscillatory, the non-linear hybridization will enable the scheme to switch away to a third 
order CWENO scheme which is known to have excellent stability properties as well as an ability to preserve ex-
trema.

2.4. r = 6 WENO reconstruction

When considering the r = 6 WENO reconstruction problem in zone “0”, we focus on the neighboring zone-averaged 
values {u−5, u−4, u−3, u−2, u−1, u0, u1, u2, u3, u4, u5}. A sixth order reconstruction for the zone labeled “0” can be car-
ried out by using five stencils Sr6

1 , Sr6
2 , Sr6

3 , Sr6
4 , Sr6

5 and Sr6
6 that rely on the variables {u−5, u−4, u−3, u−2, u−1, u0}, 

{u−4, u−3, u−2, u−1, u0, u1}, {u−3, u−2, u−1, u0, u1, u2}, {u−2, u−1, u0, u1, u2, u3}, {u−1, u0, u1, u2, u3, u4} and {u0, u1, u2, u3,

u4, u5} respectively. The ith reconstructed polynomial corresponding to stencil Sr6
i is then expressed as

Pr6
i (x) = u0 + uxL1(x) + ux2L2(x) + ux3L3(x) + ux4L4(x) + ux5L5(x) (2.20)

The stencil Sr6
1 gives

ux = (−23719u−1 + 22742u−2 − 14762u−3 + 5449u−4 − 863u−5 + 11153u0)/5040,

ux2 = (−350u−1 + 482u−2 − 348u−3 + 135u−4 − 22u−5 + 103u0)/56,

ux3 = (−317u−1 + 526u−2 − 436u−3 + 182u−4 − 31u−5 + 76u0)/108,

ux4 = (−14u−1 + 26u−2 − 24u−3 + 11u−4 − 2u−5 + 3u0)/24,

ux5 = (−5u−1 + 10u−2 − 10u−3 + 5u−4 − u−5 + u0)/120 (2.21)

The stencil Sr6
2 gives

ux = (−10774u−1 + 5482u−2 − 1817u−3 + 271u−4 + 5975u0 + 863u1)/5040,

ux2 = (−20u−1 + 42u−2 − 18u−3 + 3u−4 − 29u0 + 22u1)/56,

ux3 = (148u−1 − 94u−2 + 29u−3 − 4u−4 − 110u0 + 31u1)/108,

ux4 = (16u−1 − 14u−2 + 6u−3 − u−4 − 9u0 + 2u1)/24,

ux5 = (10u−1 − 10u−2 + 5u−3 − u−4 − 5u0 + u1)/120 (2.22)

The stencil Sr6
3 gives

ux = (−5354u−1 + 1417u−2 − 191u−3 + 1910u0 + 2489u1 − 271u2)/5040,

ux2 = (40u−1 − 3u−2 − 74u0 + 40u1 − 3u2)/56,

ux3 = (68u−1 − 34u−2 + 5u−3 − 50u0 + 7u1 + 4u2)/108,

ux4 = (−4u−1 + u−2 + 6u0 − 4u1 + u2)/24,

ux5 = (−10u−1 + 5u−2 − u−3 + 10u0 − 5u1 + u2)/120 (2.23)

The stencil Sr6
4 gives

ux = (−2489u−1 + 271u−2 − 1910u0 + 5354u1 − 1417u2 + 191u3)/5040,

ux2 = (40u−1 − 3u−2 − 74u0 + 40u1 − 3u2)/56,

ux3 = (−7u−1 − 4u−2 + 50u0 − 68u1 + 34u2 − 5u3)/108,

ux4 = (−4u−1 + u−2 + 6u0 − 4u1 + u2)/24,

ux5 = (5u−1 − u−2 − 10u0 + 10u1 − 5u2 + u3)/120 (2.24)
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The stencil Sr6
5 gives

ux = (−863u−1 − 5975u0 + 10774u1 − 5482u2 + 1817u3 − 271u4)/5040,

ux2 = (22u−1 − 29u0 − 20u1 + 42u2 − 18u3 + 3u4)/56,

ux3 = (−31u−1 + 110u0 − 148u1 + 94u2 − 29u3 + 4u4)/108,

ux4 = (2u−1 − 9u0 + 16u1 − 14u2 + 6u3 − u4)/24,

ux5 = (−u−1 + 5u0 − 10u1 + 10u2 − 5u3 + u4)/120 (2.25)

The stencil Sr6
6 gives

ux = (−11153u0 + 23719u1 − 22742u2 + 14762u3 − 5449u4 + 863u5)/5040,

ux2 = (103u0 − 350u1 + 482u2 − 348u3 + 135u4 − 22u5)/56,

ux3 = (−76u0 + 317u1 − 526u2 + 436u3 − 182u4 + 31u5)/108,

ux4 = (3u0 − 14u1 + 26u2 − 24u3 + 11u4 − 2u5)/24,

ux5 = (−u0 + 5u1 − 10u2 + 10u3 − 5u4 + u5)/120 (2.26)

The smoothness indicator for each of the six stencils has the same expression and can be written as

βr6 = (ux + ux3/10 + ux5/126)2 + 13

3

(
ux2 + 123

455
ux4

)2

+ 781

20

(
ux3 + 26045

49203
ux5

)2

+ 1421461

2275
(ux4)

2 + 21520059541

1377684
(ux5)

2 (2.27)

For each stencil Sr6
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.27) to denote that it corresponds to a 

specific stencil. As before, the smoothness indicator can be written as a sum of perfect squares. Furthermore, on comparing 
eqns. (2.19) and (2.27) we see that the additional terms in eqn. (2.27) simply involve ux5, with the lower moments retaining 
the same coefficients.

2.5. r = 7 WENO reconstruction

When considering the r = 7 WENO reconstruction problem in zone “0”, we focus on the neighboring zone-averaged 
values {u−6, u−5, u−4, u−3, u−2, u−1, u0, u1, u2, u3, u4, u5, u6}. A seventh order reconstruction for the zone labeled “0” can 
be carried out by using seven stencils Sr7

1 to Sr7
7 . Since the logic for constructing these stencils is now transparent, we will 

not explicitly catalogue them. Only the central stencil Sr7
4 , which relies on the variables {u−3, u−2, u−1, u0, u1, u2, u3}, is 

useful in our further discussions. The ith reconstructed polynomial corresponding to stencil Sr7
i is then expressed as

Pr7
i (x) = u0 + uxL1(x) + ux2L2(x) + ux3L3(x) + ux4L4(x) + ux5L5(x) + ux6L6(x) (2.28)

The central stencil Sr7
4 gives

ux = (−7843u−1 + 1688u−2 − 191u−3 + 7843u1 − 1688u2 + 191u3)/10080,

ux2 = (8385u−1 − 1014u−2 + 79u−3 − 14900u0 + 8385u1 − 1014u2 + 79u3)/10080,

ux3 = (61u−1 − 38u−2 + 5u−3 − 61u1 + 38u2 − 5u3)/216,

ux4 = (−459u−1 + 144u−2 − 13u−3 + 656u0 − 459u1 + 144u2 − 13u3)/1584,

ux5 = (−5u−1 + 4u−2 − u−3 + 5u1 − 4u2 + u3)/240

ux6 = (15u−1 − 6u−2 + u−3 − 20u0 + 15u1 − 6u2 + u3)/720 (2.29)

The analogous expressions for the other six stencils for the r = 7 polynomials can be obtained by following a reconstruction 
via primitive function approach on a computer algebra system. We restrict ourselves to explicitly cataloguing Sr7

4 because it 
is the only stencil that contributes to WENO-AO(7,3). The smoothness indicator for each of the seven stencils has the same 
expression and can be written as

βr7 = (ux + ux3/10 + ux5/126)2 + 13

3

(
ux2 + 123

455
ux4 + 85

2002
ux6

)2

+ 781

20

(
ux3 + 26045

49203
ux5

)2

+ 1421461

2275

(
ux4 + 81596225

93816426
ux6

)2

+ 21520059541
(ux5)

2 + 15510384942580921
(ux6)

2 (2.30)

1377684 27582029244
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For each stencil Sr7
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.30) to denote that it corresponds to a 

specific stencil. As before, the smoothness indicator can be written as a sum of perfect squares. Furthermore, on comparing 
eqns. (2.27) and (2.30) we see that the additional terms in eqn. (2.30) simply involve ux6, with the lower moments retaining 
the same coefficients.

It is also worth pointing out that the central stencil Sr7
4 contains all the zones that would be used for the composite 

stencil of the r = 4 WENO. This property will be utilized later to design WENO schemes with adaptive order. In other 
words, a suitable non-linear hybridization between the stencil Sr7

4 and the three CWENO stencils with r = 3 will give us 
a WENO-AO(7,3) reconstruction strategy with an adaptive order that can range between 7th order (at best) and 3rd order 
(at worst). When a 7th order reconstruction using the stencil Sr7

4 is likely to become excessively oscillatory, the non-linear 
hybridization will enable the scheme to switch away to a third order CWENO which is known to have excellent stability 
properties as well as an ability to preserve extrema.

Having read the previous paragraph it is also possible to realize that one can recursively make a suitable non-linear 
hybridization between the non-linearly stabilized WENO-AO(7,3) reconstruction strategy and its smaller cousin, the non-
linearly stabilized WENO-AO(5,3) reconstruction strategy. This gives us a 100% stable strategy of switching from a seventh 
order scheme to a fifth order scheme and further switching from fifth order to third order.

