Singular Levi-flat hypersurfaces (1)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

$$z = x + iy,$$
 $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

$$z = x + iy,$$
 $\bar{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}$.

Exterior derivative leads to 1-forms

$$dz_{\ell} = dx_{\ell} + i \, dy_{\ell}, \qquad d\bar{z}_{\ell} = dx_{\ell} - i \, dy_{\ell}.$$

$$z = x + iy,$$
 $\bar{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}$.

Exterior derivative leads to 1-forms

$$dz_{\ell} = dx_{\ell} + i \, dy_{\ell}, \qquad d\bar{z}_{\ell} = dx_{\ell} - i \, dy_{\ell}.$$

Define the Wirtinger operators

$$\frac{\partial}{\partial z_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} - i \frac{\partial}{\partial y_{\ell}} \right), \qquad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + i \frac{\partial}{\partial y_{\ell}} \right).$$

$$z = x + iy,$$
 $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

Exterior derivative leads to 1-forms

$$dz_{\ell} = dx_{\ell} + i \, dy_{\ell}, \qquad d\bar{z}_{\ell} = dx_{\ell} - i \, dy_{\ell}.$$

Define the Wirtinger operators

$$\frac{\partial}{\partial z_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} - i \frac{\partial}{\partial y_{\ell}} \right), \qquad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + i \frac{\partial}{\partial y_{\ell}} \right).$$

These are determined by being the dual bases of dz and $d\bar{z}$

$$dz_k\left(\frac{\partial}{\partial z_\ell}\right) = \delta_\ell^k, \quad dz_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial z_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = \delta_\ell^k$$

$$z = x + iy,$$
 $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

Exterior derivative leads to 1-forms

$$dz_{\ell} = dx_{\ell} + i \, dy_{\ell}, \qquad d\bar{z}_{\ell} = dx_{\ell} - i \, dy_{\ell}.$$

Define the Wirtinger operators

$$\frac{\partial}{\partial z_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} - i \frac{\partial}{\partial y_{\ell}} \right), \qquad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + i \frac{\partial}{\partial y_{\ell}} \right).$$

These are determined by being the dual bases of dz and $d\bar{z}$

$$dz_k\left(\frac{\partial}{\partial z_\ell}\right) = \delta_\ell^k, \quad dz_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial z_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = \delta_\ell^k$$

 $f: U \subset \mathbb{C}^n \to \mathbb{C}$ is *holomorphic* if *f* satisfies

$$\frac{\partial f}{\partial \bar{z}_{\ell}} = 0 \quad \text{for } \ell = 1, 2, \dots, n \quad (\text{the Cauchy-Riemann (CR) equations})$$

$$z = x + iy,$$
 $\overline{z} = x - iy,$ $x, y \in \mathbb{R}^n,$ $i = \sqrt{-1}.$

Exterior derivative leads to 1-forms

$$dz_{\ell} = dx_{\ell} + i \, dy_{\ell}, \qquad d\bar{z}_{\ell} = dx_{\ell} - i \, dy_{\ell}.$$

Define the Wirtinger operators

$$\frac{\partial}{\partial z_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} - i \frac{\partial}{\partial y_{\ell}} \right), \qquad \frac{\partial}{\partial \bar{z}_{\ell}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + i \frac{\partial}{\partial y_{\ell}} \right).$$

These are determined by being the dual bases of dz and $d\bar{z}$

$$dz_k\left(\frac{\partial}{\partial z_\ell}\right) = \delta_\ell^k, \quad dz_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial z_\ell}\right) = 0, \quad d\bar{z}_k\left(\frac{\partial}{\partial \bar{z}_\ell}\right) = \delta_\ell^k$$

 $f: U \subset \mathbb{C}^n \to \mathbb{C}$ is *holomorphic* if *f* satisfies

$$\frac{\partial f}{\partial \bar{z}_{\ell}} = 0 \quad \text{for } \ell = 1, 2, \dots, n \quad (\text{the Cauchy-Riemann (CR) equations})$$

Write $\mathfrak{O}(U)$ for set of holomorphic functions on *U*.

