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TOTALLY-REAL PLANES IN C2
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Abstract. In this paper we discuss local polynomial convexity at the origin of the
union of three totally-real planes in C2. The planes, say P0, P1, P2 satisfy a mild
transversality condition: P0 ∩ Pj = {0}, j = 1, 2, which enables us to view them in
Weinstock’s normal form, i.e., P0 = R2 and Pj = M(Aj) := (Aj + iI)R2, j = 1, 2,
where each Aj is a 2 × 2 matrix with real entries. Weinstock solved the problem
completely for two totally-real planes (in fact, for pairs of transverse, maximally
totally-real subspaces of Cn ∀n ≥ 2). Using Weinstock’s ideas for simplifying the
model for P1∪P2∪P3, we provide an open condition for the local polynomial convexity
at 0 ∈ C2 of the union of three totally-real planes.

1. Introduction and statement of results

Let K be a compact subset of Cn. The polynomially convex hull of K is defined

by K̂ := {z ∈ Cn : |p(z)| ≤ supK |p|, p ∈ C[z1, . . . , zn]}. K is said to be polynomially

convex if K̂ = K. We say that a closed subset E of Cn is locally polynomially convex
at p ∈ E if E ∩B(p; r) is polynomially convex for some r > 0 (here, B(p; r) denotes the
open ball in Cn with centre p and radius r). In general, it is very difficult to determine
whether a given compact subset of Cn, n ≥ 2, is polynomially convex. Weinstock [5]
studied local polynomial convexity, at 0 ∈ Cn, of the union of a pair of maximal totally-
real subspaces of Cn intersecting transversely at the origin. This paper is inspired by
[5]. We consider the union of three totally-real planes in C2 intersecting at 0 ∈ C2,
with a mild transversality condition (by “mild” we mean that not all the three pairs of
planes need to be mutually transverse). In this setting we shall give an open condition
that is sufficient for such a union of totally-real planes to be locally polynomially convex
at 0 ∈ C2. Let us, however, make a brief survey of known results in this direction and
make the above setting a bit more formal.

It is easy to show that if M is a totally-real subspace of Cn, then any compact subset
of M is polynomially convex. Hence, let us now consider P0 ∪P1, where P0 and P1 are
two transverse totally-real n-dimensional subspaces of Cn. Applying a C-linear change
of coordinate, we can assume that P0 = Rn. A careful look at the second subspace
under the same change of coordinate gives us P1 = (A + iI)Rn for some A ∈ Rn×n

(see [5] for details). We shall call this form for the pair of totally-real subspaces as
Weinstock’s normal form. We now state Weinstock’s theorem.

Result 1.1 (Weinstock). Let P0 and P1 be two totally-real subspaces of Cn of maximal
dimension intersecting only at 0 ∈ Cn. Denote the normal form for this pair as:

P0 : Rn,

P1 : (A+ iI)Rn.
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P0 ∪ P1 is locally polynomially convex at the origin if and only if A has no purely
imaginary eigenvalue of modulus greater than 1.

No analogue of Weinstock’s theorem is known for more than two totally-real sub-
spaces. Even in C2, the problem of generalizing Weinstock’s characterization does not
seem any simpler. The works of Pascal Thomas [3, 4] give us some sense of the diffi-
culties involved. In [3] Thomas gave an example of a one-parameter family of triples
(P ε

0 , P
ε
1 , P

ε
2 ) of totally-real planes in C2, intersecting at 0 ∈ C2, showing that poly-

nomial convexity of each pairwise union at the origin does not imply the polynomial
convexity of the union at the origin (see Result 2.3). In fact, he showed that for the

above triples (P ε
0 , P

ε
1 , P

ε
2 ), the polynomial hull of (∪2j=0P

ε
j )∩B(0; r), r > 0, contains an

open set in C2. On the other hand, Thomas also found in [4, Proposition 10] examples
of N -tuples of totally-real planes containing 0 ∈ C2, for each N ≥ 2, whose union is
locally polynomially convex at the origin. In this paper we present sufficient conditions
for the local polynomial convexity of the union of three totally-real planes containing
0 ∈ C2.