2.6. r = 8 WENO reconstruction

When considering the r = 8 WENO reconstruction problem in zone “0”, we focus on the neighboring zone-averaged 
values {u−7, u−6, u−5, u−4, u−3, u−2, u−1, u0, u1, u2, u3, u4, u5, u6, u7}. An eighth order reconstruction for the zone labeled 
“0” can be carried out by using eight stencils. Since the logic for constructing these stencils is now transparent, we will 
not explicitly catalogue them. The further reason for not explicitly cataloguing them is, of course, that the stencils for r = 8
WENO do not have a central stencil. As a result, we cannot use the central stencil to construct a WENO-AO(8,3) scheme. For 
that reason, we content ourselves with documenting the ith reconstructed polynomial corresponding to stencil Sr8

i which is 
expressed as

Pr8
i (x) = u0 + uxL1(x) + ux2L2(x) + ux3L3(x) + ux4L4(x) + ux5L5(x) + ux6L6(x) + ux7L7(x) (2.31)

The corresponding smoothness indicator for each of the eight stencils has the same expression and can be written as

βr8 = (ux + ux3/10 + ux5/126 + ux7/1716)2 + 13

3

(
ux2 + 123

455
ux4 + 85

2002
ux6

)2

+ 781

20

(
ux3 + 26045

49203
ux5 + 8395

60918
ux7

)2

+ 1421461

2275

(
ux4 + 81596225

93816426
ux6

)2

+ 21520059541

1377684

(
ux5 + 722379670131

559521548066
ux7

)2

+ 15510384942580921

27582029244
(ux6)

2

+ 12210527897166191835083

443141066068272
(ux7)

2 (2.32)

For each stencil Sr8
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.32) to denote that it corresponds to a 

specific stencil. As before, the smoothness measure can be written as a sum of perfect squares. Furthermore, on comparing 
eqns. (2.30) and (2.32) we see that the additional terms in eqn. (2.32) simply involve ux7, with the lower moments retaining 
the same coefficients.

2.7. r = 9 WENO reconstruction

When considering the r = 9 WENO reconstruction problem in zone “0”, we focus on the neighboring zone-averaged 
values {u−8, u−7, u−6, u−5, u−4, u−3, u−2, u−1, u0, u1, u2, u3, u4, u5, u6, u7, u8}. A ninth order reconstruction for the zone 
labeled “0” can be carried out by using nine stencils Sr9

1 to Sr9
9 . Since the logic for constructing these stencils is 

now transparent, we will not explicitly catalogue them. Only the central stencil Sr9
5 , which relies on the variables 

{u−4, u−3, u−2, u−1, u0, u1, u2, u3, u4}, is useful to our further discussions. The ith reconstructed polynomial corresponding 
to stencil Sr9

i is then expressed as

Pr9
i (x) = u0 + uxL1(x) + ux2L2(x) + ux3L3(x) + ux4L4(x) + ux5L5(x) + ux6L6(x) + ux7L7(x) + ux8L8(x) (2.33)

The central stencil Sr9 gives
5
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ux =
( −505538u−1 + 136238u−2 − 26442u−3 + 2497u−4 + 505538u1

− 136238u2 + 26442u3 − 2497u4

)
/604800,

ux2 =
(

1205324u−1 − 183100u−2 + 24500u−3 − 1759u−4 − 2089930u0

+ 1205324u1 − 183100u2 + 24500u3 − 1759u4

)
/1330560,

ux3 =
(

34414u−1 − 24294u−2 + 5446u−3 − 541u−4 − 34414u1

+ 24294u2 − 5446u3 + 541u4

)
/95040,

ux4 =
( −186496u−1 + 66572u−2 − 10240u−3 + 773u−4 + 258782u0

− 186496u1 + 66572u2 − 10240u3 + 773u4

)
/494208,

ux5 =
( −526u−1 + 474u−2 − 166u−3 + 19u−4 + 526u1

− 474u2 + 166u3 − 19u4

)
/12480

ux6 =
(

1852u−1 − 836u−2 + 196u−3 − 17u−4 − 2390u0

+ 1852u1 − 836u2 + 196u3 − 17u4

)
/43200

ux7 =
(

14u−1 − 14u−2 + 6u−3 − u−4 − 14u1

+ 14u2 − 6u3 + u4

)
/10080

ux8 =
( −56u−1 + 28u−2 − 8u−3 + u−4 + 70u0

− 56u1 + 28u2 − 8u3 + u4

)
/40320 (2.34)

The smoothness indicator for each of the nine stencils has the same expression and can be written as

βr9 = (ux + ux3/10 + ux5/126 + ux7/1716)2 + 13

3

(
ux2 + 123

455
ux4 + 85

2002
ux6 + 29

5577
ux8

)2

+ 781

20

(
ux3 + 26045

49203
ux5 + 8395

60918
ux7

)2

+ 1421461

2275

(
ux4 + 81596225

93816426
ux6 + 618438835

1829420307
ux8

)2

+ 21520059541

1377684

(
ux5 + 722379670131

559521548066
ux7

)2

+ 15510384942580921

27582029244

(
ux6 + 5423630339859998294

3024525063803279595
ux8

)2

+ 12210527897166191835083

443141066068272
(ux7)

2 + 75509368098103789336083731407561

42818201328263029226415
(ux8)

2 (2.35)

For each stencil Sr9
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.35) to denote that it corresponds to a 

specific stencil. As before, the smoothness indicator can be written as a sum of perfect squares. Furthermore, on comparing 
eqns. (2.32) and (2.35) we see that the additional terms in eqn. (2.35) simply involve ux8, with the lower moments retaining 
the same coefficients.

3. WENO schemes with adaptive order (WENO-AO)

In this section we first describe some stage-setting associated with finite difference WENO schemes. Section 3.1 then 
describes the fifth order accurate WENO-AO(5,3) reconstruction. Section 3.2 then describes the seventh order accurate 
WENO-AO(7,3) reconstruction. Section 3.3 then describes the formally ninth order accurate WENO-AO(9,3) reconstruction. 
Section 3.4 then describes a hierarchical hybridization between the fifth order accurate WENO-AO(5,3) reconstruction and 
the seventh order WENO-AO(7,3) reconstruction; we call it WENO-AO(7,5,3). The point of Section 3.4 is to show that the 
reconstruction improvement described here can be applied hierarchically and recursively.

It is easiest to briefly motivate finite difference WENO schemes in the following way. Consider the N-component hyper-
bolic conservation law

∂U

∂t
+ ∂F

∂x
= 0 (3.1)

For simplicity of presentation we focus on the one-dimensional case. For finite difference WENO formulations, treating 
multiple dimensions is easy because the same prescription for obtaining the numerical fluxes is applied to each of the 
dimensions and the gradients of the fluxes from each dimension are added together to form a cumulative time rate of 
change. Eqn. (3.1) is then written as

∂U

∂t
= L(U) ≡ −∂F

∂x
(3.2)

A method of lines approach is then taken to integrate the system forward in time. Typically, SSP-RK methods of a suitable 
order from Shu and Osher [29] or Spiteri & Ruuth [33,34] are used for the time integration. For simplicity, the domain in 
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the x-direction is covered with uniform zones, where the jth zone spans the interval I j = [x j−1/2, x j+1/2] with zone center 
x j = (x j−1/2 + x j+1/2)/2 and zone size �x = (x j+1/2 − x j−1/2). The update term in eqn. (3.2) can then be written as

L
(
U j(t)

) ≡ − 1

�x
(F̂ j+1/2 − F̂ j−1/2) (3.3)

where F̂ j+1/2 is a suitably high order, properly upwinded, numerical flux defined at the zone boundary j + 1/2.
Construction of properly upwinded numerical fluxes for finite difference WENO schemes is described in several sources 

including, in great detail, in section 2 of Balsara and Shu [1]. As a result, we only touch on it with the utmost brevity, 
describing the simplest case which is the construction of the LF flux. The numerical flux at a zone boundary, j + 1/2, can, 
therefore, be split into a purely right-going flux and a purely left-going flux as follows

F̂LF
j+1/2 = 1

2
(FL + λUL) + 1

2
(FR − λUR) (3.4)

Here λ is at least slightly larger than the absolute value of the fastest speed going in either direction along the x-axis. 
The above equation is slightly impressionistic and is intended to show the right-going part of the flux F̂+

j+1/2 ≡ (FL +
λUL)/2, and the left-going part of the flux, F̂−

j+1/2 ≡ (FR − λUR)/2. In practice, F̂+
j+1/2 is obtained via a high order WENO 

reconstruction procedure that is applied to a set of stencils, all of which include the zone “ j”. For example, a fifth order 
WENO reconstruction would involve the zones { j − 2, j − 1, j, j + 1, j + 2}. In classical fifth order finite difference WENO, 
this is obtained by using the r = 3 WENO reconstruction described in Sub-section 2.1. Also, in practice, F̂−

j+1/2 is obtained 
via a high order WENO reconstruction procedure that is applied to a set of stencils, all of which include the zone “ j + 1”. 
For example, a fifth order WENO reconstruction would involve the zones { j − 1, j, j + 1, j + 2, j + 3}.

