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Let ℂn be the complex Euclidean space.
z = (z1 , z2 , . . . , zn) ∈ ℂn and ℂn � ℝn ×ℝn = ℝ2n via

z = x + iy, z̄ = x − iy, x, y ∈ ℝn , i =
√
−1.

Exterior derivative leads to 1-forms

dzℓ = dxℓ + i dyℓ , dz̄ℓ = dxℓ − i dyℓ .

Define the Wirtinger operators

𝜕

𝜕zℓ
def
=

1
2

(
𝜕

𝜕xℓ
− i 𝜕

𝜕yℓ

)
,

𝜕

𝜕z̄ℓ
def
=

1
2

(
𝜕

𝜕xℓ
+ i 𝜕

𝜕yℓ

)
.

These are determined by being the dual bases of dz and dz̄

dzk

(
𝜕

𝜕zℓ

)
= 𝛿k

ℓ , dzk

(
𝜕

𝜕z̄ℓ

)
= 0, dz̄k

(
𝜕

𝜕zℓ

)
= 0, dz̄k

(
𝜕

𝜕z̄ℓ

)
= 𝛿k

ℓ

f : U ⊂ ℂn → ℂ is holomorphic if f satisfies

𝜕f
𝜕z̄ℓ

= 0 for ℓ = 1, 2, . . . , n (the Cauchy–Riemann (CR) equations).

Write O(U) for set of holomorphic functions on U.
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We write a smooth (C∞) function f : U ⊂ ℂn → ℂ as f (z, z̄).

If f is a polynomial (in x and y), write

x =
z + z̄

2 , y =
z − z̄

2i

and it really does become a polynomial in z and z̄. E.g.,

2x1 + 2y1 + 4y2
2 = (1 − i)z1 + (1 + i)z̄1 − z2

2 + 2z2z̄2 − z̄2
2

f is holomorphic if it does not depend on z̄.

If f is real-analytic (has a power series in x and y), then f has a power
series in z and z̄.

f is holomorphic if the power series only has z terms.

Treat z and z̄ as separate variables.
f (z, z̄) becomes f (z, 𝜉). This is called complexification.

We must worry about convergence! More on all this later.
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Theorem (Hartogs)
Let U ⊂ ℂn, n ≥ 2, be a domain, and K ⊂⊂ U be compact with U \ K
connected. If f ∈ O(U \ K), then there exists a unique F ∈ O(U) such that
F|U\K = f .

UK

Note: Not every domain is a natural domain of definition for a holomorphic
function. Geometry of the boundary plays a role!
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If U,V ⊂ ℂn and f : U → V is holomorphic (every component is
holomorphic), bĳective, and f−1 is holomorphic, then f is a
biholomorphism and U and V are biholomorphic.

Remark: f−1 is automatically holomorphic.

Suppose f extends past the boundary of U. Then biholomorphic
invariants of the boundary of U are invariants of the boundary of V.

Example: U = B(0, 2) \ B(0, 1). The outer (convex) and the inner
(concave) boundaries have very different properties. In fact it is a
form of “convexity” that we need to study to understand boundaries.
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Take the real tangent space Tpℂ
n = Tpℝ

2n. Write

ℂ ⊗ Tpℂ
n = spanℂ

{
𝜕

𝜕x1

���
p
,

𝜕

𝜕y1

���
p
, . . . ,

𝜕

𝜕xn

���
p
,

𝜕

𝜕yn

���
p

}
.

Then
𝜕

𝜕zk

���
p
,
𝜕

𝜕z̄k

���
p
∈ ℂ ⊗ Tpℂ

n

and
ℂ ⊗ Tpℂ

n = spanℂ

{
𝜕

𝜕z1

���
p
,

𝜕

𝜕z̄1

���
p
, . . . ,

𝜕

𝜕zn

���
p
,

𝜕

𝜕z̄n

���
p

}
.

Define

T(1,0)
p ℂn def

= spanℂ

{
𝜕

𝜕z1

���
p
, . . . ,

𝜕

𝜕zn

���
p

}
(holomorphic vectors),

T(0,1)
p ℂn def

= spanℂ

{
𝜕

𝜕z̄1

���
p
, . . . ,

𝜕

𝜕z̄n

���
p

}
(antiholomorphic vectors).

Then
ℂ ⊗ Tpℂ

n = T(1,0)
p ℂn ⊕ T(0,1)

p ℂn.
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Let M ⊂ ℂn be a real smooth hypersurface.