We shall follow several of Weinstock’s ideas to our problem. One of the ideas is to
focus on a certain normal form for the given union of planes. By exactly the same
arguments as in [5], we can find a C-linear change of coordinate relative to which:

P0 : R2

Pj : M(Aj) = (Aj + iI)R2, j = 1, 2, (1.1)

where A1, A2 ∈ R2×2. (In this paper we shall refer to a C-linear operator and its matrix
representation relative to the standard basis of Cn interchangeably.) We shall call (1.1)
Weinstock’s normal form for {P0, P1, P2}. Now, it is easy to see that if (P0, P1, P2) is
a triple of totally-real planes with P0 ∩ Pj = {0}, j = 1, 2 (with one of the three being
designated as P0 in case all three planes are mutually transverse), then the matrices
A1 and A2 associated to Weinstock’s normal form for the triple (P0, P1, P2) is unique.
In short, every triple (P0, P1, P2) of totally-real planes with P0 ∩ Pj = {0}, j = 1, 2,
is parametrized by a pair of matrices. Let us define (for matrices A and B, we shall
denote AB −BA as [A,B])

Ω :=
{

(A1, A2) ∈ (R2×2)2 : det[A1, A2] 6= 0, #σ(A1) = 2 and i /∈ σ(Aj) ∀j
}
.

It is clear that (R2×2)2 \ Ω has Lebesgue measure zero. In the following theorem we
will study the triples of totally-real planes parametrized by Ω. Let Θ,Λ be functions
from R2×2 × R2×2 to R defined by

Θ(A,B) := detA(TrB)2 + TrAB(TrAB − TrATrB),

Λ(A,B) := 4det(AB)− 1
4(TrATrB)2.

We are now in a position to state the main theorem of this paper.

Theorem 1.2. Let P0, P1, P2 be three totally-real planes containing 0 ∈ C2. Assume
P0 ∩ Pj = {0} for j = 1, 2. Hence, let Weinstock’s normal form for {P0, P1, P2} be

P0 : R2

Pj : M(Aj) = (Aj + iI)R2, j = 1, 2,

and assume (A1, A2) belongs to parameter domain Ω. Assume further that the pairwise
unions of P0, P1, P2 are locally polynomially convex at 0 ∈ C2. Given j ∈ {1, 2}, let jC

denote the other element in {1, 2}. Then:
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(i) Let σ(Aj) ⊂ R, j = 1, 2. If

either detAjdet[A1, A2] > 0, j = 1, 2,

or detAjdet[A1, A2] < 0 and (detAj)Θ(Aj , AjC) < 0 for some j ∈ {1, 2},

then P0 ∪ P1 ∪ P2 is locally polynomially convex at 0 ∈ C2.
(ii) Suppose σ(A1) ⊂ R and σ(A2) ⊂ C \ R. If

either detA1det[A1, A2] < 0 and (detA1)Θ(A1, A2) < 0

or Θ(A1, A2) < Λ(A1, A2),

then P0 ∪ P1 ∪ P2 is locally polynomially convex at 0 ∈ C2.

(iii) Suppose σ(Aj) ⊂ C\R, j = 1, 2. If Θ(Aj , AjC) < Λ(A1, A2) for some j ∈ {1, 2},
then P0 ∪ P1 ∪ P2 is locally polynomially convex at 0 ∈ C2.

The above conditions are optimal in the sense that, writing Ω∗  Ω to be set of
pairs (A1, A2) ∈ Ω that satisfy the conditions in (i) or (ii) or (iii) above, there is a
one-parameter family of triples (P ε

0 , P
ε
1 , P

ε
2 ) parametrized by (Aε

1, A
ε
2) ∈ Ω \ Ω∗ such

that

• pairwise unions of P ε
0 , P

ε
1 , P

ε
2 are locally polynomially convex at the origin;

• the union of the above planes is not locally polynomially convex at 0 ∈ C2; and
• (Aε

1, A
ε
2)→ ∂Ω∗ (considered as a subset of Ω) as ε↘ 0.

Lest the hypotheses of Theorem 1.2 make it seem very technical, we present a corol-
lary to the above theorem that has appealing, concise hypothesis.