3.1. Fifth order WENO scheme with adaptive order – WENO-AO(5,3)

It is now possible to illustrate the differences between classical finite difference WENO and finite difference WENO-AO 
of the same order. Interestingly, this also enables us to better understand the adaptive order WENO-AO schemes. We focus 
on the fifth order WENO-AO schemes in this sub-section. They are denoted by WENO-AO(5,3). In classical fifth order finite 
difference WENO, the reconstruction of F̂+

j+1/2 uses r = 3 WENO reconstruction from Section 2.1 applied to the zones 
{ j − 2, j − 1, j, j + 1, j + 2}. In the adaptive order WENO-AO(5,3) reconstruction, we work with the same set of zones to 
obtain F̂+

j+1/2. However, this is obtained by a non-linear hybridization between the centered stencil Sr5
3 which is centered at 

zone “ j” along with the three r = 3 CWENO stencils Sr3
1 , Sr3

2 and Sr3
3 that also include zone “ j”. Notice that classical WENO 

will achieve fifth order accuracy only if the large stencil carries a smooth solution. Otherwise, the solution will graciously 
reduce in order to third order because the smoothness measures permit us to pick out the smoothest stencil amongst the 
stencils Sr3

1 , Sr3
2 and Sr3

3 . Now realize that WENO-AO(5,3) should do something that is quite analogous. This is because it is 
non-linearly hybridized between the fifth order central stencil Sr5

3 and the three third order r = 3 CWENO stencils Sr3
1 , Sr3

2
and Sr3

3 . As a result, WENO-AO(5,3) will also have an order of accuracy that is at best fifth order but can drop to third order 
if the larger stencil is non-smooth. Also realize that prior practitioners have found that the r = 3 CWENO reconstruction is 
extraordinarily stable with the result that the WENO-AO(5,3) is guaranteed to be at least stable at third order along with 
having an ability to pick out extrema.

The details of this non-linear hybridization for WENO-AO(5,3) will be described in the next paragraph. However, it is 
very important to mention that the intuitive underpinnings of this method derive from the very recent, and very nice, 
paper by Zhu and Qiu [37], who hybridized the fifth order central stencil Sr5

3 and a Van Albada-type of limiter. The Van 
Albada limiter is a TVD-class limiter which can clip extrema. For that reason, it is more advisable to nonlinearly hybridize 
the scheme with a suitable r = 3 CWENO scheme as is done here. Of course, when the non-linear hybridization does not 
invoke the lower order scheme, both the finite difference WENO-AO(5,3) scheme described here and the WENO-ZQ scheme 
described in Zhu and Qiu [37] achieve fifth order accuracy.

Now let us focus on a detailed description of WENO-AO(5,3). This description is important because we will later on show 
that it will also open the door to other families of WENO-AO schemes. The method is described by two parameters, γHi
and γLo , both of which are always less than unity. The linear weights for the stencils Sr5

3 and the stencils Sr3
1 , Sr3

2 and Sr3
3

are given by

γ r5
3 = γHi; γ r3

1 = (1 − γHi)(1 − γLo)/2; γ r3
2 = (1 − γHi)γLo; γ r3

3 = (1 − γHi)(1 − γLo)/2 (3.5)

Notice that Sr3
2 is the central stencil of the r = 3 CWENO reconstruction, so it should carry a higher linear weight than 

the other two stencils of the r = 3 CWENO reconstruction; this helps to make the CWENO centrally biased. Also notice 
that γ r3

1 + γ r3
2 + γ r3

3 = 1 − γHi . Typically, we set γHi ∈ [0.85, 0.95] and γLo ∈ [0.85, 0.95]. These numbers themselves give 
us a glimpse of what is afoot. When a suitable comparison of the smoothness indicators shows that the large central 
stencil Sr5

3 is smooth we want most (or all) of our reconstruction to come from the large central stencil. However, when 
a suitable comparison of the smoothness indicators shows that the large central stencil is non-smooth, we want most (or 
all) of our reconstruction to be weighted towards our very stable, third order accurate, extrema-preserving r = 3 CWENO 
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reconstruction. In the next paragraph we describe the construction of the non-linear weights. In the paragraph after that, 
we describe the assembly of the non-linearly hybridized higher order reconstruction.

We now describe the process of obtaining the non-linear weights for WENO-AO(5,3) reconstruction. To avoid loss of 
order at inflection points we use the smoothness indicators to define

τ = 1

3

(∣∣βr5
3 − βr3

1

∣∣ + ∣∣βr5
3 − βr3

2

∣∣ + ∣∣βr5
3 − βr3

3

∣∣) (3.6)

Using the smoothness indicators again, and following Borges et al. [3], we can obtain the un-normalized weights as

wr5
3 = γ r5

3 (1 + τ 2/(βr5
3 + ε)2); wr3

1 = γ r3
1 (1 + τ 2/(βr3

1 + ε)2);
wr3

2 = γ r3
2 (1 + τ 2/(βr3

2 + ε)2); wr3
3 = γ r3

3 (1 + τ 2/(βr3
3 + ε)2) (3.7a)

If the solution is not dominated by inflection points, it may even be acceptable to use the original WENO strategy for 
obtaining the un-normalized weights given by

wr5
3 = γ r5

3 /(βr5
3 + ε)2; wr3

1 = γ r3
1 /(βr3

1 + ε)2;
wr3

2 = γ r3
2 /(βr3

2 + ε)2; wr3
3 = γ r3

3 /(βr3
3 + ε)2

(3.7b)

Here ε is a very tiny number, typically ε ∼ 10−12. We have found eqn. (3.7b) to be a more stable option while eqn. (3.7a)
is a more accurate option. In practice, we have used eqn. (3.7a) in this paper. The normalized weights are given by

w̄r5
3 = wr5

3 /(wr5
3 + wr3

1 + wr3
2 + wr3

3 ); w̄r3
1 = wr3

1 /(wr5
3 + wr3

1 + wr3
2 + wr3

3 );
w̄r3

2 = wr3
2 /(wr5

3 + wr3
1 + wr3

2 + wr3
3 ); w̄r3

3 = wr3
3 /(wr5

3 + wr3
1 + wr3

2 + wr3
3 ) (3.8)

This completes the description of the normalized, non-linear weights for WENO-AO(5,3).
Say we denote the reconstructed polynomial from WENO-AO(5,3) as PAO(5,3)(x). Our task in this paragraph is to describe 

the construction of the order-preserving, non-linearly hybridized, fifth order polynomial PAO(5,3)(x). The non-linear weights 
should be combined in such a way that when all the smoothness indicators seem to have almost similar values then only 
the higher order scheme is obtained. Such a combination strategy was demonstrated in Zhu and Qiu [37] for non-linearly 
hybridizing a fifth order polynomial with the two linear polynomials that make up the Van Albada limiter. A similar idea 
can be used to make a non-linear hybridization between the fifth order polynomial associated with the central Sr5

3 stencil 
and the three third order polynomials for the stencils, Sr3

1 , Sr3
2 and Sr3

3 . The latter three stencils are associated with the r = 3
CWENO reconstruction. Realize, therefore, that when the four smoothness measures associated with these four stencils have 
closely similar values, we have w̄r5

3 → γ r5
3 , w̄r3

1 → γ r3
1 , w̄r3

2 → γ r3
2 and w̄r3

3 → γ r3
3 . We then require that when the limits 

specified by the previous sentence are attained, we have PAO(5,3)(x) → Pr5
3 (x). This is achieved by the following definition

PAO(5,3)(x) = w̄r5
3

γ r5
3

(
Pr5

3 (x) − γ r3
1 Pr3

1 (x) − γ r3
2 Pr3

2 (x) − γ r3
3 Pr3

3 (x)
) + w̄r3

1 Pr3
1 (x) + w̄r3

2 Pr3
2 (x) + w̄r3

3 Pr3
3 (x) (3.9)

Notice that in the limit where the smoothness indicators for the Sr5
3 , Sr3

1 , Sr3
2 and Sr3

3 stencils all have closely similar values, 
we do have PAO(5,3)(x) → Pr5

3 (x). In the limit where the larger stencil has a very non-smooth solution, we have w̄r5
3 � w̄r3

1
or w̄r5

3 � w̄r3
2 or w̄r5

3 � w̄r3
3 . This ensures that the smoothest of the r = 3 CWENO stencils will be sought out by the 

reconstruction polynomial. Notice that the non-linear hybridization that we sought at the beginning of this paragraph has 
been found via eqn. (3.9).

Some implementation details are given here to make it easy for implementers to implement the WENO-AO(5,3) recon-
struction scheme that we have described here. Recall that we always work in terms of the coefficients of the Legendre 
basis. In this paragraph we make explicit the process of obtaining PAO(5,3)(x) for the “0” zone, since Section 2 was defined 
entirely in terms of that zone. Of course, the zones can be shifted so that the reconstruction can be obtained in any zone. 
The implementation is described via the following steps:

Step 1) Let ur3;1
x and ur3;1

x2 be the coefficients of Pr3
1 (x); they are obtained using eqn. (2.3). Let ur3;2

x and ur3;2
x2 be the 

coefficients of Pr3
2 (x); they are obtained using eqn. (2.4). Let ur3;3

x and ur3;3
x2 be the coefficients of Pr3

3 (x); they are obtained 
using eqn. (2.5). The smoothness indicators for these three r = 3 polynomials can be obtained using eqn. (2.6).

