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Small review:

Theorem of Cartan says that every smooth (nonsingular) real-analytic
Levi-flat hypersurface can be locally realized as

Im w = 0

and the Levi foliation is given by {w = t} for t ∈ ℝ.
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We will make use of the multi-index notation.

Let 𝛼 ∈ ℕn
0 be a vector of nonnegative integers (where ℕ0 = ℕ ∪ {0}).

We write

|𝛼 | = 𝛼1 + 𝛼2 + · · · + 𝛼n

z𝛼 = z𝛼1
1 z𝛼2

2 · · · z𝛼n
n

𝜕|𝛼 |

𝜕z𝛼
=

𝜕𝛼1

𝜕z𝛼1
1

𝜕𝛼2

𝜕z𝛼2
2

· · · 𝜕𝛼n

𝜕z𝛼n
n

A power series in z = (z1 , . . . , zn) can be written as∑
𝛼

c𝛼z𝛼

A power series in z and z̄ as ∑
𝛼,𝛽

c𝛼,𝛽z𝛼 z̄𝛽
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Lemma
Let V ⊂ ℂn ×ℂn be a domain, let the coordinates be (z, 𝜁) ∈ ℂn ×ℂn, let

D =
{
(z, 𝜁) ∈ ℂn ×ℂn : 𝜁 = z̄

}
,

and suppose D ∩ V ≠ ∅. Suppose f , g : V → ℂ are holomorphic functions
such that f = g on D ∩ V. Then f = g on all of V.

D is called the diagonal.

Proof: WLOG, g = 0.
f (z, z̄) = 0, so applying Wirtinger operators yields zero:

0 =
𝜕

𝜕z̄k

[
f (z, z̄)

]
=

𝜕f
𝜕𝜁k

(z, z̄) and 0 =
𝜕

𝜕zk

[
f (z, z̄)

]
=

𝜕f
𝜕zk

(z, z̄).

For all 𝛼 and 𝛽,

0 =
𝜕|𝛼 |+|𝛽 |

𝜕z𝛼𝜕z̄𝛽
[
f (z, z̄)

]
=

𝜕|𝛼 |+|𝛽 |f
𝜕z𝛼𝜕𝜁𝛽

(z, z̄).

So f has a zero power series and is zero by the identity theorem. □
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Given a convergent power series

f (z, z̄) =
∑
𝛼,𝛽

c𝛼,𝛽z𝛼 z̄𝛽 ,

the series
F(z, 𝜁) =

∑
𝛼,𝛽

c𝛼,𝛽z𝛼𝜁𝛽

converges in some neighborhood of the origin in ℂn ×ℂn.

Exercise: If f (z, z̄) converges (absolutely) for all z ∈ U, describe a
neighborhood of the origin in ℂn ×ℂn in which F converges.

By the Lemma, F is the unique extension of f that is holomorphic in
ℂn ×ℂn.

As long as we are in the domain of convergence, we can treat f as F
and treat z and z̄ as independent variables.



5 / 10

Given a convergent power series

f (z, z̄) =
∑
𝛼,𝛽

c𝛼,𝛽z𝛼 z̄𝛽 ,

the series
F(z, 𝜁) =

∑
𝛼,𝛽

c𝛼,𝛽z𝛼𝜁𝛽

converges in some neighborhood of the origin in ℂn ×ℂn.

Exercise: If f (z, z̄) converges (absolutely) for all z ∈ U, describe a
neighborhood of the origin in ℂn ×ℂn in which F converges.

By the Lemma, F is the unique extension of f that is holomorphic in
ℂn ×ℂn.

As long as we are in the domain of convergence, we can treat f as F
and treat z and z̄ as independent variables.



5 / 10

Given a convergent power series

f (z, z̄) =
∑
𝛼,𝛽

c𝛼,𝛽z𝛼 z̄𝛽 ,

the series
F(z, 𝜁) =

∑
𝛼,𝛽

c𝛼,𝛽z𝛼𝜁𝛽

converges in some neighborhood of the origin in ℂn ×ℂn.

Exercise: If f (z, z̄) converges (absolutely) for all z ∈ U, describe a
neighborhood of the origin in ℂn ×ℂn in which F converges.

By the Lemma, F is the unique extension of f that is holomorphic in
ℂn ×ℂn.

As long as we are in the domain of convergence, we can treat f as F
and treat z and z̄ as independent variables.



5 / 10

Given a convergent power series

f (z, z̄) =
∑
𝛼,𝛽

c𝛼,𝛽z𝛼 z̄𝛽 ,

the series
F(z, 𝜁) =

∑
𝛼,𝛽

c𝛼,𝛽z𝛼𝜁𝛽

converges in some neighborhood of the origin in ℂn ×ℂn.

