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In the construction of reticular frameworks of any dimension 
the geometry and bonding capability of the building units, and 
the self-correction capability of the reversible linkages between 

them, are crucial aspects1,2. Through dynamic covalent chemistry, 
a wide variety of organic cages (zero-dimensional) and two- and 
three-dimensional covalent organic frameworks have been synthe-
sized3–6. However, controlling the periodic arrangement of covalent 
bonds in extended one-dimensional solids is still in its infancy. 
Nanotubes are one group of such covalently bonded structures 
where limited synthetic approaches have been developed7,8. These 
one-dimensional hollow tubular nanostructures are attractive for 
applications in electronic devices, energy storage, catalysis, mem-
brane separation and biosensors9–11. Carbon nanotubes (CNTs) are 
the most explored members of this family due to their electronic 
and mechanical properties. CNTs are generally synthesized by roll-
ing two-dimensional graphite sheets along their edges by various 
methods, including arc discharge, electrolysis, chemical vapour 
deposition, plasma torch and hydrothermal techniques12–18. These 
methods demand harsh reaction conditions and high temperatures. 
Furthermore, the incorporation of predesigned functionalities is 
difficult due to the insolubility of CNTs in common organic solvents.

Although self-assembly and disassembly have been shown to lead 
to such nanotubular architectures19–21, it has remained challenging 
to control their size on the nanoscale, and to control their morphol-
ogy and composition. One of the main challenges in the bottom-up 
synthesis of such self-assembled nanostructures is the need to simul-
taneously control their structure and their morphology. In particu-
lar, a variation in composition of the building blocks can alter the 
system’s nanoscopic assembly and in turn the overall morphology 

of the resulting structures—making the systematic tuning of their 
size or shape difficult22,23. A supramolecular strategy also often leads 
to substantial structural alterations during functionalization because 
functional groups alter the interactions between the building blocks.

In this article we present the synthesis of covalently bonded 
porous organic nanotubes, using organic building blocks designed 
to assemble into one-dimensional covalent organic nanotubes 
(CONTs) through dynamic covalent chemistry. A tetratopic trip-
tycene derivative with a dihedral angle of ∼120° was combined 
with linear ditopic ligands by a reversible Schiff base reaction, lead-
ing to the formation of CONTs. The formation of either the ther-
modynamically or the kinetically stable product was favoured by 
adjusting the reaction conditions. The reversibility of the Schiff base 
reaction imparts error-correction capability to the system, which 
under thermodynamic control allowed the selective formation of 
the ordered porous covalent one-dimensional tubular framework 
over a random polymeric structure. Due to the high strength and 
stability of the covalent bonds, the synthesized CONTs display 
excellent chemical and thermal stability. These extended nanotubes 
(up to several micrometres in length) with subnanometre diameter 
exhibit porosity as high as 321 m2 g−1. This one-pot reaction strategy 
for CONT synthesis may also be suitable for large-scale synthesis.

A time-dependent electron microscopic study into the morpho-
logical evolution of these CONTs showed that the isolated tubular 
morphologies go on to form intertwined toroidal structures.

Results and discussion
Design and synthesis of CONTs. We have focused on a tetratopic 
tetraamine and a linear dialdehyde to construct the nanotubular 

Porous covalent organic nanotubes and their 
assembly in loops and toroids
Kalipada Koner   1,2, Shayan Karak   1,2, Sharath Kandambeth   3, Suvendu Karak   3 ✉, 
Neethu Thomas   3, Luigi Leanza   4, Claudio Perego   5, Luca Pesce   5, Riccardo Capelli   4, 
Monika Moun   6, Monika Bhakar   6, Thalasseril G. Ajithkumar   3, Giovanni M. Pavan   4,5 ✉ and 
Rahul Banerjee   1,2 ✉

