1.	Name and address	Dr. Sourav Pal, FNA, FASC, FNASc, FRSC Professor, Ashoka University, Sonipat, Haryana 131029
2.	Date and place of Birth	12th May 1955; Ranchi
3.	Address with telephone/Fax/e-mail No., etc	Dr. Sourav Pal Present:Faculty Housing 2, Apartment no 105 Ashoka University, Sonipat, Haryana 131029 Permanent: B 203, Kumar Pinakin, Mohan Nagar, Baner, Pune 411 045 e-mail: sourav.pal@ashoka.edu.in
4.	Area of specialization	Theoretical Chemistry/ chemical physics

5. Academic Qualifications (Bachelor's degree onwards with University, year and subject)

Sr. No	Degree	Subject	Class/ CGPA	Year	University	Additional Particulars
1	M.Sc(Integr ated-5yrs)	Chemistry	Ist Class	1977	Indian Institute of Technology (Kanpur)	
2	Ph.D	Chemistry		1985	IACS (Calcutta)	under the supervision of Prof. Debashis Mukherjee
3	Post-Doc Research Work	Quantum Chemistry		April '86 to Oct. '87	University of Florida, Gainesville, FL,USA	with Prof. R.J.Bartlett

6.	Field of specialization	Theoretical Chemical Physics with
		specialization in quantum chemistry;
		Computational Material Science

7. Professional Experience:

Professor and Head of Department of Chemistry, Ashoka University, Haryana from October 12, 2022

Director and Professor, Chemistry, Indian Institute of science education and Research Kolkata from October 12, 2017 to October 11, 2022 (on lien from IIT Bombay till May 28, 2020)

Professor (HAG) and Institute Chair Professor, Department of Chemistry, Indian Institute of Technology Bombay from June 1, 2015 to May, 2020

Scientist, CSIR- National Chemical Laboratory, Pune from Dec 9, 1982 till May 31, 2015 Head, Physical and Materials Chemistry, NCL, Pune, from December 2002 till Nov 30, 2010

Director, CSIR- NCL, Pune from December 1, 2010 till May 31, 2015

Director (Additional Charge), CSIR- Central Salt & Marine Chemicals Research Institute, Bhavnagar (Gujarat) from June 1, 2014 till May 31, 2015

Others: Adjunct Professor, Indian Institute of Science Education and Research, Pune from 2006 onwards

Distinguished Visiting Professor, Indian Institute of Technology, Kharagpur for five years from 2016

Visiting Professor, Ashoka University from May 2019

8. **Present Position**: Professor and Head of Department of Chemistry, Ashoka University, Haryana

9. Special Fellowship/visiting appointment:

J C Bose National Fellowship of DST, India

National Science Talent Search Scholar, 1972

Alexander von Humboldt Fellowship in Germany from Nov '87 to March '88, Sept'91 to Dec'91 and April'94 to August '94, May, 2000 to July, 2000.

Visiting Professor at the Institute for Molecular Sciences, Okazaki, Japan from March, 1997 to September, 1997

Visiting Professor in University of Torun, Poland, November 2015

Distinguished Visiting Professor of Indian Institute of Technology, Kharagpur for a period of five years, from 2016.

Visiting Professor, Gauhati University

Visiting Scientist at the University of Arizona, Tucson, May 1995

Visiting Professor, Ashoka University

"Dai-Ichi Karkaria Ltd" Endowment Fellow for 2004-05 by UICT, Mumbai

10. Awards and Honours

Special issue of Molecular Physics(an international journal at the interface between chemistry and physics) published in my honour on 60th birthday in the year 2015 (http://www.tandfonline.com/toc/tmph20/113/19-20)