I.e., near each p ∈ M, ∃ a
neighbourhood U of p, and a smooth r : U → ℝ s.t. dr ≠ 0 on U and
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More explicitly,

Xp =

n∑
k=1

ak
𝜕

𝜕zk

��
p +bk

𝜕

𝜕z̄k

��
p ∈ ℂ⊗TpM ⇔

n∑
k=1

ak
𝜕r
𝜕zk

��
p +bk

𝜕r
𝜕z̄k

��
p = 0.

And

Xp =

n∑
k=1

ak
𝜕

𝜕zk

��
p ∈ T(1,0)

p M ⇔
n∑

k=1
ak

𝜕r
𝜕zk

��
p = 0.

Example: Im zn =
zn−z̄n

2i = 0 defines M = ℂn−1 ×ℝ ⊂ ℂn.

T(1,0)
p M = spanℂ

{
𝜕

𝜕z1

���
p
, . . . ,

𝜕

𝜕zn−1

���
p

}
T(0,1)

p M = spanℂ

{
𝜕

𝜕z̄1

���
p
, . . . ,

𝜕

𝜕z̄n−1

���
p

}
Bp = spanℂ

{
𝜕

𝜕xn

���
p

}
= spanℂ

{
𝜕

𝜕(Re zn)

���
p

}
= spanℂ

{
𝜕

𝜕zn

���
p
+ 𝜕

𝜕z̄n

���
p

}
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If M ⊂ ℂn is a smooth real submanifold (any dimension), do the same:

T(1,0)
p M def

=
(
ℂ ⊗ TpM

)
∩
(
T(1,0)

p ℂn) , and

T(0,1)
p M def

=
(
ℂ ⊗ TpM

)
∩
(
T(0,1)

p ℂn) .

Now
ℂ ⊗ TpM = T(1,0)

p M ⊕ T(0,1)
p M ⊕ Bp.

If T(1,0)
p M and T(0,1)

p M have constant dimension as p ranges over M,
then M is called a CR submanifold.

Remark: Every hypersurface is a CR submanifold (next slide).

Example 1: M = ℝ2 ⊂ ℂ2.

T(1,0)
p M = {0}, T(0,1)

p M = {0}, Bp = ℂ ⊗ TpM.

Example 2: M = ℂ × {0} ⊂ ℂ2.

T(1,0)
p M = spanℂ

{
𝜕

𝜕z1

���
p

}
, T(0,1)

p M = spanℂ

{
𝜕

𝜕z̄1

���
p

}
, Bp = {0}.
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Suppose M ⊂ ℂn is a smooth real hypersurface, p ∈ M. After a
translation and rotation via a unitary matrix, p = 0 and near the origin
M is written in variables (z,w) ∈ ℂn−1 ×ℂ (w = zn) as

Im w = 𝜑(z, z̄,Re w),

with the 𝜑(0) and d𝜑(0) = 0.

Consequently

T(1,0)
0 M = spanℂ

{
𝜕

𝜕z1

���
0
, . . . ,

𝜕

𝜕zn−1

���
0

}
,

T(0,1)
0 M = spanℂ

{
𝜕

𝜕z̄1

���
0
, . . . ,

𝜕

𝜕z̄n−1

���
0

}
,

B0 = spanℂ

{
𝜕

𝜕(Re w)

���
0

}
.

In particular, dimℂ T(1,0)
p M = dimℂ T(0,1)

p M = n − 1 and dimℂ Bp = 1.
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Suppose M = {r = 0} as before, and p ∈ M.

Write the (full) Hessian of r at p as the Hermitian matrix

Hp =



𝜕2r
𝜕z̄1𝜕z1

��
p · · · 𝜕2r

𝜕z̄1𝜕zn

��
p

𝜕2r
𝜕z̄1𝜕z̄1

��
p · · · 𝜕2r

𝜕z̄1𝜕z̄n

��
p

...
. . .

...
...

. . .
...

𝜕2r
𝜕z̄n𝜕z1

��
p · · · 𝜕2r

𝜕z̄n𝜕zn

��
p

𝜕2r
𝜕z̄n𝜕z̄1

��
p · · · 𝜕2r

𝜕z̄n𝜕z̄n

��
p

𝜕2r
𝜕z1𝜕z1

��
p · · · 𝜕2r

𝜕z1𝜕zn

��
p

𝜕2r
𝜕z1𝜕z̄1

��
p · · · 𝜕2r

𝜕z1𝜕z̄n

��
p

...
. . .

...
...

. . .
...