Step 2) Let ur5;3
x , ur5;3

x2 , ur5;3
x3 and ur5;3

x4 be the coefficients of the central, fifth order polynomial Pr5
3 (x); they are obtained 

using eqn. (2.16). The smoothness indicator for this fifth order polynomial can be obtained using eqn. (2.19).

Step 3) Eqns. (3.6), (3.7) and (3.8) are evaluated in sequence and they give us the normalized non-linear weights w̄r5
3 , w̄r3

1 , 
w̄r3

2 and w̄r3
3 .

Step 4) The coefficients of the polynomial described in eqn. (3.9) can now be explicitly written as
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uAO(5,3)
x = w̄r5

3

γ r5
3

(
ur5;3

x − γ r3
1 ur3;1

x − γ r3
2 ur3;2

x − γ r3
3 ur3;3

x

) + w̄r3
1 ur3;1

x + w̄r3
2 ur3;2

x + w̄r3
3 ur3;3

x ;

uAO(5,3)
x2 = w̄r5

3

γ r5
3

(
ur5;3

x2 − γ r3
1 ur3;1

x2 − γ r3
2 ur3;2

x2 − γ r3
3 ur3;3

x2

) + w̄r3
1 ur3;1

x2 + w̄r3
2 ur3;2

x2 + w̄r3
3 ur3;3

x2 ;

uAO(5,3)
x3 = w̄r5

3

γ r5
3

ur5;3
x3 ; uAO(5,3)

x4 = w̄r5
3

γ r5
3

ur5;3
x4 (3.10)

Step 5) The final WENO-AO(5,3) reconstructed polynomial is obtained by using eqn. (2.13) and is explicitly written as

PAO(5,3)(x) = u0 + uAO(5,3)
x L1(x) + uAO(5,3)

x2 L2(x) + uAO(5,3)
x3 L3(x) + uAO(5,3)

x4 L4(x) (3.11)

Eqns. (3.10) and (3.11), along with the narrative in this paragraph show us that WENO-AO(5,3) schemes are very easy 
to implement. This same ease of implementation extends to the other WENO-AO reconstruction schemes described in 
subsequent sub-sections. All the steps can be concatenated into the body of a single loop that loops over the different 
zones. This makes the implementation very cache-friendly since most of the variables in the loop can reside in the cache of 
the processor. Similarly, the algorithm is very friendly to implementation on GPUs.

Let us try to understand eqns. (3.10) and (3.11) at an intuitive level. Eqn. (3.10) shows us that when w̄r5
3 → γ r5

3 we 
have uAO(5,3)

x → ur5;3
x , uAO(5,3)

x2 → ur5;3
x2 , uAO(5,3)

x3 → ur5;3
x3 and uAO(5,3)

x4 → ur5;3
x4 ; so that PAO(5,3)(x) → Pr5

3 (x). However, when 
w̄r5

3 � γ r5
3 , we see that uAO(5,3)

x and uAO(5,3)
x2 tend towards their smoothest values from the r = 3 CWENO reconstruction. 

Furthermore, we see that when w̄r5
3 � γ r5

3 we have uAO(5,3)
x3 → 0 and uAO(5,3)

x4 → 0. We see, therefore, that when the large 
central stencil Sr5

3 carries a non-smooth solution, the cubic and quartic terms are very strongly suppressed by WENO-AO(5,3). 
These cubic and quartic terms are most likely to need a monotonicity preserving treatment if they are not effectively 
suppressed when the solution is non-smooth. Since WENO-AO(5,3) suppresses these terms very effectively, it does not need 
the additional stabilization from a monotonicity preserving formulation. This same advantage extends to the higher order 
WENO-AO schemes described in subsequent sub-sections.

3.2. Seventh order WENO scheme with adaptive order – WENO-AO(7,3)

We focus on the seventh order WENO-AO scheme in this sub-section. It is denoted by WENO-AO(7,3). It is obtained 
by a non-linear hybridization between the centered stencil Sr7

4 which is centered at zone “ j” along with the three r = 3
CWENO stencils Sr3

1 , Sr3
2 and Sr3

3 that also include zone “ j”. In other words, the WENO-AO(7,3) reconstruction is hybridized 
between the seventh order central stencil Sr7

4 and the three third order r = 3 CWENO stencils Sr3
1 , Sr3

2 and Sr3
3 . As a result, 

WENO-AO(7,3) will also have an order of accuracy that is at best seventh order but can drop to third order if the larger 
stencil is non-smooth. We denote the reconstructed polynomial from WENO-AO(7,3) as PAO(7,3)(x).

The purpose of this brief section is to highlight the analogies between the WENO-AO(7,3) reconstruction and the WENO-
AO(5,3) reconstruction from the previous sub-section. The method is still described by two parameters, γHi and γLo , both 
of which are always less than unity. The linear weights are determined by expressions that are entirely analogous to eqn. 
(3.5). The linear weights for the stencils Sr7

4 and the stencils Sr3
1 , Sr3

2 and Sr3
3 are given by

γ r7
4 = γHi; γ r3

1 = (1 − γHi)(1 − γLo)/2; γ r3
2 = (1 − γHi)γLo; γ r3

3 = (1 − γHi)(1 − γLo)/2 (3.12)

The analogue of eqn. (3.6) becomes

τ = 1

3

(∣∣βr7
4 − βr3

1

∣∣ + ∣∣βr7
4 − βr3

2

∣∣ + ∣∣βr7
4 − βr3

3

∣∣) (3.13)

Using the smoothness indicators, the analogue of eqn. (3.7a) for the un-normalized weights becomes

wr7
4 = γ r7

4 (1 + τ 2/(βr7
4 + ε)2); wr3

1 = γ r3
1 (1 + τ 2/(βr3

1 + ε)2);
wr3

2 = γ r3
2 (1 + τ 2/(βr3

2 + ε)2); wr3
3 = γ r3

3 (1 + τ 2/(βr3
3 + ε)2)

(3.14a)

The analogue of eqn. (3.7b) for the un-normalized weights becomes

wr7
4 = γ r7

4 /(βr7
4 + ε)2; wr3

1 = γ r3
1 /(βr3

1 + ε)2;
wr3

2 = γ r3
2 /(βr3

2 + ε)2; wr3
3 = γ r3

3 /(βr3
3 + ε)2 (3.14b)

In practice, we have used eqn. (3.14a) in this paper. An equation that is closely analogous to eqn. (3.8) then gives the 
normalized, non-linear weights as

w̄r7
4 = wr7

4 /(wr7
4 + wr3

1 + wr3
2 + wr3

3 ); w̄r3
1 = wr3

1 /(wr7
4 + wr3

1 + wr3
2 + wr3

3 );
w̄r3 = wr3/(wr7 + wr3 + wr3 + wr3); w̄r3 = wr3/(wr7 + wr3 + wr3 + wr3) (3.15)
2 2 4 1 2 3 3 3 4 1 2 3
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The reconstructed polynomial PAO(7,3)(x) is then given by an expression that is very analogous to eqn. (3.9) and is given by

PAO(7,3)(x) = w̄r7
4

γ r7
4

(
Pr7

4 (x) − γ r3
1 Pr3

1 (x) − γ r3
2 Pr3

2 (x) − γ r3
3 Pr3

3 (x)
) + w̄r3

1 Pr3
1 (x) + w̄r3

2 Pr3
2 (x) + w̄r3

3 Pr3
3 (x) (3.16)

This completes our description of WENO-AO(7,3). We have implemented such a scheme and for idealized test problems it 
does indeed achieve seventh order of accuracy. As in the previous section, the scheme does not need any monotonicity 
preserving fix.

3.3. Formally ninth order WENO schemes with adaptive order – WENO-AO(9,3)

It may always be conjectured that the game-plan from the previous two sections can be extended to obtain a for-
mally ninth order WENO-AO scheme. Indeed, as a matter of formal definition, this can be done. The scheme is denoted 
by WENO-AO(9,3). It is obtained by a non-linear hybridization between the centered stencil Sr9

5 which is centered at zone 
“ j” along with the three r = 3 CWENO stencils Sr3

1 , Sr3
2 and Sr3

3 that also include zone “ j”. Having seen the development 
in the previous section, it is easy to see that any entity “A” that has the formal structure Ar7

4 should now be replaced by 
Ar9

5 . In other words, making the replacement from the previous sentence in Sub-section 3.2 will give us a WENO-AO(9,3) 
reconstruction strategy. We have constructed such a scheme and it does achieve ninth order of accuracy on certain idealized 
problems.

