Singular Levi-flat hypersurfaces (4)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato

Small review:

Theorem of Cartan says that every smooth (nonsingular) real-analytic Levi-flat hypersurface can be *locally* realized as

 $\operatorname{Im} w = 0$

and the Levi foliation is given by $\{w = t\}$ for $t \in \mathbb{R}$.

Let $\alpha \in \mathbb{N}_0^n$ be a vector of nonnegative integers (where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$). We write

$$\begin{aligned} |\alpha| &= \alpha_1 + \alpha_2 + \dots + \alpha_n \\ z^{\alpha} &= z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n} \\ \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} &= \frac{\partial^{\alpha_1}}{\partial z_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial z_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_n}}{\partial z_n^{\alpha_n}} \end{aligned}$$

Let $\alpha \in \mathbb{N}_0^n$ be a vector of nonnegative integers (where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$). We write

$$|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n$$
$$z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}$$
$$\frac{\partial^{|\alpha|}}{\partial z^{\alpha}} = \frac{\partial^{\alpha_1}}{\partial z_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial z_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_n}}{\partial z_n^{\alpha_n}}$$

A power series in $z = (z_1, ..., z_n)$ can be written as

$$\sum_{\alpha} c_{\alpha} z^{\alpha}$$

Let $\alpha \in \mathbb{N}_0^n$ be a vector of nonnegative integers (where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$). We write

$$|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n$$
$$z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}$$
$$\frac{\partial^{|\alpha|}}{\partial z^{\alpha}} = \frac{\partial^{\alpha_1}}{\partial z_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial z_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_n}}{\partial z_n^{\alpha_n}}$$

A power series in $z = (z_1, ..., z_n)$ can be written as

$$\sum_{\alpha} c_{\alpha} z^{\alpha}$$

A power series in *z* and \bar{z} as

$$\sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$$

Let $V \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain, let the coordinates be $(z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n$, let

$$D = \left\{ (z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \bar{z} \right\},\$$

and suppose $D \cap V \neq \emptyset$. Suppose $f, g: V \to \mathbb{C}$ are holomorphic functions such that f = g on $D \cap V$. Then f = g on all of V.

D is called the *diagonal*.

Let $V \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain, let the coordinates be $(z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n$, let

$$D = \{ (z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \overline{z} \},\$$

and suppose $D \cap V \neq \emptyset$. Suppose $f, g: V \to \mathbb{C}$ are holomorphic functions such that f = g on $D \cap V$. Then f = g on all of V.

D is called the *diagonal*.

Proof: WLOG, g = 0.

Let $V \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain, let the coordinates be $(z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n$, let

$$D = \{ (z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \overline{z} \},\$$

and suppose $D \cap V \neq \emptyset$. Suppose $f, g: V \to \mathbb{C}$ are holomorphic functions such that f = g on $D \cap V$. Then f = g on all of V.

D is called the *diagonal*.

Proof: WLOG, g = 0. $f(z, \overline{z}) = 0$, so applying Wirtinger operators yields zero:

$$0 = \frac{\partial}{\partial \bar{z}_k} \Big[f(z, \bar{z}) \Big] = \frac{\partial f}{\partial \zeta_k} (z, \bar{z}) \quad \text{and} \quad 0 = \frac{\partial}{\partial z_k} \Big[f(z, \bar{z}) \Big] = \frac{\partial f}{\partial z_k} (z, \bar{z}).$$

Let $V \subset \mathbb{C}^n \times \mathbb{C}^n$ be a domain, let the coordinates be $(z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n$, let

$$D = \{ (z, \zeta) \in \mathbb{C}^n \times \mathbb{C}^n : \zeta = \overline{z} \},\$$

and suppose $D \cap V \neq \emptyset$. Suppose $f, g: V \to \mathbb{C}$ are holomorphic functions such that f = g on $D \cap V$. Then f = g on all of V.

D is called the *diagonal*.

Proof: WLOG, g = 0. $f(z, \bar{z}) = 0$, so applying Wirtinger operators yields zero:

$$0 = \frac{\partial}{\partial \bar{z}_k} \Big[f(z, \bar{z}) \Big] = \frac{\partial f}{\partial \zeta_k} (z, \bar{z}) \quad \text{and} \quad 0 = \frac{\partial}{\partial z_k} \Big[f(z, \bar{z}) \Big] = \frac{\partial f}{\partial z_k} (z, \bar{z}).$$

For all α and β ,

$$0 = \frac{\partial^{|\alpha|+|\beta|}}{\partial z^{\alpha} \partial \bar{z}^{\beta}} \Big[f(z,\bar{z}) \Big] = \frac{\partial^{|\alpha|+|\beta|} f}{\partial z^{\alpha} \partial \zeta^{\beta}} (z,\bar{z}).$$

So *f* has a zero power series and is zero by the identity theorem.