We write a smooth (C^{∞}) function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ as $f(z, \overline{z})$.

$$x = \frac{z + \bar{z}}{2}, \qquad y = \frac{z - \bar{z}}{2i}$$

and it really does become a polynomial in z and \overline{z} .

$$x = \frac{z + \bar{z}}{2}, \qquad y = \frac{z - \bar{z}}{2i}$$

and it really does become a polynomial in z and \bar{z} . E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\overline{z}_1 - z_2^2 + 2z_2\overline{z}_2 - \overline{z}_2^2$$

f is holomorphic if it does not depend on \bar{z} .

$$x = \frac{z + \bar{z}}{2}, \qquad y = \frac{z - \bar{z}}{2i}$$

and it really does become a polynomial in z and \overline{z} . E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\overline{z}_1 - z_2^2 + 2z_2\overline{z}_2 - \overline{z}_2^2$$

f is holomorphic if it does not depend on \bar{z} .

If *f* is real-analytic (has a power series in *x* and *y*), then *f* has a power series in *z* and \bar{z} .

$$x = \frac{z + \bar{z}}{2}, \qquad y = \frac{z - \bar{z}}{2i}$$

and it really does become a polynomial in z and \overline{z} . E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\overline{z}_1 - z_2^2 + 2z_2\overline{z}_2 - \overline{z}_2^2$$

f is holomorphic if it does not depend on \bar{z} .

If *f* is real-analytic (has a power series in *x* and *y*), then *f* has a power series in *z* and \bar{z} .

f is holomorphic if the power series only has *z* terms.

$$x = \frac{z + \bar{z}}{2}, \qquad y = \frac{z - \bar{z}}{2i}$$

and it really does become a polynomial in z and \overline{z} . E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\overline{z}_1 - z_2^2 + 2z_2\overline{z}_2 - \overline{z}_2^2$$

f is holomorphic if it does not depend on \bar{z} .

If *f* is real-analytic (has a power series in *x* and *y*), then *f* has a power series in *z* and \overline{z} .

f is holomorphic if the power series only has *z* terms.

Treat *z* and \bar{z} as separate variables. $f(z, \bar{z})$ becomes $f(z, \xi)$. This is called *complexification*.

$$x = \frac{z + \bar{z}}{2}, \qquad y = \frac{z - \bar{z}}{2i}$$

and it really does become a polynomial in z and \overline{z} . E.g.,

$$2x_1 + 2y_1 + 4y_2^2 = (1 - i)z_1 + (1 + i)\overline{z}_1 - z_2^2 + 2z_2\overline{z}_2 - \overline{z}_2^2$$

f is holomorphic if it does not depend on \bar{z} .

If *f* is real-analytic (has a power series in *x* and *y*), then *f* has a power series in *z* and \overline{z} .

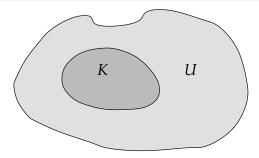
f is holomorphic if the power series only has *z* terms.

Treat *z* and \bar{z} as separate variables. $f(z, \bar{z})$ becomes $f(z, \xi)$. This is called *complexification*.

We must worry about convergence! More on all this later.

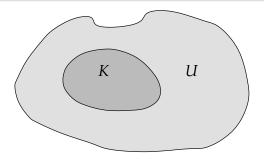
Theorem (Hartogs)

Let $U \subset \mathbb{C}^n$, $n \ge 2$, be a domain, and $K \subset C$ U be compact with $U \setminus K$ connected. If $f \in \mathfrak{S}(U \setminus K)$, then there exists a unique $F \in \mathfrak{S}(U)$ such that $F|_{U \setminus K} = f$.



Theorem (Hartogs)

Let $U \subset \mathbb{C}^n$, $n \ge 2$, be a domain, and $K \subset C$ U be compact with $U \setminus K$ connected. If $f \in \mathfrak{S}(U \setminus K)$, then there exists a unique $F \in \mathfrak{S}(U)$ such that $F|_{U \setminus K} = f$.



Note: Not every domain is a natural domain of definition for a holomorphic function. Geometry of the boundary plays a role!

Remark: f^{-1} is automatically holomorphic.

Remark: f^{-1} is automatically holomorphic.

Suppose f extends past the boundary of U. Then biholomorphic invariants of the boundary of U are invariants of the boundary of V.

Remark: f^{-1} is automatically holomorphic.

Suppose f extends past the boundary of U. Then biholomorphic invariants of the boundary of U are invariants of the boundary of V.