3.4. A recursively defined seventh order WENO scheme with adaptive order – WENO-AO(7,5,3)

Our experience shows that WENO-AO(7,3) is a useful and well-behaved scheme. However, a purist might still detect 
a deficiency in it. Notice that when the central stencil Sr7

4 has a non-smooth solution, the WENO-AO(7,3) will graciously 
degenerate to a third order scheme. However, it is always possible that the stencil Sr5

3 has a smooth solution even when the 
solution on the stencil Sr7

4 is non-smooth. It is, therefore, possible to recursively hybridize between the potentially seventh 
order accurate polynomial PAO(7,3)(x) and the potentially fifth order accurate polynomial PAO(5,3)(x). As one might expect, 
this is done by examining the smoothness indicator βr7

4 corresponding to the stencil Sr7
4 and the smoothness indicator βr5

3
corresponding to the stencil Sr5

3 . We define the two un-normalized weights given by

vAO(7,3) = γHi
(
1 + σ/

(
βr7

4 + ε
)); vAO(5,3) = (1 − γHi)

(
1 + σ/

(
βr5

3 + ε
))

with σ ≡ ∣∣βr7
4 − βr5

3

∣∣ (3.17)

The normalized, non-linear weights are given by

v̄AO(7,3) = vAO(7,3)/
(

vAO(7,3) + vAO(5,3)
); v̄AO(5,3) = vAO(5,3)/

(
vAO(7,3) + vAO(5,3)

)
(3.18)

The recursively hybridized WENO-AO(7,5,3) scheme will have a reconstructed polynomial which we denote by PAO(7,5,3)(x). 
The polynomial PAO(7,5,3)(x) is given by

PAO(7,5,3)(x) = v̄AO(7,3)

γHi

(
PAO(7,3)(x) − (1 − γHi)PAO(5,3)(x)

) + v̄AO(5,3)PAO(5,3)(x) (3.19)

This completes our description of the recursive process for obtaining PAO(7,5,3)(x).
Notice that when the solution is smooth on the stencils Sr7

4 and Sr5
3 we hope to obtain v̄AO(7,3) → γHi and v̄AO(5,3) →

(1 − γHi). In that limit, it is easy to show that PAO(7,5,3)(x) → PAO(7,3)(x) → Pr7
4 (x). However, please also notice that each of 

the polynomials PAO(7,3)(x) and PAO(5,3)(x) are individually designed so that they are non-linearly stable. Eqn. (3.17) should 
be compared to eqns. (3.7a) and (3.14a). The square in eqns. (3.7a) and (3.14a) ensures that we switch quite readily to the 
stabler and lower order stencil. The absence of a square in eqn. (3.17) ensures that we do not switch very readily from 
PAO(7,3)(x) to PAO(5,3)(x). This is a good choice because both PAO(7,3)(x) and PAO(5,3)(x) are individually designed to be stable. 
We can always encounter the very unlikely circumstance where the smoothness indicators βr7

4 and βr5
3 have comparable 

values even though the stencils Sr7
4 and Sr5

3 both carry a non-smooth solution. In such a circumstance, PAO(7,5,3)(x) will 
still be a non-linearly stable polynomial that is made of a convex combination of two non-linearly stable polynomials, 
i.e., PAO(7,3)(x) and PAO(5,3)(x). This convexity property obtains as long as γHi v̄AO(5,3) ≥ (1 − γHi)v̄AO(7,3) . In most normal 
circumstances, we expect this property to be respected because it says that the ratio of the non-linear weight to the linear 
weight of the lower order stencil, i.e. v̄AO(5,3)/(1 − γHi), is greater than the corresponding ratio for the higher order stencil, 
i.e. v̄AO(7,3)/γHi . When the convexity property is violated, it is best to reset PAO(7,5,3)(x) → PAO(7,3)(x). Realistically speaking, 
we almost always expect βr7

4 > βr5
3 , so that we expect that the convexity property will almost never be violated. This 

completes our description of WENO-AO(7,5,3) reconstruction which yields the polynomial PAO(7,5,3)(x).
Please note that the computer implementation of WENO-AO(7,5,3) reconstruction is only slightly more expensive than 

the computer implementation of WENO-AO(7,3). This is because one only has to pay an additional cost for the construction 
of the smoothness indicator βr5

3 and the coefficients of the polynomial Pr5
3 (x) that go towards its evaluation. We hope that 

the WENO-AO(7,5,3) plays an important role in turbulence simulations of compressible flow where it is important to have 
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a stencil that is as close to a central stencil as possible. In such turbulence simulations it is very important to preserve 
phase accuracy of flow features as much as possible. The WENO-AO(7,5,3) scheme fulfills on that goal because it graciously 
transitions from a seventh order centered stencil to a fifth order centered stencil to a super-stable third order CWENO 
formulation that can robustly capture shocks as well as physical extrema.

It is possible to carry this recursive process further. Thus, non-linear hybridization between PAO(9,3)(x) and PAO(7,5,3)(x)
would yield a WENO-AO(9,7,5,3) scheme. While this might seem like overkill, we have indeed implemented a scheme that 
consists of a non-linear hybridization between PAO(9,3)(x) and PAO(5,3)(x) resulting in a WENO-AO(9,5,3) scheme and we 
have found it to work well.

We also note that there is a modest analogy between MOOD (Multidimensional Optimal Order Detection) schemes (Clain, 
Diot and Loubère [5], Diot, Clain and Loubère [8], Diot, Loubère and Clain [9], Dumbser et al. [11]) which can have arbitrary 
order of accuracy between some designed maximum and some designed minimum and the WENO-AO(7,5,3) reconstruction 
defined here. Both methods try to retain higher order accuracy while being willing to relinquish high order accuracy when 
that is required for the sake of stability. The difference is that MOOD schemes attempt to do a posteriori limiting, which 
can sometimes cause them to evaluate the update of a zone multiple times in the course of a timestep. By contrast, the 
WENO-AO schemes rely on an a priori limiter, which makes the limiting much simpler – there is only one update per zone. 
Although this paper is focused on finite difference WENO-AO schemes, it is also possible to develop finite volume and 
Discontinuous Galerkin limiters that are based on the same adaptive order philosophy. We will do that in later publications.

4. Accuracy analysis

Several one-dimensional and multidimensional tests are presented in this section to demonstrate the accuracy of our 
WENO-AO methods. All the WENO-AO schemes in this section and the next were run with γHi = 0.85 and γLo = 0.85. In 
order to have a fair comparison, the WENO-ZQ scheme by Zhu and Qiu [37] was always run with the large central stencil 
having a weight of 0.98; this is the authors’ suggested value. We always used the LLF formulation for the fluxes in this paper, 
since it is not the goal of this paper to explore different basal Riemann solvers. We did not use any steepener algorithm for 
the simulations shown here; nor did we use any monotonicity preserving method. As a result, we are showing the native 
accuracy of the finite difference WENO-AO schemes.

The dispersion and dissipation accuracy of a higher order method is also of interest to people who simulate turbulence. 
While this is not traditionally viewed as accuracy analysis of a higher order scheme, it gives a measure of the phase accuracy 
of the method. For that reason, we provide a brief sub-section on dispersion and dissipation accuracy of WENO-AO schemes 
at the end of this section.

4.1. Linear advection of sinusoidal profiles

We solve the scalar advection equation ut + ux = 0 on the one-dimensional periodic domain x ∈ [−1, 1] with initial con-
dition u0(x) = sin(πx). The problem was run to a final time of unity with a fourth order accurate Runge–Kutta timestepping 
scheme. The problem was run on the coarsest mesh with a CFL of 0.6. If Ω is the optimal spatial accuracy of the scheme, 
the CFL on finer meshes was scaled as (�x)(Ω/4) so that the true spatial accuracy of the method can be demonstrated. 
Realize, therefore, that the problem will be run on finer meshes with a CFL that is much smaller than 0.6, thus raising the 
possibility of excessive error build-up on the finer meshes. Our experience shows, however, that this does not occur till 
rather fine meshes are reached, thereby enabling us to demonstrate the spatial order of accuracy of the scheme.

Table 1 shows the accuracy as a function of increasing number of zones for the WENO-ZQ scheme, the WENO-AO(5,3) 
scheme, the WENO-AO(7,5,3) scheme and the WENO-AO(9,5,3) scheme. For this very smooth problem, the WENO-AO(7,3) 
scheme has an accuracy that is effectively identical to the WENO-AO(7,5,3) scheme; therefore, we do not show it here. 
Likewise, the WENO-AO(9,3) scheme has an accuracy that is effectively identical to the WENO-AO(9,5,3) scheme; which is 
why we do not show it here. We see that all the methods that are shown in Table 1 reach their design accuracies. We also 
see that the accuracy of our WENO-AO(5,3) scheme is more than half an order of magnitude better than the accuracy of the 
WENO-ZQ scheme on all the meshes. This demonstrates that the non-linear hybridization with r = 3 CWENO, while adding 
almost negligibly to the cost of the method, has resulted in a substantial improvement in the quality of the solution.

The accuracy of the WENO-ZQ scheme has been improved somewhat because the large central stencil was given a linear 
weight of 0.98. Even then, the accuracy of the WENO-ZQ scheme remains inferior to the accuracy of our WENO-AO(5,3) 
scheme. Our WENO-AO class of schemes are relatively unaffected by the value of γHi and γLo . The accuracy of a robust 
scheme should be relatively independent of input parameters, so we view that as a strength of our WENO-AO schemes.