Carbon nanotubes, and synthetic organic nanotubes more generally, have in recent decades been widely explored for applica-
tion in electronic devices, energy storage, catalysis and biosensors. Despite noteworthy progress made in the synthesis of 
nanotubular architectures with well-defined lengths and diameters, purely covalently bonded organic nanotubes have remained 
somewhat challenging to prepare. Here we report the synthesis of covalently bonded porous organic nanotubes (CONTs) by 
Schiff base reaction between a tetratopic amine-functionalized triptycene and a linear dialdehyde. The spatial orientation of 
the functional groups promotes the growth of the framework in one dimension, and the strong covalent bonds between carbon, 
nitrogen and oxygen impart the resulting CONTs with high thermal and chemical stability. Upon ultrasonication, the CONTs 
form intertwined structures that go on to coil and form toroidal superstructures. Computational studies give some insight into 
the effect of the solvent in this assembly process.
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Fig. 1 | Design and synthesis of covalent organic nanotubes. a, Schematic representation of the synthesis of zero-dimensional cages, one-dimensional 
CONTs, and two- and three-dimensional covalent organic frameworks (COFs) based on the reversible aldehyde–amine condensation. b, Structures of the 
porous CONTs synthesized from TAT and from the linear dialdehydes DMDA and TA. c, Schematic representation of the resulting CONTs.
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covalent organic architecture (Fig. 1). The tetraaminotriptycene 
(TAT) features two opposite terminal amine pairs at a dihedral angle 
of ∼120° (Fig. 1b), and it is this orientation of amine functionalities 
in the TAT units that promotes the formation of covalent linkages in 
one dimension. The building blocks (Fig. 1b) were chosen for their 
geometry and energy optimization, which on aldehyde–amine con-
densation favour the formation of two geminal imine bonds that are 
trans to each other. This in turn ensures that the framework forms 
in one dimension because the non-functionalized benzene rings are 
kept towards the inner wall of the resulting nanotube.

To check the reaction’s feasibility, we first synthesized a mono-
meric unit by reacting the TAT with 2-methoxybenzaldehyde (MB). 
High-resolution mass spectrometry analysis indicates that the 
stoichiometric condensation of TAT and MB results in a mixture 
of three products: monomer-1 (diimidazole–triptycene, with two 
imidazole rings), monomer-2 (diimine–monoimidazole–tripty-
cene, with one imidazole ring and two imine bonds) and monomer-3 
(tetraimine–triptycene, with four imine bonds) (Supplementary 
Information section 2). By carefully examining the monomers, we 
concluded that imidazole formation is the competitive reaction 
preventing nanotube formation. Thus, imine bond formation was 
optimized to reduce imidazole formation with sequential modi-
fications of the synthetic conditions (Supplementary Table 1 and  
Supplementary Figs. 3–8).

We then synthesized two CONTs (CONT-1 and CONT-2)  
via imine condensation reactions by combining a mixture of 

1 equiv. of TAT (15.7 mg, 0.05 mmol) and 2 equiv. of either 
2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMDA) (19.4 mg, 
0.1 mmol) for CONT-1 or terephthalaldehyde (TA) (13.4 mg, 
0.1 mmol) for CONT-2. The dropwise addition of amine solution 
in dichloromethane (DCM) into the aldehyde solution (in DCM) 
in the presence of 0.5 ml 6 M acetic acid results in the cloudy 
precipitate (Supplementary Information section 1). The result-
ing precipitate was collected by centrifugation followed by wash-
ing with anhydrous THF and then evacuated at 120 °C for 12 h to 
yield 25.05 mg of CONT-1 and 13.3 mg of CONT-2 (78% and 51% 
yield of CONT-1 and CONT-2, respectively, based on TAT) as an 
off-white solid.