Corollary 1.3. Let P0, P1, P2 be three totally-real planes containing 0 ∈ C2. Assume
P0 ∩ Pj = {0} for j = 1, 2. Hence, let Weinstock’s normal form for {P0, P1, P2} be

P0 : R2

Pj : M(Aj) = (Aj + iI)R2, j = 1, 2,

where Aj ∈ R2×2. Let the pairwise unions of P0, P1, P2 be locally polynomially convex
at 0 ∈ C2. Then P0 ∪ P1 ∪ P2 is locally polynomially convex at 0 ∈ C2 if either one of
the following conditions holds:

(i) det[A1, A2] > 0 and detAj > 0, j = 1, 2,

(ii) det[A1, A2] < 0 and detAj < 0, j = 1, 2.

The above result turns out to be a special case of Theorem 1.2 because the conditions
in Corollary 1.3 imply that A1, A2 must have real eigenvalues. We present the details
in Section 4.

The reader might wonder what happens when we drop the condition of det[A1, A2] 6=
0 in Corollary 1.3. When det[A1, A2] = 0, we can tell precisely when P0 ∪ P1 ∪ P2 is
locally polynomially convex at 0 ∈ C2. However, this situation is non-generic in the
space of triples of totally-real planes in C2. Hence, we shall address this issue — indeed,
we can handle a certain non-generic family of N -tuples of totally-real planes, N ≥ 3
— in a forthcoming work.

2. Technical preliminaries

We shall require some preliminaries to set the stage for proving the theorems. First,
we state a lemma from Weinstock’s paper [5] — whose proof is quite easy — that allows
us to conjugate the matrices coming from Weinstock’s normal form by real nonsingular
matrices.
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Lemma 2.1. Let T be an invertible linear operator on Cn whose matrix representation
with respect to the standard basis is an n × n matrix with real entries. Then T maps
M(A) ∪ Rn onto M(TAT−1) ∪ Rn.

Next, we state a lemma by Kallin [1] (also see [2]), which we shall use repeatedly. It
deals with the polynomial convexity of the union of two polynomially convex sets.

Lemma 2.2 (Kallin). Let K1 and K2 be two compact polynomially convex subsets
in Cn. Suppose L1 and L2 are two compact polynomially convex subsets of C with
L1∩L2 = {0}. Suppose further that there exists a holomorphic polynomial P satisfying
the following conditions:

(i) P (K1) ⊂ L1 and P (K2) ⊂ L2; and
(ii) P−1{0} ∩ (K1 ∪K2) is polynomially convex.

Then K1 ∪K2 is polynomially convex.

Let us now state a result by Thomas [3] which will play the key role in our argument
in the proof of the concluding part of Theorem 1.2.

Result 2.3 (Thomas, [3]). There exist three pairwise transversal totally-real planes
Pj , 0 ≤ j ≤ 2, in C2 passing through origin such that:

(i) Pj ∪ Pk is locally polynomially convex at 0 ∈ C2 for all j 6= k;

(ii) ((P0 ∪ P1 ∪ P2) ∩ B(0; 1) )̂ contains an open ball in C2.

Note that, in the statement (ii) of the above theorem, the radius of the closed ball has
no significant role. Since the set P0 ∪ P1 ∪ P2 is invariant under all real dilations, (ii)
would hold true with any B(0; r), r > 0, replacing the unit ball. We will see some more
discussions on these planes [3] in Section 3.

We now prove a couple of lemmas that will be used in the proof of Theorem 1.2.
Both the lemmas are linear algebraic in nature. We start by stating a well-known result
from linear algebra.

Lemma 2.4. Let A ∈ R2×2 and suppose A has non-real eigenvalues p±iq. Then, there
exists S ∈ GL(2,R) such that

S−1AS =

(
p −q
q p

)
.

Lemma 2.5. Let A1, A2 ∈ R2×2. Suppose A1 has two distinct eigenvalues. Then
∃T ∈ GL(2,R) such that:

(i) If A1 has real eigenvalues and det[A1, A2] 6= 0, then

TA1T
−1 =

(
λ1 0
0 λ2

)
and TA2T

−1 =

(
s21 t2
t2 s22

)
or

(
s21 −t2
t2 s22

)
for λj , s2j , t2 ∈ R, j = 1, 2,

(ii) If A1 has non-real eigenvalues, then

TA1T
−1 =

(
s1 −t1
t1 s1

)
and TA2T

−1 =

(
s21 −t2
t2 s22

)
for sj , s2j , tj ∈ R, j = 1, 2.

