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Small review:

Theorem of Cartan says that every smooth (nonsingular) real-analytic
Levi-flat hypersurface can be locally realized as

Imw=0

and the Levi foliation is given by {w = t} for t € R.



We will make use of the multi-index notation.
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A power series in z = (21, . .., z4) can be written as
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Lemma
Let V c C" x C" be a domain, let the coordinates be (z, ) € C" x C", let
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and suppose DNV # 0. Suppose f,g: V — C are holomorphic functions
suchthat f =gon DNV. Thenf = gonall of V.

D is called the diagonal.
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Lemma
Let V c C" x C" be a domain, let the coordinates be (z, ) € C" x C", let

D={(z,0) eC"xC": =13},

and suppose D NV # (0. Suppose f,g: V — C are holomorphic functions
suchthatf =gon DNV. Thenf =gonall of V.

D is called the diagonal.

Proof: WLOG, g = 0.
f(z,2) = 0, so applying Wirtinger operators yields zero:
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So f has a zero power series and is zero by the identity theorem. O
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Given a convergent power series

f(z,2) = Z capz°2F,
ap

the series
F(z,0) = ) capz*CF
a,p

converges in some neighborhood of the origin in C* x C".

Exercise: If f(z, Z) converges (absolutely) for all z € U, describe a
neighborhood of the origin in C" X C" in which F converges.

By the Lemma, F is the unique extension of f that is holomorphic in
c"xCn.

As long as we are in the domain of convergence, we can treat f as F
and treat z and Z as independent variables.
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that is, M = r"1(0) and dr # 0 on M, and 0 € M.
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Suppose r: U — R is a real-analytic defining function for M c U,
that is, M = r"1(0) and dr # 0 on M, and 0 € M.

Write U* = {z:z € U}.
r has a power series at 0 in terms of z and z: 7(z,z) = Z ca,ﬁzaiﬁ
ap

Suppose U is small enough so that the power series for 7(z, Z)
converges in U X U" treating Z separately. Can also assume that dr # 0
on U x U".

The set ), = L,(M, U) = {z € U : r(z, p) = 0} is called the Segre variety.

Exercise: If dr # 0 as above, show that z — r(z, p) is not identically
Zero.
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Suppose that M = {Imf = 0} where Imf is a defining function for M
(f holomorphic, f(0) = 0, df # 0) so it divides r:

"(z,2) = a(z,2)(Imf(2)) = a(z, )f(z) f(Z)

Complexify and set z = 0:

r(z,0) = a(z O)f( 2)

f(z) = 0 gives the leaf of the Levi-foliation through zero.

That is, the set
{z :7(z,0) = 0}

contains (locally) the leaf of the Levi-foliation through the origin.

If dr # 0 (a defining function for M), then a(0,0) # 0, and r(z,0) = 0 is
exactly (locally) the leaf of the foliation through zero.

In other words, for p € M, the Segre variety X, is precisely the leaf of
the Levi-foliation through p.
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Let U C RF (respectively U C C*) be an open set. The set X c U isa
real-analytic subvariety (resp. a complex-analytic subvariety) of U if for
each point p € U, there exists a neighborhood V' c U of p and a set of
real-analytic (resp. holomorphic) functions %(V) such that

XNV={peV:f(p)=0forallf e P(V)}.

Example: (Cusp) y
x? —y3 = 0 gives

We say Y is a subvariety of X if Y is a subvariety and Y C X.

Example: {(0,0)} is a subvariety of the cusp (defining functions x, y).
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Write X, C X be the set of points which are regular, that is,

Xreg = {p € X : Ineighborhood V of p,
such that V N X is a real-analytic submanifold}.

The set of singular points is the complement:
Xsing =X\ Xreg

At p € Xy, dim(X, p), is the real (resp. complex) dimension of the
real-analytic (resp. complex) manifold at p.

dim X is the maximum dimension at any regular point.

dim(X, p) for p € Xsing is the minimum dim X NV over all
neighborhoods V of p.

Example: If X is the cusp x? — 3 = 0, Y

st'ng ={(0,0)} and
dim(X,p) =1forallp € X.
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Notes:
1) Subvarieties are closed subsets of U.
2) (V) can be taken to be a finite set.

Exercise: Any real subvariety is the zero set of a single real-analytic
function.

3) A singular real-analytic subvariety can be a C‘-manifold, e.g.,
X2tk — 13 = 0in R2. E.g., if k = 2 we get the C> manifold

y

4) If X is complex-analytic, then X, is a complex-analytic subvariety.
(zero set of derivatives of all holomorphic functions vanishing on X)

5) If X is real-analytic, then X, is “semi-analytic” (defined by
equalities and inequalities), not necessarily a subvariety (not the zero
set of derivatives).