- Recipient of the Shanti Swarup Bhatnagar Prize in Chemical Sciences, 2000
- Elected as Executive Council Member and Editor of Publications) of the Federation of Asian Chemical Societies (FACS), 2016-19
- Nominated as Member, The First Executive Board of the Commonwealth Chemistry, 2020-2023
- Served as President, Chemical Research Society of India (CRSI) from April 1, 2014 to March 31, 2017
- Recipient of Prof A K Chandra Memorial Award of the Indian Chemical Society, 2020
- Recipient of SASTRA-CNR Rao Award in Chemistry & Materials Science for the year 2014
- Recipient of JC Bose National Fellowship of DST, 2008
- Recipient of Chemical Research Society of India Silver Medal, 2009
- Delivered Charles A Coulson Lecture Lecture in University of Georgia, USA, Feb 14, 2014
- Recipient of Professor Sadhan Basu Memorial Lecture Award of INSA, New Delhi, 2014
- Recipient of RPG Life Sciences Padma Vibhushan Prof M M Sharma Medal and Chemcon Distinguished Speaker Award, 2014
- Elected as a Fellow of the Indian National Science Academy, New Delhi, 2003
- Elected as a Fellow of the National Academy of Sciences, India, Allahabad, 1998
- Elected as a Fellow of the Indian Academy of Sciences, Bangalore, 1996
- Elected as a Fellow of the Royal Society of Chemistry, 2011
- Elected as a Fellow of West Bengal Academy of Science & Technology, 2011

- Received Dr. Jagdish Shankar Memorial Lecture of the Indian National Science Academy, 2006
- Recipient of Bimla Churn Law memorial Lecture Award of IACS, Kolkata, 2005
- Dai-Ichi Karkaria Endowment Fellow of UICT, 2004-05
- Recipient of the Chemical Research Society of India medal, 2000
- Elected as a Fellow of the Maharashtra Academy of Sciences, 1994
- Recipient of the NCL Research Foundation Scientist of the year (1999) award
- Recipient of the P.B.Gupta Memorial lecture Award of the Indian Association for the Cultivation of Science, Calcutta for 1993
- Received Council of Scientific and Industrial Research (CSIR) Young Scientist award in Chemical Sciences for 1989
- Received Indian National Science Academy (INSA) medal for Young Scientist 1987
- Received NCL Research Foundation Best Paper Award in Physical Sciences for the year 1995, 1996, 1997, 1999, 2000, 2002
- Delivered Prof. R. P. Mitra Memorial Lecture, Delhi University, 2010
- Delivered Prof. N.R.Dhar Memorial Lecture, University of Allahabad, 2011
- Recipient of "Science Councillor" Award -2011 of The Indian Society of Health, Environment, Education & Research (ISHEER) Jodhpur centre

11. Membership of Editorial Boards of Journals / Societies

- Nominated to be a member of the Editorial Advisory Board of The Journal of Physical Chemistry from Jan 1, 2018 for a period of three years.
- Chosen as a member of the Editorial Board of International Journal of Molecular Sciences from 2000
- President, Chemical Research Society of India from April 1, 2014 for three years
- Member, Editorial Board, International Journal of Chemistry
- Member Advisory Editorial Board, Current Physical Chemistry, Bentham Science from 2010
- Member, Editorial Board, Journal of Chemical Sciences, published by the Indian Academy of Sciences, Bangalore from 2004
- Member, Editorial Board, Proc. Indian National Science Academy, from 1st January, 2006
- Member, Editorial Board, International Journal of Applied Chemistry, from 2005.
- Elected as a Life Member of the Society for Scientific Value
- Invited to be a Member, American Chemical Society for three years from 2015

12. Membership of important Committee

 Executive Board (Founding) member of the Commonwealth Chemistry from 2020 for three years (till May, 2023)