4.2. Non-linear Burgers equation in one dimension

We solve the non-linear Burgers equation ut + (u2/2)x = 0 on the one-dimensional periodic domain x ∈ [−1, 1] with 
initial condition u0(x) = 0.25 + 0.5 sin(πx). The problem was run to a final time of 1/π ; which corresponds to a time that 
is before the formation of the shock. We used a fourth order accurate Runge–Kutta timestepping scheme. The problem was 
run on the coarsest mesh with a CFL of 0.6 and the CFL number was scaled down on finer meshes, as previously described. 
The same four schemes as before were run and the results are shown in Table 2. We see that all the methods that are 
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Table 1
The accuracy of the sine wave advection test with WENO-ZQ, WENO-AO(5,3), WENO-AO(7,5,3) and WENO-AO(9,5,3) schemes.

Method # of zones L1 error L1 accuracy L∞ error L∞ accuracy

WENO-ZQ 10 1.3473E−02 2.9631E−02
20 6.9263E−04 4.28 2.5886E−03 3.52
40 5.0068E−05 3.79 2.5319E−04 3.35
80 9.9071E−07 5.66 7.4381E−06 5.09

WENO-AO(5,3) 10 3.6382E−03 5.5511E−03
20 1.1024E−04 5.04 1.7339E−04 5.00
40 3.4890E−06 4.98 5.4838E−06 4.98
80 1.0944E−07 4.99 1.7193E−07 5.00

WENO-AO(7,5,3) 10 7.7366E−04 1.1084E−03
20 2.6284E−06 8.20 3.7126E−06 8.22
40 1.8914E−08 7.12 2.9030E−08 7.00
80 1.4562E−10 7.02 2.2752E−10 7.00

WENO-AO(9,5,3) 10 5.4788E−04 8.9372E−04
20 3.5088E−07 10.61 6.0682E−07 10.52
40 6.0744E−10 9.17 1.0090E−09 9.23
80 1.4070E−12 8.75 2.4215E−12 8.70

Table 2
The accuracy of the Burgers equation test with WENO-ZQ, WENO-AO(5,3), WENO-AO(7,5,3) and WENO-AO(9,5,3) schemes.

Method # of zones L1 error L1 accuracy L∞ error L∞ accuracy

WENO-ZQ 10 5.8154E−03 1.9515E−02
20 7.4220E−04 2.97 9.0760E−04 4.43
40 3.6775E−05 4.34 3.5689E−04 1.35
80 8.9123E−07 5.37 1.2158E−05 4.88

WENO-AO(5,3) 10 4.9421E−03 1.7277E−02
20 6.9353E−04 2.83 4.8916E−03 1.82
40 2.9831E−05 4.54 3.5742E−04 3.77
80 8.5024E−07 5.13 1.2158E−05 4.88

WENO-AO(7,5,3) 10 5.1209E−03 1.9869E−02
20 4.3334E−04 3.56 3.1234E−03 2.67
40 1.1647E−05 5.22 1.2882E−04 4.60
80 1.1629E−07 6.65 1.7216E−06 6.23
160 7.3990E−10 7.30 1.3675E−08 6.98

WENO-AO(9,5,3) 10 5.5365E−03 2.0517E−02
20 5.7010E−04 3.28 4.5932E−03 2.16
40 7.0119E−06 6.35 6.7292E−05 6.09
80 2.9824E−08 7.88 4.6522E−07 7.18
160 6.3850E−11 8.87 1.2238E−09 8.57

shown in Table 2 reach their design accuracies. We also see that the accuracy of our WENO-AO(5,3) scheme is somewhat 
better than the accuracy of the WENO-ZQ scheme on all the meshes.

4.3. Euler equations in two dimensions

We solve the two-dimensional Euler equations on the two-dimensional periodic domain (x, y) ∈ [0, 2π ] × [0, 2π ]. The 
pressure, x-velocity and y-velocity were all set to unity. The ratio of specific heats was set to 1.4. The initial density was 
given by ρ0(x, y) = 1 + 0.2 sin(x + y) and the problem was run to a final time of 2 units with a fourth order accurate 
Runge–Kutta timestepping scheme. The problem was run on the coarsest mesh with a CFL of 0.3 and the CFL number was 
scaled down on finer meshes, as previously described. The same four schemes as before were run and the results are shown 
in Table 3. We see that all the methods that are shown in Table 3 reach their design accuracies. (Since we used ε = 10−12, 
the accuracy of the ninth order scheme tapers off on the finest mesh.) We also see that the accuracy of our WENO-AO(5,3) 
scheme is much better than the accuracy of the WENO-ZQ scheme on all the meshes.

4.4. Dispersion and dissipation accuracy of WENO schemes

WENO schemes are increasingly used for turbulence studies. In such studies, practitioners are very interested in knowing 
the dispersion error and dissipation characteristics of their numerical methods. The modified wavenumber approach, pop-
ularized by Lele [21], gives us a measure of the dispersion error as well as the dissipation inherent in the scheme when a 
first derivative is taken. Since hyperbolic PDEs are based on taking a first derivative of the flux, this is a useful diagnostic. 
The real part of the modified wave number for the first derivative gives us a good measure of the dispersion error of the 



D.S. Balsara et al. / Journal of Computational Physics 326 (2016) 780–804 795
Table 3
The accuracy of the two-dimensional Euler equation test with WENO-ZQ, WENO-AO(5,3), WENO-AO(7,5,3) and WENO-AO(9,5,3) schemes.

Method # of zones L1 error L1 accuracy L∞ error L∞ accuracy

WENO-ZQ 10 × 10 1.1627E−03 3.1556E−03
20 × 20 4.5302E−05 4.68 2.0978E−04 3.91
40 × 40 3.6967E−06 3.62 2.1586E−05 3.28
80 × 80 6.5304E−08 5.82 8.2153E−07 4.72

WENO-AO(5,3) 10 × 10 8.9540E−04 1.3543E−03
20 × 20 2.8275E−05 4.98 4.4273E−05 4.93
40 × 40 8.8957E−07 4.99 1.3981E−06 4.98
80 × 80 2.7885E−08 5.00 4.3779E−08 5.00

WENO-AO(7,5,3) 10 × 10 1.1253E−04 1.6059E−04
20 × 20 6.6656E−07 7.40 9.4772E−07 7.40
40 × 40 4.8194E−09 7.11 7.3960E−09 7.00
80 × 80 3.7075E−11 7.02 5.8410E−11 6.98

WENO-AO(9,5,3) 10 × 10 4.7889E−05 1.0610E−04
20 × 20 8.7199E−08 9.10 1.4662E−07 9.50
40 × 40 1.5470E−10 9.14 2.5558E−10 9.16
80 × 80 1.3857E−12 6.80 1.9387E−12 7.04

scheme. Since all our WENO schemes are upwind schemes, they will indeed have some dissipation. However, one would 
like this dissipation to be as small as possible over a large range of intermediate wave numbers in a higher order scheme.

The previous sub-sections have shown that for smooth enough flow the WENO-AO schemes achieve their design accura-
cies. Consequently, we use the highest order stencil in the dispersion and dissipation analysis that is described in the next 
four paragraphs.

Fig. 1a) shows the real part of the modified wave number for the first derivative as a function of wave number. The solid 
straight line shows the modified wave number for the first derivative under exact differentiation. No stable scheme will ever 
produce that result. The solid curve in Fig. 1a) shows the real part of the modified wave number for the fourth order Padé 
scheme. This Padé scheme requires the solution of a tri-diagonal system along each row of the computation, which impedes 
massively parallel computation. We see that the fourth order Padé scheme approximates the solid straight line for a large 
range of wave numbers. This is inevitable, considering that the Padé scheme is designed to minimize the dispersion error. 
The curve with short dashes in Fig. 1a) shows the real part of the modified wave number for the fourth order central finite 
difference scheme; we note that its dispersion error is indeed quite significant. The WENO-AO(5,3) has a maximum fifth 
order of accuracy and the real part of its modified wave number is shown in Fig. 1a) by the long dashed curve. We see that 
its dispersion properties compare favorably to the fourth order Padé scheme. Besides, WENO-AO(5,3) is an explicit scheme 
and does not require the solution of a tridiagonal system; this is a significant advantage for parallel computations. The solid 
curve in Fig. 2 shows the imaginary part of the modified wave number for the first derivative as a function of wave number. 
This is a measure of the dissipation of the upwind scheme. We see that WENO-AO(5,3) results in some dissipation over a 
substantial range of intermediate wave numbers.

Fig. 1b) shows similar information for the WENO-AO(7,5,3) scheme, which is up to seventh order accurate. The descrip-
tion of the solid curve and the short dashed curve is unchanged from Fig. 1a). The long dashed curve shows the real part of 
the modified wave number for the WENO-AO(7,5,3) scheme. We now see that the WENO-AO(7,5,3) scheme has dispersion 
error that compares very favorably with the fourth order Padé scheme and is very superior compared to the fourth order 
central finite difference scheme. The short dashed curve in Fig. 2 shows the imaginary part of the modified wave number for 
the first derivative as a function of wave number for the WENO-AO(7,5,3) scheme. We see that it provides almost dissipation 
free propagation of waves over a substantial range of intermediate wave numbers.