П

$$f(z,\bar{z}) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta},$$

the series

$$F(z,\zeta) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \zeta^{\beta}$$

converges in some neighborhood of the origin in $\mathbb{C}^n \times \mathbb{C}^n$.

$$f(z,\bar{z}) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta},$$

the series

$$F(z,\zeta) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \zeta^{\beta}$$

converges in some neighborhood of the origin in $\mathbb{C}^n \times \mathbb{C}^n$.

Exercise: If $f(z, \overline{z})$ converges (absolutely) for all $z \in U$, describe a neighborhood of the origin in $\mathbb{C}^n \times \mathbb{C}^n$ in which *F* converges.

$$f(z,\bar{z}) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta},$$

the series

$$F(z,\zeta) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \zeta^{\beta}$$

converges in some neighborhood of the origin in $\mathbb{C}^n \times \mathbb{C}^n$.

Exercise: If $f(z, \overline{z})$ converges (absolutely) for all $z \in U$, describe a neighborhood of the origin in $\mathbb{C}^n \times \mathbb{C}^n$ in which *F* converges.

By the Lemma, *F* is the unique extension of *f* that is holomorphic in $\mathbb{C}^n \times \mathbb{C}^n$.

$$f(z,\bar{z}) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta},$$

the series

$$F(z,\zeta) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \zeta^{\beta}$$

converges in some neighborhood of the origin in $\mathbb{C}^n \times \mathbb{C}^n$.

Exercise: If $f(z, \overline{z})$ converges (absolutely) for all $z \in U$, describe a neighborhood of the origin in $\mathbb{C}^n \times \mathbb{C}^n$ in which *F* converges.

By the Lemma, *F* is the unique extension of *f* that is holomorphic in $\mathbb{C}^n \times \mathbb{C}^n$.

As long as we are in the domain of convergence, we can treat f as F and treat z and \overline{z} as independent variables.

Write $U^* = \{z : \bar{z} \in U\}.$

Write $U^* = \{z : \overline{z} \in U\}.$

r has a power series at 0 in terms of *z* and \bar{z} : $r(z, \bar{z}) = \sum_{\alpha, \beta} c_{\alpha, \beta} z^{\alpha} \bar{z}^{\beta}$

Write $U^* = \{z : \overline{z} \in U\}.$

r has a power series at 0 in terms of *z* and \bar{z} : $r(z, \bar{z}) = \sum_{\alpha, \beta} c_{\alpha, \beta} z^{\alpha} \bar{z}^{\beta}$

Suppose *U* is small enough so that the power series for $r(z, \bar{z})$ converges in $U \times U^*$ treating \bar{z} separately. Can also assume that $dr \neq 0$ on $U \times U^*$.

Write $U^* = \{z : \overline{z} \in U\}.$

r has a power series at 0 in terms of *z* and \bar{z} : $r(z, \bar{z}) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$

Suppose *U* is small enough so that the power series for $r(z, \bar{z})$ converges in $U \times U^*$ treating \bar{z} separately. Can also assume that $dr \neq 0$ on $U \times U^*$.

The set $\Sigma_p = \Sigma_p(M, U) = \{z \in U : r(z, \overline{p}) = 0\}$ is called the *Segre variety*.

Write $U^* = \{z : \overline{z} \in U\}.$

r has a power series at 0 in terms of *z* and \bar{z} : $r(z, \bar{z}) = \sum_{\alpha,\beta} c_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$

Suppose *U* is small enough so that the power series for $r(z, \bar{z})$ converges in $U \times U^*$ treating \bar{z} separately. Can also assume that $dr \neq 0$ on $U \times U^*$.

The set $\Sigma_p = \Sigma_p(M, U) = \{z \in U : r(z, \overline{p}) = 0\}$ is called the *Segre variety*.

Exercise: If $dr \neq 0$ as above, show that $z \mapsto r(z, \bar{p})$ is not identically zero.