Proof. (i) Since A1 has two distinct real eigenvalues, A1 is diagonalizable over R, i.e.
there exists a S ∈ GL(2,R) such that

SA1S
−1 =

(
λ1 0
0 λ2

)
, λ1 6= λ2 ∈ R.
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Hence, without loss of generality, we can assume that A1 =

(
λ1 0
0 λ2

)
. Suppose A2 =(

s21 t1
t2 s22

)
, tj , s2j ∈ R for j = 1, 2. Observe that, t1t2 = 0⇔ det[A1, A2] = 0. Hence,

neither t1 nor t2 is zero. We have, since A1 commutes with all diagonal matrices, that

GA1G
−1 = A1 for G =

(
g1 0
0 g2

)
, where g1g2 6= 0. We also have, after conjugating A2

by G, that

GA2G
−1 =

(
s21 t1g1/g2

t2g2/g1 s22

)
. (2.1)

Now observe that if t1 and t2 are of same sign, then there exist g1, g2 ∈ R \ {0} such
that t1g

2
1 = t2g

2
2. Therefore, in this case, t̃2 := t1g1/g2 = t2g2/g1, and we conclude from

(2.1) that GA2G
−1 =

(
s21 t̃2
t̃2 s22

)
. If t1 and t2 are of different sign, then there exist

g1, g2 ∈ R \ {0} such that t1g
2
1 + t2g

2
2 = 0. Therefore, in this case, the above argument,

but with t̃2 := −t1g1/g2 = t2g2/g1, gives the desired conclusion.

(ii) Since A1 has non-real eigenvalues, say s1 ± it1, in view of Lemma 2.4, we may

assume that A1 =

(
s1 −t1
t1 s1

)
. Let A2 =

(
m1 m2

m3 m4

)
, mj ∈ R, j = 1, 2, 3, 4, with

m2 +m3 6= 0; otherwise, there is nothing to prove.

We observe that A1 commutes with all the matrices having the same structure as

that of itself. Let G :=

(
g1 −g2
g2 g1

)
with g1, g2 ∈ R, g21+g22 = 1 and g1g2 6= 0. Therefore,

GA1G
−1 = A1, and

GA2G
−1 =

(
g1 −g2
g2 g1

)(
m1 m2

m3 m4

)(
g1 g2
−g2 g1

)
=

(
g21m1 − g1g2(m2 +m3) + g22m4 g21m2 + g1g2(m1 −m4)− g22m3

g21m3 + g1g2(m1 −m4)− g22m2 g22m1 + g1g2(m2 +m3) + g21m4

)
=:

(
f1(g1, g2) f2(g1, g2)
f3(g1, g2) f4(g1, g2)

)
.

Viewing f2(g1, g2) + f3(g1, g2) = 0 as a quadratic equation in g1, g2 we get:

(m2 +m3)(g
2
1 − g22) + 2(m1 −m4)g1g2 = 0.

Since m2 + m3 6= 0 and g1g2 6= 0, the above is equivalent to the following quadratic
equation in µ := g1/g2:

µ2 + 2
m1 −m4

m2 +m3
µ− 1 = 0. (2.2)

The discriminant of the above quadratic is 4
(
m1−m4
m2+m3

)2
+ 4, which is greater than zero

for all mj ∈ R, j = 1, 2, 3, 4. Hence (2.2) has a real root, say µ1. Therefore, taking

G =

(
µ1 −1
1 µ1

)
, we have the desired conclusion. �

3. The proof of Theorem 1.2

The proof of Theorem 1.2: Throughout this proof our computations will involve con-
jugates of A1, A2 by an appropriate T ∈ GL(2,R). Also, for simplicity of notation, we
shall denote the planes T (Pj) as Pj , j = 0, 1, 2.

(i) The treatment of this part falls into two cases depending on the hypothesis.
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Case I. When detAjdet[A1, A2] > 0, j = 1, 2.

We now divide the proof of this case into two subcases depending on the sign of
det[A1, A2].

Sub-case (a) When det[A1, A2] > 0.

Note that, since det[A1, A2] > 0, we have detAj > 0, j = 1, 2. First, we shall prove two
claims to reduce the pair of matrices (A1, A2) into simpler form, which will enable us
to use Kallin’s lemma.

Claim 1. If det[A1, A2] > 0, then each Aj has distinct eigenvalues.