- Member of the Science Education Committee under Association of Academies and Societies of Sciences in Asia (AASSA)
- Nominated to the Board of Asia Pacific Association of Theoretical and Computational Chemists (APATCC)
- Presently a member of the Governing Board and Council of The Inter -University Center for Astronomy and Astrophysics (IUCAA) Pune
- Acted as the Leader of the vertical on Computational Science in the Vaibhav Summit, 2020
- Chairman of INSPIRE FACULTY Selection Committee in Chemical Sciences 2022-2025
- Executive Council Member of the Federation of Asian Chemical Societies (FACS), from 2016 to 2019
- Member of the Council of Indian National Science Academy from Jan 1, 2018 for three years
- Former President, Chemical Research Society of India, 2014-17
- Chairman, Chemical Division Council of Bureau of Indian Standards from June 2014
- National Representative of India in International Society for Theoretical Chemical Physics
- Member DST FIST (Chemical Science) committee from 2016 for a period of four years
- Member, School Board of school of Chemistry, University of Hyderabad
- Member, Research Advisory Council (RAC) in GAIL (India) Limited from 1-1-2012 onwards
- Member, Board of Governors, Academy of Scientific and Innovative Research (AcSIR)
- Special Invitee of the Board of Governors of IISER, Pune for a period of 3 years from 2013
- Member of Executive Council and Awards Selection Committee of ICC for the year 2011- present
- Member, screening & selection of NASI Scopus Young Scientist Awards 2012-2014
- Member of National Advisory Committee of ISMC-2014, BARC, Mumbai
- Convener, Sectional Committee for the Chemical Sciences of Indian National Science Academy, New Delhi, 2013- 2015
- Member, Sectional Committee for the Chemical Sciences of Indian National Science Academy, New Delhi, 2005-07, 2022-2024
- Member, Fellowship Scrutiny Committee (Physical Sciences), NASI, Allahabad
 2014 onwards
- Convener, Sectional Committee , Indian Academy of Science, Bangalore 2010-2012
- Member and Chairman of several project and human resource committee of CSIR EMR for more than ten years
- Member/Chairman of many important scientific award committee
- Member, Board of Director, CSIR Tech
- Chairman, NCL Venture Center, from 2011 to May 2015

- Member, Governing Council, CWPRS, Pune
- Member, Working Group for XIIth five-year plan, Ministry of Environment & Forests
- Member, Working Group for XIIth five-year plan, Ministry of Environment & Forests
- Member, Working Group for XIIth five-year plan on high performance computing
- Invited Member, Working Group for XIIth five-year plan on higher education
- Member, Working Group for XIIth five-year plan on Chemical & Petrochemicals

13. Work done:

Contributions have been made to the diverse areas of theoretical chemical physics and span the intellectually demanding and challenging aspects of methodological and conceptual developments with an eye to applications to chemical problems. Following are the specific areas and details of the work carried out:

A: Frontier Theoretical Development on Molecular Electric Properties

Highly accurate theories have been developed by us taking into account the complex, correlated motion of electrons in molecules for the description of nonlinear electric properties. These theories using many-body coupled-cluster methods are based on the evaluation of derivatives of energy with respect to external fields in an analytic manner. Extensive development of these theories was done for molecules, which have closed shell configurations. The codes have been developed after extensive testing. The codes have potential use in the description of nonlinear molecular materials, with possible applications in electronic devices.

At the next stage, the more demanding cases of open shell systems, which are marked by high degree of quasi-degeneracy were addressed. This creates physical problems, which are theoretically difficult to address. Using a multi-determinant description of reference space, which can address this quasi-degeneracy adequately, coupled-cluster analytic derivative was formulated to compute accurate nonlinear properties. This general-purpose analytic derivative formulation is the first one based on multi-reference coupled-cluster method and is a significant development in quantum chemistry. We have implemented the theory to study properties of radicals and excited states. Excitation energies, ionization energies using the highly accurate multi-reference descriptions of coupled-cluster theory have also continued for a long time. Recently, we have also developed first codes for transition dipole matrix elements using Fock space coupled-cluster theory.

B: Theoretical Investigation of Hard-Soft Acid-Base Relation

Qualitative principle related to hardness and softness has recently attracted a lot of attention in chemistry, in particular, due to the role of these in the explanation of stability of chemical species and reactivity. Our group has made early contribution by an extensive ab initio verification of the principle of maximum hardness. In particular, we have identified that for asymmetric distortions of molecules, the hardness is locally maximum. Vari-

ous properties of hardness and softness were studied in relation to molecular properties, like polarizability. Using these relations, we could identify some novel relations between dipole moments and polarizability. Also among the recent contributions are use of local concepts of hardness and softness to chemical reactivity. Seminal contributions have been made by us in developing new local descriptors for intra- and inter-molecular reactivities. Recently, using local hard-soft-acid-base principle, interaction energies have been calculated with the help of only local descriptors of the interacting systems. We have recently identified "Bond Deformation Kernel" (BDK) correlating with interaction-induced shifts in O-H frequencies in halide-water clusters. Central to our model is the use of local polarization, which can be described by Normalized-Atom-Condensed Fukui Functions (NFF), which is the normal condensed Fukui Function multiplied by number of atoms. Using the NFF and charge transferred to water from halide ion, a BDK has been defined, which appropriately describes the shift in OH frequency