Structural characterization. The Fourier transform infrared 
spectra of both CONTs show peaks at 1610 cm−1 that are char-
acteristic –C=N– stretching modes for imine bonds (Fig. 2a and 
Supplementary Fig. 9). Solid-state cross-polarization magic angle 
spinning (CP-MAS) NMR spectroscopy of the 13C and 15N nuclei was 
performed to validate the formation, connectivity and atomic-level 
construction of the CONT-1 backbone (Fig. 2b and Supplementary 
Fig. 10). Solid-state 13C CP-MAS NMR spectroscopy shows the 
characteristic peaks of the imine (−C=N−) bonded carbon atoms 
at 155.5 ppm, whereas the methyl carbon appears at 53.5 ppm. 
The NMR spectrum also displayed discrete resonances in the aro-
matic region between 150 and 110.5 ppm (Fig. 2b). The solid-state 
high-power decoupled (HPDEC) 13C spectrum quantifies the  
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Fig. 2 | Characterization of nanotubes. a, FTIR spectra of TAT, DMDA and CONT-1. b, 13C Solid-state CP-MAS NMR spectrum of CONT-1. c, Solid-state 
HPDEC 13C NMR spectrum of CONT-1 for quantitative analysis of the carbonyl group. d, Nitrogen adsorption isotherm of CONT-1 at 77 K. Inset: NLDFT 
pore size distribution from the nitrogen adsorption analysis showing the microporous (1.2–2.0 nm) and mesoporous (3.5 nm) nature of the nanotubes 
(V and r are the cumulative pore volume and radius of the pore). e, TEM image of isolated single nanotubes (red arrows indicate the inner diameter of 
nanotubes). Inset: the hollow interior of ∼5 nm of CONT-1 (this is a zoomed portion from another CONT). f, AFM image of a single nanotube, showing the 
nanotube length of ∼4.5 µm. Height profile indicates a uniform diameter of 5 nm (the red line signifies the movement of AFM tip).
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number of different carbon atoms in the tube backbone. According 
to the reaction scheme, the basic unit consists of 20 carbons from 
TAT and 40 carbons from DMDA. Of these, 18 carbons from TAT 
and 32 carbons from DMDA appear in the aromatic and carbonyl 
region (200–100 ppm), and two carbons of TAT and eight carbons of 
DMDA appear in the aliphatic region (∼55 ppm) (Fig. 2c). Thus, one 
would expect an aromatic to aliphatic carbon ratio of 5:1 for a com-
plete reaction. The ratio obtained from the 13C HPDEC spectrum 
is close to 5:1. The peak at 186 ppm was assigned as free aldehyde 
functionality generated from the defect sites at the nanotube surface 
(Supplementary Fig. 10). Although the optimized condition for the 
model system results in no imidazole formation, the nanotube con-
tains a meagre percentage (6–8%) of aldehyde moieties as defects in 
the framework. We have recorded multiple solid-state HPDEC 13C 
NMR spectra with different synthetic scales (yielding 150 mg and 
280 mg of CONT-1) in two different instruments to quantify the 
defects in CONT-1. All the spectra consistently show 6–8% defects 
in the nanotube framework (Supplementary Information section 
4). The 15N CP-MAS spectrum of CONT-1 displayed two discrete 
peaks, a resonance at 240 ppm and another at 148 ppm, indicating 
two distinct nitrogen sites. The characteristic peak at 240 ppm sug-
gests the formation of the imine (−C=N−) bonded nitrogen atoms. 
The resonance at 148 ppm indicates the presence of an N−H group, 
which may be due to imidazole ring formation at the defect sites 
(Supplementary Information section 16). Thermogravimetric anal-
ysis of the activated CONT-1 under a nitrogen atmosphere indi-
cates that the framework has thermal stability up to 400 °C, and 
there is no guest molecule inside the nanotubes (Supplementary  
Fig. 34). The porosity of the CONTs was evaluated by measuring the 
nitrogen adsorption isotherm at 77 K (Fig. 2d and Supplementary  
Fig. 11). Activated CONTs (after degassing at 140 °C for 10 h) 

showed a reversible type II nitrogen adsorption isotherm. The 
Brunauer–Emmett–Teller surface areas of the activated CONT-1 
and CONT-2 were 321 and 52 m2 g−1, respectively (Supplementary 
Fig. 11). The pore size distribution of both CONT-1 and CONT-2 
was calculated based on the non-local density functional theory 
(NLDFT) (Fig. 2d and Supplementary Fig. 12). The pore size dis-
tribution, which indicates two types of pores of 1–2 nm and 3.5–
4.5 nm in size, is in good agreement with the theoretically predicted 
structure (Supplementary Fig. 12). The 3.5–4.5 nm pore distribu-
tion refers to the main hollow tubular channels running along the 
length of the CONTs. The 1–2 nm pore distribution corresponds to 
the side pores located on the walls of the nanotubes.