Example: $U = B(0, 2) \setminus B(0, 1)$. The outer (convex) and the inner (concave) boundaries have very different properties. In fact it is a form of "convexity" that we need to study to understand boundaries.

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial x_1} \Big|_p, \frac{\partial}{\partial y_1} \Big|_p, \dots, \frac{\partial}{\partial x_n} \Big|_p, \frac{\partial}{\partial y_n} \Big|_p \right\}.$$

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial x_1} \Big|_p, \frac{\partial}{\partial y_1} \Big|_p, \dots, \frac{\partial}{\partial x_n} \Big|_p, \frac{\partial}{\partial y_n} \Big|_p \right\}.$$

Then

$$\frac{\partial}{\partial z_k}\Big|_p, \frac{\partial}{\partial \bar{z}_k}\Big|_p \in \mathbb{C} \otimes T_p \mathbb{C}^n$$

and

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \frac{\partial}{\partial \overline{z}_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p, \frac{\partial}{\partial \overline{z}_n} \Big|_p \right\}.$$

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial x_1} \Big|_p, \frac{\partial}{\partial y_1} \Big|_p, \dots, \frac{\partial}{\partial x_n} \Big|_p, \frac{\partial}{\partial y_n} \Big|_p \right\}.$$

Then

$$\frac{\partial}{\partial z_k}\Big|_p, \frac{\partial}{\partial \bar{z}_k}\Big|_p \in \mathbb{C} \otimes T_p \mathbb{C}^n$$

and

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \frac{\partial}{\partial \overline{z}_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p, \frac{\partial}{\partial \overline{z}_n} \Big|_p \right\}.$$

Define

$$T_{p}^{(1,0)}\mathbb{C}^{n} \stackrel{\text{def}}{=} \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_{1}} \Big|_{p}, \dots, \frac{\partial}{\partial z_{n}} \Big|_{p} \right\}$$
$$T_{p}^{(0,1)}\mathbb{C}^{n} \stackrel{\text{def}}{=} \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \overline{z}_{1}} \Big|_{p}, \dots, \frac{\partial}{\partial \overline{z}_{n}} \Big|_{p} \right\}$$

(holomorphic vectors),

(antiholomorphic vectors).

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial x_1} \Big|_p, \frac{\partial}{\partial y_1} \Big|_p, \dots, \frac{\partial}{\partial x_n} \Big|_p, \frac{\partial}{\partial y_n} \Big|_p \right\}.$$

Then

$$\frac{\partial}{\partial z_k}\Big|_p, \frac{\partial}{\partial \bar{z}_k}\Big|_p \in \mathbb{C} \otimes T_p \mathbb{C}^n$$

and

$$\mathbb{C} \otimes T_p \mathbb{C}^n = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1} \Big|_p, \frac{\partial}{\partial \overline{z}_1} \Big|_p, \dots, \frac{\partial}{\partial z_n} \Big|_p, \frac{\partial}{\partial \overline{z}_n} \Big|_p \right\}$$

Define

$$T_{p}^{(1,0)}\mathbb{C}^{n} \stackrel{\text{def}}{=} \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_{1}}\Big|_{p}, \dots, \frac{\partial}{\partial z_{n}}\Big|_{p} \right\} \qquad (holomorphic vectors),$$
$$T_{p}^{(0,1)}\mathbb{C}^{n} \stackrel{\text{def}}{=} \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \overline{z}_{1}}\Big|_{p}, \dots, \frac{\partial}{\partial \overline{z}_{n}}\Big|_{p} \right\} \qquad (antiholomorphic vectors).$$

Then

$$\mathbb{C}\otimes T_p\mathbb{C}^n=T_p^{(1,0)}\mathbb{C}^n\oplus T_p^{(0,1)}\mathbb{C}^n.$$

Let $M \subset \mathbb{C}^n$ be a real smooth hypersurface.

$$M \cap U = \{z : r(z, \bar{z}) = 0\}.$$

$$M \cap U = \{z : r(z, \bar{z}) = 0\}$$

Then

$$T_pM = \{ X \in T_p\mathbb{C}^n : Xr = 0 \}.$$

$$M \cap U = \{z : r(z, \overline{z}) = 0\}$$

Then

$$T_pM = \{X \in T_p\mathbb{C}^n : Xr = 0\}.$$

Define

$$T_p^{(1,0)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and} \\ T_p^{(0,1)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)}\mathbb{C}^n).$$

$$M \cap U = \{z : r(z, \overline{z}) = 0\}$$

Then

$$T_pM = \{X \in T_p\mathbb{C}^n : Xr = 0\}.$$

Define

$$T_p^{(1,0)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and} \\ T_p^{(0,1)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)}\mathbb{C}^n).$$

