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Small review:

Given a variety X ⊂ U ⊂ ℂn defined by 𝜌(z, z̄) converging in U × U∗,
the Segre variety is

Σp = Σp(X,U) = {z ∈ U : 𝜌(z, p̄) = 0} = {z ∈ U : (z, p̄) ∈ X= 0}

If X is a real hypersurface in ℂn, then Σp is usually a complex
(n − 1)-dimensional subvariety.

If Σp is n dimensional, X is said to be Segre degenerate.
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Segre varieties possess some nice symmetry.

As 𝜌(z, z̄) is ℝk-valued,

𝜌(z, z̄) = 𝜌(z, z̄) = 𝜌̄(z̄, z)

𝜌(z, w̄) = 𝜌̄(w̄, z) 𝜌(z, w̄) = 𝜌(w, z̄)
𝜌(z, w̄) = 0 ⇔ 𝜌(w, z̄) = 0.

(Assume perhaps U = U∗)

So (z, 𝜉) ∈ X ⇔ (𝜉̄, z̄) ∈ X

Or q ∈ Σp(X,U) ⇔ p ∈ Σq(X,U)

So for a hypersurface, Segre degenerate at p means

q ∈ Σp(X,U) for all q, or equivalently

p ∈ Σq(X,U) for all q
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Definition:
Suppose U ⊂ ℂn is open and X ⊂ U is an irreducible real subvariety
of dimension 2n − 1 (hypersurface, or hypervariety).

Let X∗ be the set of 2n − 1 dimensional regular points.

We say X is Levi-flat if X∗ is Levi-flat at all points.
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Example: (Cone)

X ⊂ ℂ2 given by
𝜌(z,w, z̄, w̄) = |z|2 − |w|2 = zz̄ − ww̄ = 0.

Xsing = {0}.

Suppose p = (z0 ,w0) = (re𝜃 , rei𝜓) ∈ Xreg.
Then Σp is given by

zz̄0 − ww̄0 = 0 or z = w ei(𝜓−𝜃)

So Σp ⊂ X is the leaf of the Levi-foliation for all p ∈ X \ {0}.

The Levi-foliation is the set of lines through the origin, which is the
Segre degenerate point.

Σ0 = ℂ2 (⊄ X)
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Example:
X ⊂ ℂn given by

𝜌(z, z̄) = Im(z2
1 + z2

2 + · · · + z2
k) = 0.

Xsing = {z1 = z2 = · · · = zk = 0}, so n − k dimensional complex
submanifold.

Suppose p = z0 = (z0
1 , . . . , z

0
n) ∈ X

Then Σp is given by
z2

1 + z2
2 + · · · + z2

k = (z0
1)2 + (z0

2)2 + · · · + (z0
k)

2 (right hand side real)

Σp ⊂ X gives the leaves of the Levi-foliation.

Σ0 = {z2
1 + · · · + z2

k = 0} is singular.

(If n = k = 2, then Σ0 is the union of lines z1 = iz2 and z1 = −iz2)
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Example: (Brunella, ’07)
Let z = x + iy, w = s + it, and define X ⊂ ℂ2 by

t2 − 4(y2 + s)y2 = 0

Could write it as a “graph” t = ±2y
√
(y2 + s)

This is again an “umbrella” where the “stick” is {t = y = 0, s < 0}

Xsing = {t = y = 0, s ≥ 0}
(maximally totally-real 2-dimensional submanifold, a piece of ℝ2).

Exercise: X is Levi-flat.

Segre varieties maybe a bit harder to write down, the one through the
origin is given by

w2 + (z2 − 2w)z2 = 0
(and if I did it correctly, it is still in X)

Remark: Σp is not always guaranteed to be a subset of X for a
Levi-flat even if it is not degenerate, just one of its components.
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Theorem: If X ⊂ U ⊂ ℂn is a singular Levi-flat hypervariety, then for
each p ∈ U ∩ X∗, there exists a germ of a complex analytic
hypersurface (L, p) such that (L, p) ⊂ (X, p).

Sketch of proof: True at points q ∈ X∗. Extend these germs to
complex hypersurfaces in a fixed neighborhood of p, and take a
“limit” of these germs in a smart way using Segre varieties. □

In other words, all components of U \ X∗ are pseudoconvex.
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In other words, all components of U \ X∗ are pseudoconvex.
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Proposition: (Burns–Gong, ’99) If X ⊂ U ⊂ ℂn is an irreducible
hypervariety and is Levi-flat in a neighborhood of some point of X∗,
then it is Levi-flat (Levi-flat at all points of X∗).

Proof: (sketchy) First we can find a 𝜌 such that X = {𝜌 = 0} and
d𝜌 ≠ 0 on an open dense subset of X∗.

{𝜌 = 0} is Levi-flat where d𝜌 ≠ 0 when the

bordered complex Hessian
[
𝜌 𝜌z
𝜌z̄ 𝜌zz̄

]
is of rank ≤ 2.

That is given by some determinants vanishing.

These determinants vanish on some open subset of X∗ and hence
those complexified determinants vanish on an open subset of X, and
as X is also irreducible, they vanish on all of Xand hence on all of X.

Thus X∗ is Levi-flat on an open dense set.

As the Levi-form is continuous, X∗ is Levi-flat at all points. □
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A holomorphic one-form
𝜔 = f1 dz1 + · · · + fn dzn

is integrable if 𝜔 ∧ d𝜔 = 0.

Near points where 𝜔 ≠ 0, the kernel of 𝜔 gives an involutive n − 1
dimensional subbundle of T(1,0)ℂn, and so the holomorphic Frobenius
theorem gives a holomorphic foliation.

We say 𝜔 gives a singular holomorphic foliation of codimension 1.

The singularity is the set where f1 = · · · = fn = 0.

A set X is invariant for 𝜔 if following leaves of 𝜔 does not leave X
(so X is a union of leaves).

Levi-flat hypersurfaces often arise as invariant sets of holomorphic
foliations. However, not all Levi-flat hypersurfaces admit an
extension of the Levi-foliation into a holomorphic foliation of a
neighborhood (the Brunella ’07 example).
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A very quick incomplete survey of a few more known results. Here
suppose that X ⊂ U ⊂ ℂn is a Levi-flat real-analytic subvariety of
dimension 2n − 1 (hypersurface) and p ∈ X.

(Burns–Gong, ’99) Normal form for quadratic Levi-flats, and partial
solution to the normal form in general. E.g., if X is given by
Im(z2

1 + · · · + z2
n) +O(3) = 0, it is biholomorphic to Im(z2

1 + · · · + z2
n) = 0.

Normal forms in more cases were found in several more recent
papers by Fernández-Pérez.

(—, ’13) (Cerveau–Lins Neto, ’11) If dim Xsing < 2n − 4 or
dim Xsing = 2n − 4 and p is not dicritical (finitely many leaves through
p), then the Levi-foliation extends to a singular holomorphic foliation.

(—, ’13) The singularity is Levi-flat. More precisely: The top
dimensional stratum of Xsing ∩ X∗ is Levi-flat.

(Shafikov–Sukhov, ’15) If X is algebraic or not dicritical, the
Levi-foliation extends as a d-web (d-valued singular holo. foliation).

(Pinchuk–Shafikov–Sukhov, ’18) X is Segre degenerate at p if and only
if the Levi-foliation is dicritical at p.
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