C: Study of Electron - Molecule Scattering

We have also made an important study in identifying the exchange effects as dominant contributions to the correlated static exchange (CSE) potential of the molecule in electron-molecule scattering. The properties of CSE were studied extensively in relation to their use in scattering of electrons by molecules.

Recently we have used complex-scaling method within the coupled-cluster method to describe the electron-atom resonance. A complex absorbing potential based and an approximation to this based on multi-reference coupled-cluster method to calculate resonance of molecular anions has also been developed. The procedure is based on the analytical continuation method. The advantage of analytical continuation of the Hamiltonian in the complex plane giving the direct access to the resonances parameters is that they can be represented by using L² wave function. The essential idea underlying the complex absorbing potentials to calculate the resonances is to introduce an absorbing boundary condition in the exterior region of the molecular scattered target which results in a non-Hermitian Hamiltonian, one of the square-integrable eigenfunctions of which corresponds to the resonant state. The associated complex eigen-value then gives the position and width of the resonance or the auto-ionizing state. The important relaxation and correlation effects are included in the coupled-cluster method. The approximation developed in this year involves use of complex correlated independent particle potential, which simplifies the computation scheme. In the CIP -FSMRCC method, the analytical continuation over an already correlated effective Fock space Hamiltonian has been applied. We have tested this procedure to shape resonance in C₂H₄, CO and Mg. Recently, complex absorbing potential based equation-of-motion coupled-cluster theory has also been developed by us, which has been applied to shape resonance as well as inter-atomic couloumbic decay.

D: Application of Computational material Science

We developed ab initio molecular dynamics using Gaussian basis sets and Born-Oppenheimer approximation to study reactions of finite-sized molecules. The Gaussian basis sets are quite useful for finite sized molecules. In particular, we are studying reactions inside finite clusters of zeolites and structures of metal clusters. Our study on structure and electron localization function of mixed metal clusters has led to the novel evidence of anti-aromaticiticity in metal clusters.

Sn-beta zeolite has attracted recent interest due to better catalytic behaviour compared to Ti-Beta zeolite. Al-free Sn-beta zeolite has been recently synthesized and it has been shown by another group to have efficient catalytic activity in Beyer-Villeger oxidation reactions in presence of H_2O_2 . At NCL, the structure, bonding and acidity of Sn-beta zeolite has been studied using periodic DFT and it has been demonstrated that incorporation of Sn in BEA framework reduces the cohesive energy and is n endothermic process. It has been also shown that among the T-sites, T2 site is the most probable site for Sn- incorporation. T2 site is also higher Lewis acid site in comparison to other T-sites. Theoretical analysis done at NCL also shows that Sn-atom polarizes the orbitals of oxygen atoms.

Several catalytically important bare as well as doped gold clusters and aluminum clusters have been identified for reactions. Special example of oxygen dissociation, CO-chemisorption and CO-oxidation has been highlighted using gold and silver clusters and the doped versions of these. Aluminum clusters have been used for important problem of nitrogen activation recently.

Computational study of reversible hydrogen storage materials, like magnesium hydrides using Born Oppenheimer molecular dynamics has been made. In particular, study of hydrogen desorption and the effect of dopants, Al and Si has been made. In recent years, we have studied the effects of dopants in form of metal ions and metal atoms to improve the hydrogen storage properties of metal-organic frameworks. Recent interesting work points to the scandium decorated MOF as a potential candidate for room temperature hydrogen storage material.