Decompose $\mathbb{C} \otimes T_p M$ as

$$\mathbb{C} \otimes T_p M = T_p^{(1,0)} M \oplus T_p^{(0,1)} M \oplus B_p.$$

$$M \cap U = \{z : r(z, \overline{z}) = 0\}$$

Then

$$T_pM = \{X \in T_p\mathbb{C}^n : Xr = 0\}.$$

Define

$$T_p^{(1,0)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and} \\ T_p^{(0,1)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)}\mathbb{C}^n).$$

Decompose $\mathbb{C} \otimes T_p M$ as

$$\mathbb{C} \otimes T_p M = T_p^{(1,0)} M \oplus T_p^{(0,1)} M \oplus B_p.$$

 $B_p \cong {}^{\mathbb{C}} \otimes T_p M / T_p^{(1,0)} M \oplus T_p^{(0,1)} M \text{ is a one-dimensional space.}$

More explicitly,

$$X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p + b_k \frac{\partial}{\partial \overline{z}_k} \Big|_p \in \mathbb{C} \otimes T_p M \quad \Leftrightarrow \quad \sum_{k=1}^n a_k \frac{\partial r}{\partial z_k} \Big|_p + b_k \frac{\partial r}{\partial \overline{z}_k} \Big|_p = 0.$$

More explicitly,

$$X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p + b_k \frac{\partial}{\partial \bar{z}_k} \Big|_p \in \mathbb{C} \otimes T_p M \quad \Leftrightarrow \quad \sum_{k=1}^n a_k \frac{\partial r}{\partial z_k} \Big|_p + b_k \frac{\partial r}{\partial \bar{z}_k} \Big|_p = 0.$$

And

$$X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p \in T_p^{(1,0)} M \quad \Leftrightarrow \quad \sum_{k=1}^n a_k \frac{\partial r}{\partial z_k} \Big|_p = 0.$$

More explicitly,

$$X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p + b_k \frac{\partial}{\partial \bar{z}_k} \Big|_p \in \mathbb{C} \otimes T_p M \quad \Leftrightarrow \quad \sum_{k=1}^n a_k \frac{\partial r}{\partial z_k} \Big|_p + b_k \frac{\partial r}{\partial \bar{z}_k} \Big|_p = 0.$$

And

$$X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p \in T_p^{(1,0)} M \quad \Leftrightarrow \quad \sum_{k=1}^n a_k \frac{\partial r}{\partial z_k} \Big|_p = 0.$$

Example: Im $z_n = \frac{z_n - \overline{z}_n}{2i} = 0$ defines $M = \mathbb{C}^{n-1} \times \mathbb{R} \subset \mathbb{C}^n$.

$$T_{p}^{(1,0)}M = \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial z_{1}}\Big|_{p}, \dots, \frac{\partial}{\partial z_{n-1}}\Big|_{p}\right\} \quad T_{p}^{(0,1)}M = \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \overline{z}_{1}}\Big|_{p}, \dots, \frac{\partial}{\partial \overline{z}_{n-1}}\Big|_{p}\right\}$$
$$B_{p} = \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial x_{n}}\Big|_{p}\right\} = \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial (\operatorname{Re} z_{n})}\Big|_{p}\right\} = \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \overline{z}_{n}}\Big|_{p} + \frac{\partial}{\partial \overline{z}_{n}}\Big|_{p}\right\}$$

If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

$$T_p^{(1,0)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and}$$
$$T_p^{(0,1)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)}\mathbb{C}^n).$$

If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

$$T_p^{(1,0)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and}$$
$$T_p^{(0,1)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)}\mathbb{C}^n).$$

Now

$$\mathbb{C}\otimes T_pM=T_p^{(1,0)}M\oplus T_p^{(0,1)}M\oplus B_p.$$

If $T_p^{(1,0)}M$ and $T_p^{(0,1)}M$ have constant dimension as *p* ranges over *M*, then *M* is called a *CR* submanifold.