Suppose that $M = {\text{Im} f = 0}$ where Im f is a defining function for M (f holomorphic, f(0) = 0, $df \neq 0$)

Suppose that $M = {\text{Im} f = 0}$ where Im f is a defining function for M (f holomorphic, f(0) = 0, $df \neq 0$) so it divides r:

$$r(z,\bar{z}) = a(z,\bar{z}) \left(\operatorname{Im} f(z) \right) = a(z,\bar{z}) \frac{f(z) - \bar{f}(\bar{z})}{2i}$$

Suppose that $M = {\text{Im} f = 0}$ where Im f is a defining function for M (f holomorphic, f(0) = 0, $df \neq 0$) so it divides r:

$$r(z,\bar{z}) = a(z,\bar{z}) \left(\operatorname{Im} f(z) \right) = a(z,\bar{z}) \frac{f(z) - \bar{f}(\bar{z})}{2i}$$

Complexify and set $\bar{z} = 0$:

$$r(z,0) = a(z,0)\frac{f(z)}{2i}.$$

Suppose that $M = {\text{Im} f = 0}$ where Im f is a defining function for M (f holomorphic, f(0) = 0, $df \neq 0$) so it divides r:

$$r(z,\bar{z}) = a(z,\bar{z}) \left(\operatorname{Im} f(z) \right) = a(z,\bar{z}) \frac{f(z) - \bar{f}(\bar{z})}{2i}$$

Complexify and set $\bar{z} = 0$:

$$r(z,0) = a(z,0)\frac{f(z)}{2i}.$$

f(z) = 0 gives the leaf of the Levi-foliation through zero.

Suppose that $M = {\text{Im} f = 0}$ where Im f is a defining function for M (f holomorphic, f(0) = 0, $df \neq 0$) so it divides r:

$$r(z,\bar{z}) = a(z,\bar{z}) \left(\operatorname{Im} f(z) \right) = a(z,\bar{z}) \frac{f(z) - \bar{f}(\bar{z})}{2i}$$

Complexify and set $\bar{z} = 0$:

$$r(z,0) = a(z,0)\frac{f(z)}{2i}.$$

f(z) = 0 gives the leaf of the Levi-foliation through zero. That is, the set

$${z: r(z, 0) = 0}$$

contains (locally) the leaf of the Levi-foliation through the origin.

Suppose that $M = {\text{Im} f = 0}$ where Im f is a defining function for M (f holomorphic, f(0) = 0, $df \neq 0$) so it divides r:

$$r(z,\bar{z}) = a(z,\bar{z}) \left(\operatorname{Im} f(z) \right) = a(z,\bar{z}) \frac{f(z) - \bar{f}(\bar{z})}{2i}$$

Complexify and set $\bar{z} = 0$:

$$r(z,0) = a(z,0)\frac{f(z)}{2i}.$$

f(z) = 0 gives the leaf of the Levi-foliation through zero. That is, the set

$${z: r(z, 0) = 0}$$

contains (locally) the leaf of the Levi-foliation through the origin.

If $dr \neq 0$ (a defining function for *M*), then $a(0, 0) \neq 0$, and r(z, 0) = 0 is exactly (locally) the leaf of the foliation through zero.

Suppose that $M = {\text{Im} f = 0}$ where Im f is a defining function for M (f holomorphic, f(0) = 0, $df \neq 0$) so it divides r:

$$r(z,\bar{z}) = a(z,\bar{z}) \left(\operatorname{Im} f(z) \right) = a(z,\bar{z}) \frac{f(z) - \bar{f}(\bar{z})}{2i}$$

Complexify and set $\bar{z} = 0$:

$$r(z,0) = a(z,0)\frac{f(z)}{2i}.$$

f(z) = 0 gives the leaf of the Levi-foliation through zero. That is, the set

$${z: r(z, 0) = 0}$$

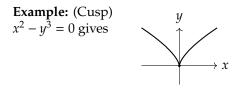
contains (locally) the leaf of the Levi-foliation through the origin.

If $dr \neq 0$ (a defining function for *M*), then $a(0, 0) \neq 0$, and r(z, 0) = 0 is exactly (locally) the leaf of the foliation through zero.

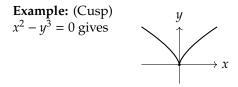
In other words, for $p \in M$, the Segre variety Σ_p is precisely the leaf of the Levi-foliation through p.

 $X \cap V = \{ p \in V : f(p) = 0 \text{ for all } f \in \mathcal{P}(V) \}.$

$$X \cap V = \{ p \in V : f(p) = 0 \text{ for all } f \in \mathcal{P}(V) \}.$$

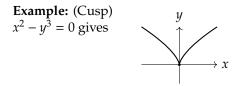


$$X \cap V = \{ p \in V : f(p) = 0 \text{ for all } f \in \mathcal{P}(V) \}.$$



We say *Y* is a subvariety of *X* if *Y* is a subvariety and $Y \subset X$.

$$X \cap V = \{ p \in V : f(p) = 0 \text{ for all } f \in \mathcal{P}(V) \}.$$



We say *Y* is a subvariety of *X* if *Y* is a subvariety and $Y \subset X$.

Example: $\{(0, 0)\}$ is a subvariety of the cusp (defining functions *x*, *y*).