Fig. 1c) shows the analogous information for the WENO-AO(9,5,3) scheme, which is up to ninth order accurate. The 
solid curve shows the real part of the modified wave number for the sixth order compact scheme from Lele [21]. Lele’s 
sixth order compact scheme requires the inversion of a pentadiagonal matrix for each row of the computation, which 
impedes massively parallel computation. The short dashed curve shows the real part of the modified wave number for a 
sixth order central finite difference scheme. The long dashed curve shows the real part of the modified wave number for 
the WENO-AO(9,5,3) scheme. We see that the dispersion error of the WENO scheme compares quite favorably with the 
sixth order compact scheme and is superior to the sixth order central finite difference scheme. The long dashed curve in 
Fig. 2 shows the imaginary part of the modified wave number for the first derivative as a function of wave number for 
the WENO-AO(9,5,3) scheme. We see that it provides almost dissipation free propagation of waves over a large range of 
intermediate wave numbers.

For the applications that we are interested in, it is not useful to design an eleventh order accurate WENO-AO scheme. 
While we haven’t implemented a WENO-AO(11,5,3) scheme, it is possible to show the reader some of its dispersion and 
dissipation properties. Fig. 1d) shows the dispersion properties of the WENO-AO(11,5,3) scheme. The description of the solid 
curve and the short dashed curve is unchanged from Fig. 1c). The long dashed curve shows the real part of the modified 
wave number for the WENO-AO(11,5,3) scheme. We see that it compares very favorably with a sixth order accurate compact 
scheme. The dotted curve in Fig. 2 shows the imaginary part of the modified wave number for the first derivative as a 



796 D.S. Balsara et al. / Journal of Computational Physics 326 (2016) 780–804
Fig. 1. a), b), c) and d) show the real part of the modified wavenumbers for the 5th, 7th, 9th and 11th order WENO schemes respectively. Curves with big 
dashes show WENO-AO schemes. a) and b) also show the standard fourth order Padé scheme (solid curve) and the fourth order central finite difference 
scheme (small dashed curve). c) and d) also show the sixth order compact scheme (solid curve) and the sixth order central finite difference scheme (small 
dashed curve). The solid straight line shows exact differentiation.

function of wave number for the WENO-AO(11,5,3) scheme. We see that it provides truly dissipation-free propagation of 
waves over a very large range of intermediate wave numbers.

5. Test problems

Here we present several stringent test problems that are drawn from the literature. The first four test problems are 
one-dimensional and are run with a CFL of 0.6; the next three test problems are two-dimensional and are run with a CFL 
of 0.3. The third order accurate SSP-RK3 timestepping scheme from Shu and Osher [29] was used for all these tests. For all 
the problems where a hyperbolic system is solved, local characteristic limiting was used with an LLF-based Riemann solver 
to avoid spurious oscillations. For multidimensional test problems, the reconstruction was carried out in a dimension-by-
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Fig. 2. The imaginary part of the modified wave number as a function of wave number. This provides a measure of the dissipation for the WENO-AO 
schemes. Solid, small dash, large dash and dotted curves show the results for 5th, 7th, 9th and 11th order WENO-AO schemes respectively.

dimension fashion. The schemes were all run without any steepening process so that the native capability of the schemes 
is shown. Furthermore, we did not use any monotonicity preservation methods because all the schemes are eventually 
stabilized by their non-linear hybridization with the r = 3 CWENO scheme.

5.1. The scalar advection test problem

In various fields, such as astrophysics and space physics, complicated waveforms have to be advected on the mesh 
without any distortion. Lower order schemes are prone to excessive dispersion and dissipation and also to the formation of 
top hat profiles, when they propagate flow features over large distances. Higher order schemes are very valuable because 
they can propagate waveforms over large distances on a computational mesh with minimal distortion. This test problem, 
originally designed by Jiang and Shu [19], is designed to show the capability of higher order schemes. The problem has 
several shapes that are difficult to advect with fidelity. The shapes consist of: 1) a combination of Gaussians, 2) a square 
wave, 3) a sharply peaked triangle and 4) a half ellipse arranged initially from left to right. It is a stringent test problem 
because it has a combination of functions that are not smooth and functions that are smooth but sharply peaked. The 
Gaussians differ from the triangle in that the Gaussians’ profile actually has an inflection in the second derivative. A good 
numerical method that can advect information with a high level of fidelity must be able to preserve the specific features of 
the problem that we have catalogued above. For a full and detailed description of this well-known problem, we refer the 
reader back to Jiang and Shu [19] or Balsara and Shu [1].

The problem was initialized on a mesh of 400 zones. It was run for a simulation time of 20 which corresponds to ten 
traversals around the mesh. In doing so, the flow features were advected over 4000 mesh points. The RF-Riemann solver 
was used in order to produce a crisper solution. Figs. 3a), 3b) and 3c) show the results of the advection test problem for 
the WENO-ZQ, WENO-AO(5,3) and WENO-AO(7,5,3) schemes respectively. We see that schemes with increasing order of 
accuracy show an improvement in their advection properties. The schemes were all run without any steepening process so 
that the native capability of the schemes is shown. We also ran the WENO-AO(9,5,3) scheme for this test problem. However, 
for a 400 zone treatment of this problem, the result from the WENO-AO(9,5,3) scheme shows no improvement over the 
WENO-AO(7,5,3) scheme, consequently, the result from the WENO-AO(9,5,3) scheme is not shown.

The WENO-ZQ result in Fig. 3a) deserves special attention. When we ran it using eqns. (2.19) and (2.20) of the paper by 
Zhu and Qiu [37], along with their suggested value of γ1 = 0.98, we saw overshoots and undershoots. We then realized that 
the presence of the square in their eqn. (2.19) made their evaluation of the non-linear weights solution-dependent. Fig. 3a) 
was obtained after we removed the square in their eqn. (2.19). The resulting Fig. 3a) shows rather excessive flattening in 
the combination of Gaussians and the sharply peaked triangle. It also shows some slight flattening in the profile for the 
half ellipse. This is inevitable considering that the Van Albada limiter is non-linearly hybridized in the WENO-ZQ scheme. 
We should also mention that removing the square in eqn. (2.19) of Zhu and Qiu [37] had a significantly negative effect on 
the accuracy. As a result, Tables 1, 2 and 3 show the results from WENO-ZQ without any modification by us. We made this 
choice so that WENO-ZQ may be portrayed in the best light.



798 D.S. Balsara et al. / Journal of Computational Physics 326 (2016) 780–804
Fig. 3. a), b) and c) show the results of the advection test problem for the WENO-ZQ, WENO-AO(5,3) and WENO-AO(7,5,3) schemes respectively. The 
advected shapes consist of: 1) a combination of Gaussians, 2) a square wave, 3) a sharply peaked triangle and 4) a half ellipse arranged initially from left 
to right. The flow features were advected over 4000 mesh points.

5.2. The Lax test problem

The Lax shock tube test problem is very well known in fluid dynamics, so we do not repeat its description here. The 
problem is initialized on a 200 zone domain x ∈ [−0.5, 0.5] and is run to a time of 0.16 by which time a right-going shock, 
a left-going rarefaction fan and an intermediate contact discontinuity establish themselves. Figs. 4a) and 4b) show the 
density profile from the Lax test problem for the WENO-AO(5,3) and WENO-AO(9,5,3) schemes respectively. The solid line 
in those figures shows the analytical solution to the Lax Riemann problem. The contact discontinuity is very well-preserved 
and there are no overshoots or undershoots.

5.3. The interacting blast wave test problem

We have run the interacting blast wave problem from Woodward and Colella [36] using exactly the same parameters 
used by those authors. Fig. 5 shows the density profile from a 400 zone simulation of the interacting blast problem with 
open circles for the WENO-AO(5,3) scheme. The solid line shows the converged density obtained from a 1000 zone simula-
tion. We see that all the density features are captured very well and the 400 zone simulation is very close to the converged 
density profile from the 1000 zone simulation.

5.4. The shock–density wave interaction test problem

Higher order schemes should show their advantages when the solution contains an interaction between shocks and 
complex smooth flow features. Shu and Osher [30] presented a problem where a Mach 3 shock wave interacts with a 
density disturbance and generates a flow field that has a combination of smooth structures and discontinuities. It is a good 
model for the kinds of interactions that occur in simulations of compressible turbulence. It represents the amplification of 
entropy fluctuations as they pass through a strong shock. We use the exact same parameters as Shu and Osher [30] and 
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Fig. 4. a) and b) show the density profile from the Lax test problem for the WENO-AO(5,3) and WENO-AO(9,5,3) schemes respectively.

Fig. 5. The density profile from a 400 zone simulation of the interacting blast problem with open circles for the WENO-AO(5,3) scheme. The solid line 
shows the converged density obtained from a 1000 zone simulation.

we run the problem to a final time of 1.8 units. A reference solution was generated on a 2000 zone mesh with a fifth 
order WENO scheme. Fig. 6 shows the final density for the shock–density wave interaction on a 400 zone mesh shown 
as circles, with the reference solution from the 2000 zone mesh shown as a solid line. Fig. 6a) shows the full solution 
from a WENO-AO(5,3) scheme while Fig. 6b) shows a zoom-in of the interaction region spanning [−0.25, 3.0]. Figs. 6c) and 
6d) show similar zoom-ins from simulations with WENO-ZQ and WENO-AO(9,5,3) schemes. We see that the higher order 
schemes do a slightly better job of coming closer to the converged solution. For the WENO-ZQ scheme we used the settings 
from eqns. (2.19) and (2.20) of the original paper.