Morphology of nanotubes. Scanning electron microscopy (SEM) 
images of CONTs reveal uniform tubular morphology, with an aver-
age diameter of ∼5 nm (Supplementary Fig. 13). High-resolution 
transmission electron microscopy (HRTEM) (Fig. 2e) identi-
fies the hollow tubular nature at the interior with a constant 
diameter of ∼5 nm throughout the entire length of the nanotube 
(Supplementary Fig. 14). Atomic force microscopy (AFM) further 
corroborates this finding (Supplementary Fig. 15). The AFM height 
profile shows a uniform diameter of ∼5 nm for the single nanotube, 
which is in good agreement with the TEM results and with the theo-
retically predicted structure of the nanotubes (Fig. 2f). Additionally, 
electron microscopy images show that the single-walled CONTs 
are intertwined, which might be due to their high length-to-width 
ratio (average, ∼300:1). The microscopy analysis further con-
firms that the individual units of the intertwined nanotubes have 
diameters very similar (∼5 nm) to those of isolated single nano-
tubes (Supplementary Fig. 15). We have isolated the reaction mix-
tures at different time intervals and characterized them via SEM  
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Fig. 3 | Intertwining of the CONTs. a, Graphical representation of the increasing intertwining of the nanotubes, from top to middle to bottom.  
b–d, Characterization by HRTEM (b), SEM (c) and AFM (d) of each of the situations represented in a. In d two flexible CONTs interconnect first at  
a single point (top); this interconnection leads to the formation of intertwined structures with a characteristic average pitch (middle); this in turn 
generates the assemblies shown in the bottom panel.
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analysis to shed more light on CONT-1 formation (Supplementary 
Fig. 16). CONT-1 formation starts within 6 h of reaction. These 
CONTs are 100–200 nm in length and ∼5 nm in diameter. After 
12 h, the CONTs grow up to 500–800 nm in length with a diameter 
of ∼5 nm (average length-to-diameter ratio, 130:1). The intertwin-
ing starts after 24–30 h when the length-to-diameter ratio of the 
CONTs increases substantially (average, ∼200:1).

The rapid increase in the length of CONTs induces high flexibil-
ity, promoting intertwined structures. After 36 h of reaction, almost 
all CONTs become completely intertwined, and no notable morpho-
logical changes are observed (Supplementary Fig. 16). We speculate 
that defect centres could trigger this intertwining (Fig. 3). After 6 h, 
two nanotubes uniformly intertwine, following a particular pattern 
where the twining pitch is 70 ± 10 nm (Supplementary Figs. 19 and 
20). The resulting intertwined nanotube thread again entangles with 
the available mesh of CONTs. The width of intertwined nanotubes 
reaches up to ∼100 nm (maximum) with time (Supplementary  
Figs. 16–18). However, the intertwining pitch remains constant 
(∼70 nm) irrespective of the size and diameter of the nanotubes.

Stability of CONTs. To our surprise, the nanotubes retain their 
morphology in a broad range of solvents of various polarities  
(Fig. 4a,b). The nitrogen adsorption isotherm confirms the 
structural stability in water after 7 d (Fig. 4d). We drop-cast the 
well-dispersed CONTs on a silicon wafer and heated this at differ-
ent temperatures to validate the material’s temperature stability. The 
morphology remained unaltered even at 150 °C (Fig. 4c). However, 

the width of intertwined CONT-1 varied with the nature of the sol-
vents due to the solvent environment apparently affecting the inter-
action among the CONTs.

Theoretical investigation of the self-assembly. To obtain a deeper 
insight into the molecular factors that drive CONT self-assembly 
in different solvents, we used multiscale molecular models to 
simulate the CONTs in different solvent conditions. Following 
well-established approaches24,25, we developed an all-atom (AA) 
model of CONT-1 composed of 15 TAT layers (Fig. 5a). This AA 
model was immersed in explicit DCM or THF solvent (Fig. 4b) 
and equilibrated via 200 ns of molecular dynamics (AA-MD) at 
T = 20 °C (Supplementary Information section 26). For compari-
son, we also equilibrated this CONT-1 model in water and in the 
gas phase (that is, in the absence of solvent). The AA-MD simu-
lations showed that in DCM and THF the CONT-1 equilibrates 
to configurations slightly deviating from the initial perfect one  
(Fig. 5b), as also demonstrated by the distributions of angles 1 and 2 
(Fig. 5c). On the contrary, in water, the tubules tend to compress along 
the longitudinal axis due to strong solvophobic effects (Fig. 5b,c,  
see also Supplementary Information section 26). A similar struc-
tural compression is also seen in the gas phase. In all cases, the 
diameter of the AA CONT models remains compatible with that 
estimated experimentally (Fig. 4a,b). We then used these AA mod-
els as a guideline to develop a minimalistic coarse-grained (CG) 
model26 that, while more approximated, allowed us to study the 
behaviour and interactions between the CONTs on a larger scale. 
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In this CG model, each TAT unit in the CONT-1 structure is repre-
sented by a single CG particle, interconnected with the other neigh-
bour TAT particles via harmonic bonds (Fig. 5d). The CG particles 
interact with each other via a simple Lennard–Jones potential. The 
parameters of this CG model were initially optimized to obtain a 
behaviour consistent with that of the AA CONT-1 model in explicit 
DCM solvent (Supplementary Information section 26.2). This 
allowed us to simulate with reasonable accuracy the behaviour of 
long CONT models composed of 500 TAT layers (Fig. 5c: tubule 
length, ∼820 nm). Starting from a system configuration with two 
separated, initially parallel tubes, we ran CG-MD simulations in 
which the depth of the Lennard–Jones potential (ɛ) acting between 
the CG beads was systematically varied, modulating the nanotube–
nanotube interaction to model a change of solvent in the system 
(ɛ sets the strength of the non-bonded interaction between the CG 
particles of the CONTs: see Supplementary Information for details). 
Comparison with the AA models allowed us to relate the stronger/
weaker CONT–CONT interactions in the CG models to the effect of 
increased/decreased solvophobicity of the tubules in different real-
istic solvent conditions. For ɛ values <1 kJ mol−1, the two CONTs 
interacted only weakly and intermittently, and no intertwining was 
observed during the CG-MD (weak solvophobicity). Instead, for 