Proof of Claim 1. Suppose A1 does not have distinct eigenvalues. Let σ(A1) = {λ1}.
As A1 ∈ R2×2, λ1 ∈ R. Thus, there exists T ∈ GL(2,R) such that

TA1T
−1 =

(
λ1 µ
0 λ1

)
.

Let us write TA2T
−1 =

(
a b
c d

)
. Then, by a simple computation, we see that

det[TA1T
−1, TA2T

−1] = −c2µ2 ≤ 0,

which is a contradiction.

Claim 2. If det[A1, A2] > 0, then there exists a T ∈ GL(2,R) such that

TA1T
−1 =

(
λ1 0
0 λ2

)
, TA2T

−1 =

(
s21 t2
t2 s22

)
.

Proof of Claim 2. In view of Claim 1, we conclude that the eigenvalues of A1 are
real and distinct. Hence, applying Part (i) of Lemma 2.5, we get that there exists
T ∈ GL(2,R) such that

TA1T
−1 =

(
λ1 0
0 λ2

)
, and TA2T

−1 =

(
s21 t2
t2 s22

)
or

(
s21 −t2
t2 s22

)
.

Suppose TA2T
−1 =

(
s21 −t2
t2 s22

)
. Again calculating the commutator, we note that

det[TA1T
−1, TA2T

−1] = −t22(λ2 − λ1)2 ≤ 0,

which is a contradiction. Hence the claim.

We can now resume the proof of Part (i) of Theorem 1.2. In view of Claim 2, we
always get a T ∈ GL(2,R) such that

TA1T
−1 =

(
λ1 0
0 λ2

)
, and TA2T

−1 =

(
s21 t2
t2 s22

)
.

Let Kj = Pj ∩ B(0; 1), j = 0, 1, 2. We shall use Kallin’s lemma to show the polynomial
convexity of K0 ∪K, where K := K1 ∪K2. By our hypothesis on pairwise unions and
by homogeneity, K is polynomially convex. Let us consider the polynomial F (z, w) =
z2 + w2. Clearly,

F (K0) ⊂ {z ∈ C : z ≥ 0}. (3.1)

For (z, w) ∈ K1, we have

F (z, w) = F ((λ1 + i)x, (λ2 + i)y) = (λ21 − 1)x2 + (λ22 − 1)y2 + 2i(λ1x
2 + λ2y

2), (3.2)
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and, for (z, w) ∈ K2,

F (z, w) = F ((s21 + i)x+ t2y, t2x+ (s22 + i)y)

= (s221 + t22 − 1)x2 + (s222 + t22 − 1)y2 + 2(s21 + s22)t2xy

+ 2i(s21x
2 + s22y

2 + 2t2xy). (3.3)

By hypothesis, we have

detA1 = det(TA1T
−1) > 0 =⇒ λ1λ2 > 0, (3.4)

detA2 = det(TA2T
−1) > 0 =⇒ s21s22 − t22 > 0. (3.5)

In view of (3.4) and (3.5), equations (3.2) and (3.3) give us F (K) ⊂ (C \ R) ∪ {0}.
Therefore, in view of (3.1), we get

F̂ (K0) ∩ F̂ (K) = {0}, (3.6)

and

F−1{0} ∩ (K0 ∪K) = {0}. (3.7)

Therefore, from (3.6) and (3.7), all the conditions of Lemma 2.2 are satisfied. Hence,
K0 ∪K is polynomially convex.

Sub-case (b) When det[A1, A2] < 0.

We note that, since det[A1, A2] < 0, detAj < 0, j = 1, 2. Again, for this part, we need
to obtain simpler form of the matrices.

Claim 3. It suffices to work with the union R2 ∪M(A1) ∪M(A2), where:

A1 =

(
λ1 0
0 λ2

)
and A2 =

(
s21 −t2
t2 s22

)
.

Proof of Claim 3. Since detAj < 0 for j = 1, 2, each Aj must have real distinct
eigenvalues. Hence, in view of Lemma 2.5, we can find a T ∈ GL(2,R) such that

TA1T
−1 =

(
λ1 0
0 λ2

)
and TA2T

−1 =

(
s21 t2
t2 s22

)
or

(
s21 −t2
t2 s22

)
,

for λj , s2j , t2 ∈ R, j = 1, 2. Let Aj = TAjT
−1 for j = 1, 2. With the first alternative

for A2, we get det[A1, A2] = det[A1,A2] = (λ1−λ2)2t22 > 0, which is a contradiction to
the assumption that det[A1, A2] < 0. Hence,

A2 =

(
s21 −t2
t2 s22

)
.