5.5. The double Mach reflection test problem

This problem was originally suggested by Woodward and Colella [36] and we fully implement their set up. The problem 
consists of a strong Mach 10 shock that is initially incident on a reflecting wedge that makes an angle of 60◦ with the plane 
of the shock. The problem was run on a 1600 ×400 zone mesh to a final time of 0.2 units. A contact discontinuity emanated 
from the roll up of the stronger of the two Mach stems. This discontinuity is known to go Kelvin–Helmholtz unstable when 
sufficient resolution is provided to the simulation. The Kelvin–Helmholtz develops rapidly only if the simulation code is 
sufficiently non-dissipative. Fig. 7 shows the final density for the double Mach reflection problem. Fig. 7a) shows the full 
domain from a simulation using the WENO-AO(7,5,3) scheme. Fig. 7b) shows a zoom-in of the Mach stem roll-up when the 
WENO-AO(7,5,3) scheme is used. We see that we obtain a very well-resolved roll-up of the Mach stem.

5.6. The forward facing step test problem

This test problem was also proposed by Woodward and Colella [36] and consists of a Mach 3 wind tunnel with a 
forward-facing step. As the bow shock reflects off the step and then the top wall of the wind tunnel, it establishes a 
triple-point structure. A vortex sheet emanates from the triple point. We have fully implemented the set-up from Woodward 
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Fig. 6. The final density for the shock–density wave interaction on a 400 zone mesh shown as circles, with the reference solution from the 2000 zone mesh 
shown as a solid line. a) shows the full solution from a WENO-AO(5,3) scheme while b) shows a zoom-in of the interaction region spanning [−0.25, 3.0]. 
c) and d) show similar zoom-ins from simulations with WENO-ZQ and WENO-AO(9,5,3) schemes.

and Colella [36]. While the problem was run to a final time of 4 units on a 600 × 200 zone mesh, a very interesting vortex 
sheet roll-up manifests itself at a time of 3 units. The results of the flow density are, therefore, shown at a time of 3 units. 
Fig. 8a) shows the density from the forward facing step simulation at a time of 3 units when the WENO-AO(7,5,3) scheme 
was used. Fig. 8b) shows the same for the WENO-ZQ scheme. The vortex sheet roll-up is captured very crisply by this higher 
order scheme. At this resolution all the WENO-AO schemes do a very good job of capturing the vortex sheet roll-up, so we 
only show one of them.

5.7. The shock–vortex interaction test problem

This test problem studies the interaction of a vortex with a shock and was first suggested by Pao and Salas [26]. We 
use the problem specification from Balsara and Shu [1] which displays the situation where the vortex flows towards the 
right-upper corner of the mesh and the shock normal makes an angle of 45◦ with respect to the x-axis. Since the problem is 
described in great detail in Balsara and Shu [1], we do not repeat the description here. The problem was run on a 150 × 150
zone mesh on a domain spanning [0, 1.5] × [0, 1.5]. The problem was run to a final simulation time of 0.8, by which time 
the vortex has passed through the shock. Figs. 9a) and 9b) show the density at a final time of 0.8 for the shock–vortex 
interaction problem for the WENO-AO(5,3) and WENO-AO(9,5,3) schemes. Both simulations yield good results, showing that 
the recursive formulation presented here extends stably to higher orders. We see that the higher order scheme has retained 
a little more post-shock structure in the vortex.

5.8. Timing tests for multidimensional problems

The WENO-AO algorithms make a small reduction in the number of stencil evaluations. However, there is also one rather 
very large stencil to account for. It is, therefore, interesting to ask how the time to solution for the WENO-AO algorithms 
compares with the time to solution of the WENO-JS algorithm at fifth order and the MPWENO algorithms at seventh and 
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Fig. 7. a) shows the full domain from a simulation using the WENO-AO(7,5,3) scheme. b) shows a zoom-in of the Mach stem roll-up when the WENO-
AO(7,5,3) scheme is used. We see that we obtain a very well-resolved roll-up of the Mach stem.

Fig. 8. a) shows the density from the forward facing step simulation at a time of 3 units when the WENO-AO(7,5,3) scheme was used. b) shows the same 
for the WENO-ZQ scheme. The vortex sheet roll-up is captured very crisply by this higher order scheme.
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Fig. 9. a) and b) show the density at a final time of 0.8 for the shock–vortex interaction problem for the WENO-AO(5,3) and WENO-AO(9,5,3) schemes. Both 
simulations yield good results, showing that the recursive formulation presented here extends stably to higher orders.

Table 4
The relative time to solution for the last three multidimensional test problems with various higher order finite difference WENO algorithms.

WENO-JS (5th order) WENO-AO(5,3) MPWENO (7th order) WENO-AO(7,3) MPWENO (9th order) WENO-AO(9,3)

DMR 1.0 0.87 1.23 1.06 1.48 1.22
FFStep 1.0 0.95 1.26 1.16 1.54 1.35
SVI 1.0 0.95 1.25 1.15 1.55 1.35

ninth order. Most readers would be interested in the performance for a range of multidimensional test problems, which is 
why we focus on the Double Mach Reflection (DMR) test problem, the Forward Facing Step (FFStep) test problem and the 
Shock–Vortex Interaction (SVI) test problem from the previous three sub-sections. The problems were run at their stated 
resolutions. We also use the same SSP-RK3 timestepping strategy for all these test problems. To ensure a fair comparison, 
the smoothness indicators from this paper were used for all the WENO variants.

The results for the time to solution are shown in Table 4. In all instances, we have normalized the time to solution for the 
fifth order WENO-JS algorithm to unity. Therefore, a number that is less than unity indicates a relative speed-up compared 
to WENO-JS. A number that is larger than unity indicates a slower speed than WENO-JS. As expected, the algorithms with 
seventh and ninth order accuracy cost more than WENO-JS. It is interesting to note though that WENO-AO(5,3) costs less 
than fifth order WENO-JS. Likewise, WENO-AO(7,3) costs less than MPWENO at seventh order; in fact, it costs almost the 
same as fifth order WENO-JS! Similarly, WENO-AO(9,3) costs less than MPWENO at ninth order; in fact it costs only ∼20% 
more than the fifth order WENO-JS! Please also note that the test problems in Table 4 have been run on different sized 
meshes and the numbers from larger meshes (like the mesh from the double Mach reflection problem) are more reliable.

There is one very startling result in Table 4. It is that the seventh and ninth order WENO variants do not cost much more 
than their fifth order counterparts! This very desirable result is certainly a consequence of the very concise smoothness 
indicators that were invented in this paper. If we had used the smoothness indicators from Balsara & Shu [1] the time to 
solution for the seventh and ninth order MPWENO schemes would certainly have been greater. The results show that the 
concise evaluation of the smoothness indicators makes the code so cache friendly that the additional cost of carrying out 
extra floating point operations at higher orders is very modest. This is the most important insight that we gain from Table 4.

6. Conclusions

Finite difference WENO schemes have been used extensively in the research literature. They offer high formal accuracy, 
high phase accuracy and low dissipation. With increasing order of accuracy, these trends are known to improve. In this 
paper we have presented two major advances in finite difference WENO schemes that are recapitulated in the subsequent 
paragraphs.

First, we present a one-dimensional reconstruction strategy that uses Legendre polynomials as basis functions. We show 
that in this formulation the smoothness indicators can be written very compactly as the sum of perfect squares. Since the 
evaluation of smoothness indicators is a computationally expensive step, finding compact expressions dramatically reduces 
the cost of the overall scheme. These reductions in computational costs have also been documented. The methods we 
present should be useful for classical finite difference WENO schemes that can go as high as seventeenth order. The more 
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compact expressions for the smoothness measures also make the code more cache-friendly, and the improvements are quite 
significant.

Second, we present a new class of finite difference WENO schemes, which we call WENO-AO. The “AO” stands for 
adaptive order. This adaptive order property is obtained by non-linear hybridization between a higher order centered stencil 
and a rock-stable r = 3 CWENO scheme. Despite its very good stability properties, the CWENO scheme does not clip physical 
extrema. Several very successful WENO-AO schemes are presented. Thus we arrive at a WENO-AO(5,3) scheme that is at 
best fifth order accurate by virtue of its centered stencil with five zones and at worst third order accurate by virtue of being 
non-linearly hybridized with an r = 3 CWENO scheme. The process can be extended to arrive at a WENO-AO(7,3) scheme 
that is at best seventh order accurate by virtue of its centered stencil with seven zones and at worst third order accurate. 
We then recursively combine the above two schemes to arrive at a WENO-AO(7,5,3) scheme which can achieve seventh 
order accuracy when that is possible; graciously drop down to fifth order accuracy when that is the best one can do; and 
also operate stably with an r = 3 CWENO scheme when that is the only thing that one can do. Schemes with ninth order of 
accuracy are also presented. The resulting schemes do not seem to need any monotonicity preserving step. They also seem 
to capture discontinuities very crisply without needing any steepening step.

Accuracy analysis is presented to show that the methods meet their design accuracies. The dispersion and dissipation 
properties of these schemes are also documented using a modified wave number approach. It is shown that WENO-AO 
schemes with increasing order show progressively decreasing dispersion and dissipation, making them very attractive per-
formers for fluid dynamical turbulence studies. Several stringent test problems are also presented to show that the methods 
work very well.
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