ɛ ≥ 1 kJ mol−1, we observed persistent interactions and intertwining 
of the two CONTs. As indicated by umbrella sampling27 calcula-
tions (Supplementary Information section 26), ɛ values in the CG 
models of 2 and 2.5 kJ mol−1 provided a CONT–CONT interac-
tion compatible with that obtained with the AA models in explicit 
DCM and THF solvents, respectively (Supplementary Fig. 38). In 
these cases (Fig. 5e–f), the CG-MD showed an average intertwining 
pitch consistent with that observed experimentally (∼70 ± 10 nm). 
These results also demonstrated that the interactions between the 
CONTs in water (stronger solvophobic effects) or in the gas phase 
are compatible with higher ε values in the CG model. However, at 
ɛ > 2.5 kJ mol−1, the formation of well-defined helices becomes less 
favoured, and the CONTs tend to interact further, generating tighter 
and less-defined hierarchical assemblies. In general, these CG-MD 
results indicate that the combination of solvophobic effects with the 
geometric structure and flexibility of the CONTs is a determining 
factor controlling the intertwining observed experimentally.

Formation of toroids. The intertwined CONTs further 
self-assemble to form a toroidal superstructure upon ultrasonica-
tion (Fig. 6a–c)28–30. We have observed that THF is the best solvent 
to obtain the toroids in high yields (up to 60%) (Supplementary  
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Fig. 31). Toroidal micro-ring formation also proceeds in other sol-
vents such as o-xylene and o-dichlorobenzene (DCB) with a yield 
of <5%. The toroids are purified from the mixture of intertwined 
nanotubes by filtering through a Whatman 42 filter paper (pore 
size, 2.5 µm) (Supplementary Information section 17). A dynamic 
light scattering study of the filtrate gives an average outer diameter 
of 600 nm at 20 °C with a polydispersity index of <0.15 (Fig. 6d). 
Field emission SEM images show that the toroid diameters range 
from 300 to 900 nm (Fig. 6f). However, the rings’ thickness remains 
constant (∼50 nm) around their circumference (Supplementary 
Figs. 27 and 28). Topographical analysis using AFM further con-
firms the same toroidal morphology (Supplementary Fig. 29). 
HRTEM images of toroids prove that the walls of toroids are com-
posed of intertwined hollow nanotubes with a ∼5 nm individual 
tube diameter and a constant pitch of ∼70 nm (Supplementary  
Fig. 28). Detailed SEM, TEM and AFM analyses reveal that the 
intertwined nanotubes first bend to form non-uniform loops 
(diameter, 100–1,000 nm) (Fig. 6f). The most probable mechanism 
involves the creation of bubbles in THF31. We propose that the bub-
bles act as the template for hydrophobic CONTs, which eventually 
orient themselves around the bubbles’ circumference. Being bent at 
the bubble–THF interface, nanotubes would form loops when the 
bubble collapses (Supplementary Fig. 30). The untied intertwined 
nanotubes would then coil up in both the transverse and longitu-
dinal directions to create a closed and coiled loop-like structure 
of various diameters (0.1–1 µm). These spiral loop structures were 
later transformed into toroidal structures (Fig. 6f).