The claim follows from Lemma 2.1.

Write Kj = Pj ∩ B(0; 1), j = 0, 1, 2. We now show that K0 ∪ K is polynomially
convex, where K = K1 ∪K2. Consider the polynomial F (z, w) = z2 − w2. Clearly,

F (K0) ⊂ R ⊂ C. (3.8)

For (z, w) ∈ K1, we have

F (z, w) = F ((λ1 + i)x, (λ2 + i)y)

= (λ21 − 1)x2 + (1− λ22)y2 + 2i(λ1x
2 − λ2y2), (3.9)
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and, for (z, w) ∈ K2,

F (z, w) = F ((s21 + i)x− t2y, t2x+ (s22 + i)y)

= (s221 − t22 − 1)x2 + (1− s222 + t22)y
2 − 2(s21 + s22)t1xy

+ 2i(s21x
2 − s22y2 − 2t2xy). (3.10)

We now show that F̂ (K) ∩ F̂ (K0) = {0}. We have

detA1 < 0 =⇒ λ1λ2 < 0, (3.11)

detA2 < 0 =⇒ s21s22 + t22 < 0. (3.12)

In view of (3.11) and (3.12), expressions (3.9) and (3.10) give us F (K) ⊂ (C\R)∪{0}.
Hence, in view of (3.8), we have

F̂ (K) ∩ F̂ (K0) = {0} and F−1{0} ∩K = {0}.
We also have F−1{0} ∩K0 = {(x, y) ∈ K0 : x = ±y}. Hence, F−1{0} ∩ (K ∪K0) is
polynomially convex. Therefore, by Lemma 2.2, we are done.

Case II. When detAjdet[A1, A2] < 0 and (detAj)Θ(Aj , AjC) < 0 for some j ∈ {1, 2}
We have σ(Aj) ⊂ R, j = 1, 2. The hypothesis in this case of Part (i) is symmetric in
j ∈ {1, 2}. Hence, we can assume that j = 1. We again divide the proof into two cases
depending on the sign of det[A1, A2].

Sub-case (a) When det[A1, A2] > 0.

Since det[A1, A2] > 0, in view of Claim 2 in the proof of Case I above, there exists a
T ∈ GL(2,R) such that

TA1T
−1 =

(
λ1 0
0 λ2

)
and TA2T

−1 =

(
s21 t2
t2 s22

)
.

Let Kj = Pj ∩B(0; 1), j = 0, 1, 2, and write K := K1 ∪K2. We shall show K ∪K0 is
polynomially convex by using Kallin’s lemma. As discussed above, K is polynomially
convex. Consider the polynomial F (z, w) = z2−w2. Clearly, (3.8) and (3.9) hold as K1

and the polynomial that we have considered here is same as in Sub-case (b) of Case I
above. For (z, w) ∈ K2:

F (z, w) = F ((s21 + i)x+ t2y, t2x+ (s22 + i)y)

= (s221 − t22 − 1)x2 + (1 + t22 − s222)y2 + 2t2(s21 + s22)xy + 2i(s21x
2 − s22y2)

(3.13)

Since det[A1, A2] > 0, it follows from our hypothesis and the observation at the
beginning of Case II that detA1 < 0 and Θ(A1, A2) > 0. Note:

detA1 < 0 =⇒ λ1λ2 < 0, (3.14)

Θ(A1, A2) > 0 =⇒ s21s22 < 0. (3.15)

Therefore, in view of (3.14) and (3.15), we have from (3.8), (3.9) and (3.13) that

F (K) ⊂ (C \ R) ∪ {0} and F−1{0} ∩K = {0}.
Hence,

F̂ (K) ∩ F̂ (K0) = {0}.
We also have F−1{0} ∩ K0 = {(x, y) ∈ K0 : x = ±y}. Hence, F−1{0} ∩ (K ∪ K0)
is polynomially convex. Therefore, all the conditions of Kallin’s lemma are satisfied.
Hence, K ∪K0 is polynomially convex.
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Sub-case (b) When det[A1, A2] < 0.