 $X_{reg} = \{ p \in X : \exists \text{ neighborhood } V \text{ of } p, \\ \text{such that } V \cap X \text{ is a real-analytic submanifold} \}.$

 $X_{reg} = \{ p \in X : \exists \text{ neighborhood } V \text{ of } p, \\ \text{such that } V \cap X \text{ is a real-analytic submanifold} \}.$

The set of *singular points* is the complement:

$$X_{sing} = X \setminus X_{reg}$$

 $X_{reg} = \{ p \in X : \exists \text{ neighborhood } V \text{ of } p, \\ \text{such that } V \cap X \text{ is a real-analytic submanifold} \}.$

The set of *singular points* is the complement:

$$X_{sing} = X \setminus X_{reg}$$

At $p \in X_{reg}$, dim(X, p), is the real (resp. complex) dimension of the real-analytic (resp. complex) manifold at p.

 $X_{reg} = \{ p \in X : \exists \text{ neighborhood } V \text{ of } p, \\ \text{such that } V \cap X \text{ is a real-analytic submanifold} \}.$

The set of *singular points* is the complement:

$$X_{sing} = X \setminus X_{reg}$$

At $p \in X_{reg}$, dim(X, p), is the real (resp. complex) dimension of the real-analytic (resp. complex) manifold at p.

dim X is the maximum dimension at any regular point.

 $X_{reg} = \{ p \in X : \exists \text{ neighborhood } V \text{ of } p, \\ \text{such that } V \cap X \text{ is a real-analytic submanifold} \}.$

The set of singular points is the complement:

$$X_{sing} = X \setminus X_{reg}$$

At $p \in X_{reg}$, dim(X, p), is the real (resp. complex) dimension of the real-analytic (resp. complex) manifold at p.

dim X is the maximum dimension at any regular point.

dim(X, p) for $p \in X_{sing}$ is the minimum dim $X \cap V$ over all neighborhoods V of p.

 $X_{reg} = \{ p \in X : \exists \text{ neighborhood } V \text{ of } p, \\ \text{such that } V \cap X \text{ is a real-analytic submanifold} \}.$

The set of singular points is the complement:

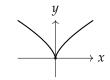
$$X_{sing} = X \setminus X_{reg}$$

At $p \in X_{reg}$, dim(X, p), is the real (resp. complex) dimension of the real-analytic (resp. complex) manifold at p.

dim X is the maximum dimension at any regular point.

dim(X, p) for $p \in X_{sing}$ is the minimum dim $X \cap V$ over all neighborhoods V of p.

Example: If X is the cusp $x^2 - y^3 = 0$, $X_{sing} = \{(0,0)\}$ and $\dim(X, p) = 1$ for all $p \in X$.



1) Subvarieties are closed subsets of *U*.

1) Subvarieties are closed subsets of *U*.

2) $\mathcal{P}(V)$ can be taken to be a finite set.

1) Subvarieties are closed subsets of *U*.

2) $\mathcal{P}(V)$ can be taken to be a finite set.

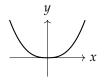
Exercise: Any real subvariety is the zero set of a single real-analytic function.

1) Subvarieties are closed subsets of *U*.

2) $\mathcal{P}(V)$ can be taken to be a finite set.

Exercise: Any real subvariety is the zero set of a single real-analytic function.

3) A singular real-analytic subvariety can be a C^k -manifold, e.g., $x^{2+3k} - y^3 = 0$ in \mathbb{R}^2 . E.g., if k = 2 we get the C^2 manifold

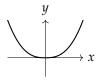


1) Subvarieties are closed subsets of *U*.

2) $\mathcal{P}(V)$ can be taken to be a finite set.

Exercise: Any real subvariety is the zero set of a single real-analytic function.

3) A singular real-analytic subvariety can be a C^k -manifold, e.g., $x^{2+3k} - y^3 = 0$ in \mathbb{R}^2 . E.g., if k = 2 we get the C^2 manifold



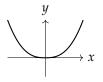
4) If *X* is complex-analytic, then X_{sing} is a complex-analytic subvariety. (zero set of derivatives of all holomorphic functions vanishing on *X*)

1) Subvarieties are closed subsets of *U*.

2) $\mathcal{P}(V)$ can be taken to be a finite set.

Exercise: Any real subvariety is the zero set of a single real-analytic function.

3) A singular real-analytic subvariety can be a C^k -manifold, e.g., $x^{2+3k} - y^3 = 0$ in \mathbb{R}^2 . E.g., if k = 2 we get the C^2 manifold



4) If *X* is complex-analytic, then X_{sing} is a complex-analytic subvariety. (zero set of derivatives of all holomorphic functions vanishing on *X*)

5) If *X* is real-analytic, then X_{sing} is "semi-analytic" (defined by equalities and inequalities), not necessarily a subvariety (not the zero set of derivatives).