Conclusion
We have designed covalently connected and porous single-walled 
CONTs. The efficient synthetic protocol results in porous nano-
tubes with high chemical and thermal stability, which we anticipate 
will be amenable to functionalization. The nanotubes then further 

assemble into a toroidal superstructure. Our proposed mechanism 
involves the intertwining of the nanotubes, which then coil up to 
construct toroidal superstructures under the influence of solvent 
and mechanical stimuli. The toroids were distinguished from inter-
twined nanotubes by their size distribution. The main characteristic 
features of CONTs, including their flexibility, and their capacity to 
intertwine and form toroids, are similar to those of carbon nano-
tubes. We hope that this work will lead to the synthesis and func-
tionalization of other organic nanotubes with high chemical and 
thermal stability, which could facilitate their exploration for appli-
cation in fields such as catalysis, electrochemistry or biochemistry.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
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Methods
Synthesis of monomer. For a typical monomer synthesis, 2-methoxybenzaldehyde 
(27.2 mg, 0.2 mmol) was placed in dry DCM in the presence of 6 M AcOH as the 
catalyst. Dilute DCM solution of TAT (15.7 mg, 0.05 mmol) was then added to the 
reaction mixture and stirred for 24 h. The dry yellow powder was collected after the 
evaporation of DCM. The powder was dissolved in methanol and characterized by 
high-resolution mass spectrometry.

Synthesis of CONT-1. DMDA (19.4 mg, 0.1 mmol) was dissolved in 100 ml 
CH2Cl2 (dry, degassed), and 0.5 ml of 6 M AcOH was added directly into the yellow 
homogeneous solution as a catalyst for the Schiff base reaction. A solution of TAT 
(15.7 mg, 0.05 mmol) in 50 ml CH2Cl2 (dry, degassed) was added dropwise using 
a dropping funnel with stirring at room temperature under argon atmosphere 
for 24 h. The resulting cloudy precipitate was filtered and washed with excess 
anhydrous methanol. Yield, 25 mg, 78% (calculated with respect to TAT).

Synthesis of CONT-2. TA (13.4 mg, 0.1 mmol) was dissolved in 100 ml dry 
degassed DCM, and 0.5 ml of 6 M AcOH was added directly into solution as a 
catalyst for the Schiff base reaction. A solution of TAT (15.7 mg, 0.05 mmol) in 
50 ml dry DCM was added dropwise using a dropping funnel with stirring at room 
temperature under argon atmosphere for 24 h. The resulting cloudy precipitate 
was filtered and washed with excess anhydrous methanol. Yield, 13.3 mg, 51% 
(calculated with respect to TAT).

Synthesis of toroid. Intertwined CONT-1 (2 mg) was placed in 50 ml anhydrous 
THF and sonicated at room temperature for 20 min. The nanotubes transformed into 
toroids. The as-synthesized toroids were separated from the mixture of intertwined 
nanotubes by simple filtration with Whatman 42 filter paper (pore size, 2 µm).

Computational methods. All simulations were performed with GROMACS 2018 
software32,33 equipped with PLUMED2.534,35 (for the umbrella sampling simulations 
and systems analysis). The AA CONT-1 model was parameterized based on the 
General Amber Force-Field (GAFF)36, setting the partial charges via the Restrained 
Electrostatic Potential and using PM6 and Hartree–Fock (with the 6-31g* basis 
set) levels of theory37 for geometry optimization. The organic solvent molecules 
(DCM and THF) were parameterized compatibly with the GAFF, and the TIP3P 
model was used for water38. The CG CONT model was constructed to fit with the 
AA one39. Details on the modelling and on the set-up of the AA-MD and CG-MD 
simulations are reported in the Supplementary Information.

Data availability
All data supporting the findings of this study, including synthesis, experimental 
procedures and compound characterization, are available within the article and 
its Supplementary Information. Structure and parameter files for the AA and CG 
models of the CONT-1 tubules used in the simulations are available at https://doi.
org/10.5281/zenodo.5769788 (ref. 40) Supplementary Information is available in 
the online version of the paper. Reprints and permissions information is available 
online at www.nature.com/reprints. Correspondence and requests for materials 
should be addressed to R.B. Source data are provided with this paper.
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