E. Density functional response approach for molecular properties:

A computationally viable alternative to full analytic response to Kohn-Sham density functional theoretic (DFT) approach, which solves coupled-perturbed Kohn-Sham (CPKS) procedure in non-iteratively has been formulated. In the above procedure, the derivative of KS matrix is obtained using finite field and then the density matrix derivative is obtained by single-step CPKS solution followed by analytic evaluation of properties. This has been implemented in deMON2K software and used for calculation of electric properties

F. Magnetic properties:

Recently, we are interested in calculation of magnetic properties of molecules using extended coupled-cluster method, which has been used successfully by us for electric property calculations. Specifically, this is used for evaluation of diamagnetic and paramagnetic susceptibility of closed shell systems. We are also working on use of multi-reference based coupled-cluster theories for open shell systems.

G Applications to interesting chemical problems

We have used our expertise as well as standard quantum chemistry techniques to important problems in chemical physics. One of the application areas has been the area of catalysis. Using various techniques, the modeling of catalytic properties of zeolites was addressed by energy calculation as well as use of concepts of hardness and softness. Weak inter-molecular interactions between small organic and inorganic molecules were also addressed. We are engaged in the application to the following areas:

Structure and spectra of medium sized organic molecules by *ab initio* method

Molecular modeling of structure and reactivity of zeolites

Semi-empirical method to determine structure and reaction of organic and organometallic systems

14. Invitations to Conferences

Delivered several (more than 200) invited lectures at several International and Indian Conferences, including recent online lectures. The most notable ones being the following: Delivered in several Theoretical Chemistry Symposia (TCS) in India

Delivered an invited lecture in Asian Chemical Congress, Teipei, 2019

Delivered a plenary lecture in Sanibel conference, 2020

Delivered an invited lecture at NCCP, 2017, Assam University, Silchar

Delivered an invited lecture at Current Trends in Theoretical Chemistry, Krakow, Poland, 2016

Delivered an invited lecture at Current Trends in Theoretical Chemistry, Krakow, Poland, 2019

Delivered an invited lecture in Chemical Frontiers, Goa, 2016

Delivered an invited lecture at Asian Chemical Congress, Dhaka, March, 2016

Delivered an invited lecture at University of Torun, Poland, Nov 2015

Delivered an invited lecture at Recent Advances in Electron Structure Theory (RAEST), satellite of International Congress on Quantum Chemistry (ICQC), Nanjing, China, 2015 Delivered an invited lecture in ICCP9, National University of Singapore, 2015

Delivered an invited lecture in Department of Physics, University of Torun, Poland, 2015 Delivered an invited lecture at World Association of Theoretical and Computational Chemistry (WATOC), Santiago, Chile, 2014

Delivered invited lecture on School on DFT and beyond, M S University, Vadodara, 2014

Delivered an invited lecture in the International Conference on Education in Chemistry, HBCSE, Mumbai, 2014

Delivered an invited lecture in Edinburgh India Foundation Symposium, Edinburgh, 2014 Delivered Charles A Coulson Lecture , University of Georgia, Athens, USA, 2014

Delivered Plenary lecture, Sanibel Symposium, 2014

Delivered an invited lecture at Current Trends in Theoretical Chemistry (CTTC)-2013, BARC, Mumbai, September, 2013

Delivered an invited lecture in the European Materials (EUROMAT) conference in Sevilla, Spain, September, 2013

Delivered a key note lecture at Current Trends in theoretical Chemistry, Krakow, Poland, September, 2013

Delivered an invited lecture in Chemical Frontiers, Goa, August, 2013

Delivered an invited lecture in a conference on high performance computing at CSIR-CMMACS, Bangalore, August, 2013

Delivered a keynote lecture in a conference on Mapping Material Genomics, Shiv Nadar University, UP, March 2013

Delivered an invited lecture in SOCNAM, Jaipur (organized by Central University of Rajasthan), March 2013

Delivered an invited lecture in a conference on New Emerging Trends in Chemistry, IIS University, March 2013

Delivered an invited lecture in Spectroscopy and Dynamics of Molecules and Clusters, Udaipur, Feb 2013

Delivered an invited lecture on Electronic Structure and Dynamics of Molecules and Clusters, Kolkata, Feb 2013

Delivered a plenary lecture in 100th Indian Science Congress, Kolkata, January 2013

Delivered an invited lecture in Indo-French seminar on Energy materials, Paris, France, November 2012