𝜕2r
𝜕zn𝜕z1

��
p · · · 𝜕2r

𝜕zn𝜕zn

��
p

𝜕2r
𝜕zn𝜕z̄1

��
p · · · 𝜕2r

𝜕zn𝜕z̄n

��
p


=

[
Lp Zp
Zp Lt

p

]

M is (strictly if inequality strict) convex at p (really one side of M is) if

X∗
pHpXp ≥ 0 for all Xp ∈ ℂ ⊗ TpM.

A complex linear change of coordinates A : ℂn → ℂn acts like[
A 0
0 A

] ∗ [
L Z
Z Lt

] [
A 0
0 A

]
=

[
A∗LA AtZA
AtZA (A∗LA)t

]
.



11 / 12

Suppose M = {r = 0} as before, and p ∈ M.

Write the (full) Hessian of r at p as the Hermitian matrix

Hp =



𝜕2r
𝜕z̄1𝜕z1

��
p · · · 𝜕2r

𝜕z̄1𝜕zn

��
p

𝜕2r
𝜕z̄1𝜕z̄1

��
p · · · 𝜕2r

𝜕z̄1𝜕z̄n

��
p

...
. . .

...
...

. . .
...

𝜕2r
𝜕z̄n𝜕z1

��
p · · · 𝜕2r

𝜕z̄n𝜕zn

��
p

𝜕2r
𝜕z̄n𝜕z̄1

��
p · · · 𝜕2r

𝜕z̄n𝜕z̄n

��
p

𝜕2r
𝜕z1𝜕z1

��
p · · · 𝜕2r

𝜕z1𝜕zn

��
p

𝜕2r
𝜕z1𝜕z̄1

��
p · · · 𝜕2r

𝜕z1𝜕z̄n

��
p

...
. . .

...
...

. . .
...

𝜕2r
𝜕zn𝜕z1

��
p · · · 𝜕2r

𝜕zn𝜕zn

��
p

𝜕2r
𝜕zn𝜕z̄1

��
p · · · 𝜕2r

𝜕zn𝜕z̄n

��
p


=

[
Lp Zp
Zp Lt

p

]

M is (strictly if inequality strict) convex at p (really one side of M is) if

X∗
pHpXp ≥ 0 for all Xp ∈ ℂ ⊗ TpM.

A complex linear change of coordinates A : ℂn → ℂn acts like[
A 0
0 A

] ∗ [
L Z
Z Lt

] [
A 0
0 A

]
=

[
A∗LA AtZA
AtZA (A∗LA)t

]
.



11 / 12

Suppose M = {r = 0} as before, and p ∈ M.

Write the (full) Hessian of r at p as the Hermitian matrix

Hp =



𝜕2r
𝜕z̄1𝜕z1

��
p · · · 𝜕2r

𝜕z̄1𝜕zn

��
p

𝜕2r
𝜕z̄1𝜕z̄1

��
p · · · 𝜕2r

𝜕z̄1𝜕z̄n

��
p

...
. . .

...
...

. . .
...

𝜕2r
𝜕z̄n𝜕z1

��
p · · · 𝜕2r

𝜕z̄n𝜕zn

��
p

𝜕2r
𝜕z̄n𝜕z̄1

��
p · · · 𝜕2r

𝜕z̄n𝜕z̄n

��
p

𝜕2r
𝜕z1𝜕z1

��
p · · · 𝜕2r

𝜕z1𝜕zn

��
p

𝜕2r
𝜕z1𝜕z̄1

��
p · · · 𝜕2r

𝜕z1𝜕z̄n

��
p

...
. . .

...
...

. . .
...

𝜕2r
𝜕zn𝜕z1

��
p · · · 𝜕2r

𝜕zn𝜕zn

��
p

𝜕2r
𝜕zn𝜕z̄1

��
p · · · 𝜕2r
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Consider the Hessian Hp =

[
Lp Zp
Zp Lt

p

]
(an 2n × 2n matrix)

Lp =

[
𝜕2r

𝜕z̄k𝜕zℓ

���
p

]
kℓ

is called the complex Hessian (an n × n matrix).

For Xp ∈ T(1,0)
p M (n − 1 dimensional space),

X∗
pLpXp

is called the Levi-form at p.

Explicitly, Xp =

n∑
k=1

ak
𝜕

𝜕zk

��
p ∈ T(1,0)

p M iff Xpr =
n∑

k=1
ak

𝜕r
𝜕zk

��
p = 0,

and

X∗
pLpXp =

n∑
k=1,ℓ=1

ākaℓ
𝜕2r

𝜕z̄k𝜕zℓ

���
p
.

Exercise: Hp and Lp depend on the defining function r, but their
inertia on the tangent space does not change if we change the defining
function r. (Assume the new r is negative on the same side of M).
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