If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

$$T_p^{(1,0)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and}$$
$$T_p^{(0,1)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)}\mathbb{C}^n).$$

Now

$$\mathbb{C}\otimes T_pM=T_p^{(1,0)}M\oplus T_p^{(0,1)}M\oplus B_p.$$

If $T_p^{(1,0)}M$ and $T_p^{(0,1)}M$ have constant dimension as *p* ranges over *M*, then *M* is called a *CR* submanifold.

Remark: Every hypersurface is a CR submanifold (next slide).

If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

$$T_p^{(1,0)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and}$$
$$T_p^{(0,1)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)}\mathbb{C}^n).$$

Now

$$\mathbb{C}\otimes T_pM=T_p^{(1,0)}M\oplus T_p^{(0,1)}M\oplus B_p.$$

If $T_p^{(1,0)}M$ and $T_p^{(0,1)}M$ have constant dimension as *p* ranges over *M*, then *M* is called a *CR* submanifold.

Remark: Every hypersurface is a CR submanifold (next slide). **Example 1:** $M = \mathbb{R}^2 \subset \mathbb{C}^2$.

$$T_p^{(1,0)}M = \{0\}, \quad T_p^{(0,1)}M = \{0\}, \quad B_p = \mathbb{C} \otimes T_pM.$$

If $M \subset \mathbb{C}^n$ is a smooth real submanifold (any dimension), do the same:

$$T_p^{(1,0)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(1,0)}\mathbb{C}^n), \quad \text{and}$$
$$T_p^{(0,1)}M \stackrel{\text{def}}{=} (\mathbb{C} \otimes T_p M) \cap (T_p^{(0,1)}\mathbb{C}^n).$$

Now

$$\mathbb{C}\otimes T_pM=T_p^{(1,0)}M\oplus T_p^{(0,1)}M\oplus B_p.$$

If $T_p^{(1,0)}M$ and $T_p^{(0,1)}M$ have constant dimension as *p* ranges over *M*, then *M* is called a *CR* submanifold.

Remark: Every hypersurface is a CR submanifold (next slide). **Example 1:** $M = \mathbb{R}^2 \subset \mathbb{C}^2$.

$$T_p^{(1,0)}M = \{0\}, \quad T_p^{(0,1)}M = \{0\}, \quad B_p = \mathbb{C} \otimes T_pM.$$

Example 2: $M = \mathbb{C} \times \{0\} \subset \mathbb{C}^2$.

$$T_p^{(1,0)}M = \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial z_1}\Big|_p\right\}, \quad T_p^{(0,1)}M = \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial \overline{z}_1}\Big|_p\right\}, \quad B_p = \{0\}.$$

Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. After a translation and rotation via a unitary matrix, p = 0 and near the origin M is written in variables $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}$ $(w = z_n)$ as

$$\operatorname{Im} w = \varphi(z, \bar{z}, \operatorname{Re} w),$$

with the $\varphi(0)$ and $d\varphi(0) = 0$.

Suppose $M \subset \mathbb{C}^n$ is a smooth real hypersurface, $p \in M$. After a translation and rotation via a unitary matrix, p = 0 and near the origin M is written in variables $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}$ $(w = z_n)$ as

$$\operatorname{Im} w = \varphi(z, \bar{z}, \operatorname{Re} w),$$

with the $\varphi(0)$ and $d\varphi(0) = 0$.

Consequently

$$T_{0}^{(1,0)}M = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_{1}} \Big|_{0}, \dots, \frac{\partial}{\partial z_{n-1}} \Big|_{0} \right\},$$
$$T_{0}^{(0,1)}M = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \overline{z}_{1}} \Big|_{0}, \dots, \frac{\partial}{\partial \overline{z}_{n-1}} \Big|_{0} \right\},$$
$$B_{0} = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial (\operatorname{Re} w)} \Big|_{0} \right\}.$$

In particular, dim_C $T_p^{(1,0)}M = \dim_C T_p^{(0,1)}M = n - 1$ and dim_C $B_p = 1$.