In view of det[A1, A2] < 0, we have, by applying Part (i) of Lemma 2.5, that there
exists a T ∈ GL(2,R) such that

TA1T
−1 =

(
λ1 0
0 λ2

)
and TA2T

−1 =

(
s21 −t2
t2 s22

)
(i.e., the second alternative for TA2T

−1 cannot occur since det[A1, A2] < 0).

As above, let Kj = Pj∩B(0; 1), j = 0, 1, 2, and K = K1∪K2. This time, we consider
the polynomial F (z, w) = z2 + w2. When (z, w) ∈ K1, F (z, w) is as in equation (3.2),
and, for (z, w) ∈ K2,

F (z, w) = F ((s21 + i)x− t2y, t2x+ (s22 + i)y)

= (s221 + t22 − 1)x2 + (s222 + t22 − 1)y2 + 2(s22 − s21)t2xy + 2i(s21x
2 + s22y

2).
(3.16)

Since det[A1, A2] < 0, our hypothesis forces detA1 > 0, and

detA1 > 0 =⇒ λ1λ2 > 0. (3.17)

Furthermore Θ(A1, A2) < 0, and

Θ(A1, A2) < 0 =⇒ s21s22 > 0. (3.18)

In view of equations (3.17) and (3.18), the expressions in (3.1), (3.2) and (3.16) give
us F (K) ⊂ (C \ R) ∪ {0}, whence,

F̂ (K0) ∩ F̂ (K) = {0}.
We also have F−1{0}∩ (K0∪K) = {0}. Therefore, all the conditions of Kallin’s lemma
are satisfied. Hence K0 ∪K is polynomially convex.

(ii) We shall divide the proof into two cases depending on two different hypotheses.

Case I.When detA1det[A1, A2] < 0 and (detA1)Θ(A1, A2) < 0.

Since A1 has real distinct eigenvalues, we can invoke Part (i) of Lemma 2.5 to get that
there exists a T ∈ GL(2,R) such that

TA1T
−1 =

(
λ1 0
0 λ2

)
and TA2T

−1 =

(
s21 t2
t2 s22

)
or

(
s21 −t2
t2 s22

)
.

Since σ(A2) ⊂ C \ R, we have TA2T
−1 =

(
s21 −t2
t2 s22

)
. As before, using these special

conjugacy representatives, we see that

det[A1, A2] = det[TA1T
−1, TA2T

−1] = −t22(λ1 − λ2)2 < 0.

Hence, we have the forms of the matrices to be the same as in Sub-case (b) of Case II
of Part (i). Also, as det[A1, A2] < 0, we have detA1 > 0 and Θ(A1, A2) < 0. Hence, all
the inputs are the same as for the proof of Sub-case (b) of Case II of Part (i). Hence,
that proof works here too.

Case II. When Θ(A1, A2) < Λ(A1, A2).

Since σ(A2) ⊂ C\R, applying Part (ii) of Lemma 2.5, we get that ∃T ∈ GL(2,R) such
that

TA2T
−1 =

(
s1 −t1
t1 s1

)
and TA1T

−1 =

(
s21 −t2
t2 s22

)
.

Write Kj = Pj ∩ B(0; 1), j = 0, 1, 2. We shall again use Kallin’s lemma to show the
polynomial convexity of K0 ∪K1 ∪K2. Consider the polynomial F (z, w) = z2 + w2.
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When (z, w) ∈ K0, F (z, w) is as in (3.1). For (z, w) ∈ K1, F (z, w) is as in equa-
tion (3.16), and for (z, w) ∈ K2, we have

F (z, w) = F ((s1 + i)x− t1y, t1x+ (s1 + i)y)

= (s21 + t21 − 1)(x2 + y2) + 2is1(x
2 + y2). (3.19)

Let K = K1∪K2. Recall: from homogeneity of the totally-real planes and the hypoth-
esis that the pairwise unions of the given totally-real planes are locally polynomially
convex at the origin, K is polynomially convex. By hypotheses, we get that

Θ(A1, A2) < Λ(A1, A2) =⇒ s21s22 > 0 (3.20)

Hence, in view of (3.20), (3.1), (3.19) and (3.16), we conclude that

F (K0) ⊂ {z ∈ C : z ≥ 0}, F (K) ⊂ (C \ R) ∪ {0},

and F−1{0} ∩ (K0 ∪ K) = {0}. Therefore, by Lemma 2.2, K0 ∪ K is polynomially
convex.