Exercise: If f (z, z̄) converges (absolutely) for all z ∈ U, describe a
neighborhood of the origin in ℂn ×ℂn in which F converges.

By the Lemma, F is the unique extension of f that is holomorphic in
ℂn ×ℂn.

As long as we are in the domain of convergence, we can treat f as F
and treat z and z̄ as independent variables.



6 / 10

Suppose r : U → ℝ is a real-analytic defining function for M ⊂ U,
that is, M = r−1(0) and dr ≠ 0 on M, and 0 ∈ M.

Write U∗ = {z : z̄ ∈ U}.

r has a power series at 0 in terms of z and z̄: r(z, z̄) =
∑
𝛼,𝛽

c𝛼,𝛽z𝛼 z̄𝛽

Suppose U is small enough so that the power series for r(z, z̄)
converges in U × U∗ treating z̄ separately. Can also assume that dr ≠ 0
on U × U∗.

The set Σp = Σp(M,U) = {z ∈ U : r(z, p̄) = 0} is called the Segre variety.

Exercise: If dr ≠ 0 as above, show that z ↦→ r(z, p̄) is not identically
zero.
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Suppose M is a Levi-flat hypersurface near the origin, and r is a
real-analytic function that vanishes on M.

Suppose that M = {Im f = 0} where Im f is a defining function for M
(f holomorphic, f (0) = 0, df ≠ 0) so it divides r:

r(z, z̄) = a(z, z̄)
(
Im f (z)

)
= a(z, z̄) f (z) − f̄ (z̄)

2i
Complexify and set z̄ = 0:

r(z, 0) = a(z, 0) f (z)2i
.

f (z) = 0 gives the leaf of the Levi-foliation through zero.

That is, the set
{z : r(z, 0) = 0}

contains (locally) the leaf of the Levi-foliation through the origin.

If dr ≠ 0 (a defining function for M), then a(0, 0) ≠ 0, and r(z, 0) = 0 is
exactly (locally) the leaf of the foliation through zero.

In other words, for p ∈ M, the Segre variety Σp is precisely the leaf of
the Levi-foliation through p.
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If dr ≠ 0 (a defining function for M), then a(0, 0) ≠ 0, and r(z, 0) = 0 is
exactly (locally) the leaf of the foliation through zero.

In other words, for p ∈ M, the Segre variety Σp is precisely the leaf of
the Levi-foliation through p.
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Let U ⊂ ℝk (respectively U ⊂ ℂk) be an open set. The set X ⊂ U is a
real-analytic subvariety (resp. a complex-analytic subvariety) of U if for
each point p ∈ U, there exists a neighborhood V ⊂ U of p and a set of
real-analytic (resp. holomorphic) functions P(V) such that

X ∩ V = {p ∈ V : f (p) = 0 for all f ∈ P(V)}.

Example: (Cusp)
x2 − y3 = 0 gives

x

y

We say Y is a subvariety of X if Y is a subvariety and Y ⊂ X.

Example: {(0, 0)} is a subvariety of the cusp (defining functions x, y).
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Write Xreg ⊂ X be the set of points which are regular, that is,

Xreg = {p ∈ X : ∃ neighborhood V of p,
such that V ∩ X is a real-analytic submanifold}.

The set of singular points is the complement:

Xsing = X \ Xreg

At p ∈ Xreg, dim(X, p), is the real (resp. complex) dimension of the
real-analytic (resp. complex) manifold at p.

dim X is the maximum dimension at any regular point.

dim(X, p) for p ∈ Xsing is the minimum dim X ∩ V over all
neighborhoods V of p.

Example: If X is the cusp x2 − y3 = 0,
Xsing = {(0, 0)} and
dim(X, p) = 1 for all p ∈ X. x

y
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Notes:

1) Subvarieties are closed subsets of U.

2) P(V) can be taken to be a finite set.

Exercise: Any real subvariety is the zero set of a single real-analytic
function.

3) A singular real-analytic subvariety can be a Ck-manifold, e.g.,
x2+3k − y3 = 0 in ℝ2. E.g., if k = 2 we get the C2 manifold

x

y

4) If X is complex-analytic, then Xsing is a complex-analytic subvariety.
(zero set of derivatives of all holomorphic functions vanishing on X)

5) If X is real-analytic, then Xsing is “semi-analytic” (defined by
equalities and inequalities), not necessarily a subvariety (not the zero
set of derivatives).
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