Write the (full) *Hessian* of *r* at *p* as the Hermitian matrix

$$H_{p} = \begin{bmatrix} \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}\Big|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}\Big|_{p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}\Big|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}\Big|_{p} \\ \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}\Big|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}\Big|_{p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}\Big|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}\Big|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}\Big|_{p} \end{bmatrix} = \begin{bmatrix} L_{p} & \overline{Z_{p}} \\ Z_{p} & L_{p}^{t} \end{bmatrix}$$

Write the (full) *Hessian* of *r* at *p* as the Hermitian matrix

$$H_{p} = \begin{bmatrix} \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}|_{p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} \\ \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} \end{bmatrix}$$

M is (*strictly* if inequality strict) *convex* at *p* (really one side of *M* is) if

 $X_p^*H_pX_p \ge 0$ for all $X_p \in \mathbb{C} \otimes T_pM$.

Write the (full) *Hessian* of *r* at *p* as the Hermitian matrix

$$H_{p} = \begin{bmatrix} \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}|_{p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} \\ \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{n}}|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{1}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{1}}|_{p} & \cdots & \frac{\partial^{2}r}{\partial\overline{z}_{n}\partial\overline{z}_{n}}|_{p} \end{bmatrix}$$

M is (*strictly* if inequality strict) *convex* at *p* (really one side of *M* is) if

 $X_p^*H_pX_p \ge 0$ for all $X_p \in \mathbb{C} \otimes T_pM$.

A complex linear change of coordinates $A: \mathbb{C}^n \to \mathbb{C}^n$ acts like

$$\begin{bmatrix} A & 0 \\ 0 & \overline{A} \end{bmatrix}^* \begin{bmatrix} L & \overline{Z} \\ Z & L^t \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & \overline{A} \end{bmatrix} = \begin{bmatrix} A^*LA & \overline{A^tZA} \\ A^tZA & (A^*LA)^t \end{bmatrix}$$

$$L_p = \left[\frac{\partial^2 r}{\partial \bar{z}_k \partial z_\ell} \Big|_p \right]_{k\ell}$$

is called the *complex Hessian* (an $n \times n$ matrix).

 $L_{p} = \left[\frac{\partial^{2}r}{\partial \bar{z}_{k}\partial z_{\ell}}\Big|_{p}\right]_{k\ell} \quad \text{is called the$ *complex Hessian* $(an <math>n \times n$ matrix). For $X_{p} \in T_{p}^{(1,0)}M \quad (n-1 \text{ dimensional space}),$ $X_{p}^{*}L_{p}X_{p}$

is called the *Levi-form* at *p*.

 $L_{p} = \left[\frac{\partial^{2}r}{\partial \bar{z}_{k}\partial z_{\ell}}\Big|_{p}\right]_{k\ell} \quad \text{is called the$ *complex Hessian* $(an <math>n \times n$ matrix). For $X_{p} \in T_{p}^{(1,0)}M \quad (n-1 \text{ dimensional space}),$

 $X_p^*L_pX_p$

is called the *Levi-form* at *p*.

Explicitly,
$$X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p \in T_p^{(1,0)} M$$
 iff $X_p r = \sum_{k=1}^n a_k \frac{\partial r}{\partial z_k} \Big|_p = 0$,
and
 $X_p^* L_p X_p = \sum_{k=1}^n \bar{a}_k a_k \frac{\partial^2 r}{\partial \bar{z}_k \partial \bar{z}_k} \Big|_p$.

 $k=1, \ell=1$

 $L_{p} = \left[\frac{\partial^{2}r}{\partial \bar{z}_{k}\partial z_{\ell}}\Big|_{p}\right]_{k\ell} \quad \text{is called the$ *complex Hessian* $(an <math>n \times n$ matrix). For $X_{p} \in T_{p}^{(1,0)}M \quad (n-1 \text{ dimensional space}),$

 $X_p^*L_pX_p$

is called the *Levi-form* at *p*.

Explicitly,
$$X_p = \sum_{k=1}^n a_k \frac{\partial}{\partial z_k} \Big|_p \in T_p^{(1,0)} M$$
 iff $X_p r = \sum_{k=1}^n a_k \frac{\partial r}{\partial z_k} \Big|_p = 0$,
and
 $X_p^* L_p X_p = \sum_{k=1}^n \bar{a}_k a_\ell \frac{\partial^2 r}{\partial \bar{z}_k \partial \bar{z}_\ell} \Big|_p.$

 $k=1, \ell=1$

Exercise: H_p and L_p depend on the defining function r, but their inertia on the tangent space does not change if we change the defining function r. (Assume the new r is negative on the same side of M).