(iii) In this case, we are given that σ(Ak) ⊂ C \ R, k = 1, 2. Suppose

Θ(Aj , AjC) < Λ(A1, A2) for some j ∈ {1, 2}.

We may assume without loss of generality that j = 1. Invoking Part (ii) of Lemma 2.5,
we get that there exists a T ∈ GL(2,R) such that

TA2T
−1 =

(
s1 −t1
t1 s1

)
and TA1T

−1 =

(
s21 −t2
t2 s22

)
.

Hence, the forms of the matrices are same as in Case II of the proof of Part (ii). We
also note that the hypothesis in (ii) rendered in terms of s1, s21, s22, t1 and t2 is same
as that of Case II of Part (ii). Hence, the same proof is valid.

We now address the concluding part of this theorem. For ε > 0 small enough,
consider the following planes:

P ε
0 : R2

P ε
j : (Aε

j + iI)R2, j = 1, 2,

where Aε
j ∈ R2×2 have the following form:

Aε
1 =

(
ε√

3(1+ε)
1

1+ε

− 1
1−ε − ε√

3(1−ε)

)
and Aε

2 =

(
− ε√

3(1+ε)
1

1+ε

− 1
1−ε

ε√
3(1−ε)

)
. (3.21)

The above triples are obtained by applying the C-linear change of coordinate (z, w) 7−→
(z + w, i(w − z)) to a class of triples of totally-real graphs studied by P. Thomas [3]
in proving Result 2.3. Hence, the pairwise unions of the above totally-real planes are
locally polynomially convex at 0 but their union is not locally polynomially convex at
0. We now show that show that (Aε

1, A
ε
2) ∈ Ω \ Ω∗ and (Aε

1, A
ε
2)→ ∂Ω∗ as ε→ 0.

An elementary computation gives:

σ(Aε
1) =

{
−ε2 +

√
4ε2 − 3√

3(1− ε2)
,
−ε2 −

√
4ε2 − 3√

3(1− ε2)

}
,

σ(Aε
2) =

{
ε2 +

√
4ε2 − 3√

3(1− ε2)
,
ε2 −

√
4ε2 − 3√

3(1− ε2)

}
.
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Clearly, for ε : 0 < ε� 1, (Aε
1, A

ε
2) ∈ Ω. Now, from (iii) (read in the contrapositive)

in the statement of Theorem 1.2 and Result 2.3, we already know that (Aε
1, A

ε
2) /∈ Ω∗

∀ε : 0 < ε� 1. It is easy to see that det[Aε
1, A

ε
2] 6= 0 ∀ε > 0. Hence,

(Aε
1, A

ε
2) ∈ Ω \ Ω∗ ∀ε : 0 < ε� 1.

Now observe that:

lim
ε→0

Aε
j =

(
0 1
−1 0

)
=: A0

j , j = 1, 2.

Now consider the family (Bε
1, B

ε
2) ∈ Ω∗: Bε

1 =

(
ε −1
1 ε

)
, Bε

2 =

(
ε −1
1 2ε

)
, ε > 0. Here,

(Bε
1, B

ε
2) satisfies the conditions in (iii); note that Λ(Bε

1, B
ε
2) − Θ(Bε

1, B
ε
2) = 2ε2 > 0.

Also, limε→0B
ε
j = A0

j , j = 1, 2. Therefore, (A0
1, A

0
2) ∈ ∂Ω∗. �

4. The proof of Corollary 1.3

For the proof of Corollary 1.3, we first need the following claim:

Claim. If det[A1, A2] > 0, then Aj cannot have non-real eigenvalues, j = 1, 2.

Proof of Claim. Suppose A1 has non-real eigenvalues. Then, with T as in Lemma 2.5,
it follows that

det[TA1T
−1, TA2T

−1] = −t21(s22 − s21)2 ≤ 0.

This is a contradiction, whence the claim.

Also note that in case detAj < 0, Aj must have distinct real eigenvalues, j = 1, 2.
We see that, under either hypothesis, we can invoke Part (i) of Theorem 1.2. Hence
the result follows.
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