Delivered an invited lecture in University of Florida, Gainesville , Fl, USA, October 2012 Delivered an invited lecture in Indo-UK conference (RSC) on Molecular Materials, held in London , September 2012

Delivered an invited lecture in Indo French workshop on catalysis, in Lille, France, July 2012

Delivered an invited lecture in the deMon workshop and Hearus Summer school held in Jacobs University, Bremen, Germany, July 2011

Delivered Plenary talk in the Second international Conference on Experiment-Integrated Computational Chemistry of Multi-scale Fluidics, held in Sendai, Japan, 23-24 February, 2010

Delivered invited lecture in International Conference on Recent Advances in Many-Electron Theory, Shankarpur, January, 2010

Delivered invited lecture in International Conference on Molecules and Materials, IISER, Kolkata, December, 2009

Invited Speaker in Indo-German conference on Dynamics of Excited States in Molecules, Dusseldorf, September, 2009

Invited Speaker in Indo-German conference on MCBR -2, Wildbad Kreuth, October, 2009

Invited speaker at International Workshop on Computational Material Science, Fuzhou, China, November, 2009

Invited speaker in International Conference on Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo, 2009

Plenary lecture at the Sanibel Symposium, Georgia, USA, 2008

Invited speaker at QSCP XIII, Michigan, USA, 2008

Keynote speaker at CTTC V, Krakow, Poland, 2008

Invited speaker at International Workshop on Computational Material Science, Cairo, 2008

Invited lectures at two satellite conferences of the International Congress on Quantum Chemistry in 1994 and 1997.

Keynote lecture at the International Conference on Computational Methods in Science and Engineering, Attica, Greece, 2004

Invited lecture at the First Asian Pacific Conference on theoretical and computational Chemistry, Okazaki, Japan, 2004

Invited lectures at the density functional theory workshop of demon group in Paris, France, 2007, Dresden, Germany, 2005 and Calgary, 2006

Invited lecture International Conference on Computational Methods in Science and Engineering (ICCMSE), Loutraki, Greece, 2005, Corfu, Greece, 2007

Delivered a keynote talk in Symposium on Advanced Methods of Quantum Chemistry and Physics, 2007 at Torun, Poland, , 2007

Plenary speaker at Sanibel Symposum, St. Augstine, Florida, 2003

Chairs in major conferences:

Chaired a session on molecular properties at Molecular Quantum Mechanics (MQM) 2013, in honour of Rodney Bartlett, Lugano, June 2013

Invited to act as Session Chair/ Discussion Leader in the Conference on 'Molecular Quantum Mechanics: Analytic Gradients and Beyond' at Budapest, 30 May-3 June, 2007 and Invited as Chair in a workshop on coupled-cluster theory, a satellite meeting of the 9th International Congress on Quantum Chemistry, held at Cedar Key, Florida, USA in June 1997.

Chaired several other sessions at International Conferences

- 15. Books Authored: Co-authored a book "Mathematics in Chemistry" with Dr. K
 - V. Raman, Vikas Publishing House Pvt Ltd., New Delhi, 2004
 - 16. **Special lectures**: Plenary speaker in 100th Indian Science Congress, Kolkata, 2012 and Inaugural keynote address in 6th Bihar Science Conference, Patna, 2014
- 17 . **Publications:** About 265 published papers in reputed international journals. Many of these are highly cited works. (Complete list of publications attached from next page as Appendix-1).

18. Projects undertaken:

Completed successfully several projects from DST, BRNS, IFCPAR, CSIR.

Completed successfully international projects: Indo-EU FP7 project, Indo-Slovak, indo-French (2 projects), Indo-Mexico

Presently having a collaborative with Indo- Mexico project

In addition, conducted contract research with companies in India and abroad, namely Hindusthan Lever, Alchemie India, BASF, Germany and PPG, USA.

19. PhD Guided

Guided already about 40 Ph D students and currently another 10 students are working towards completion of Ph Ds.

Appendix-1
List of Publications of Dr. Sourav Pal in standard refereed publications

Name of the authors (year)	Title of the Paper	Name of Journal , Vol & Pg.No
1. M.D Prasad, Sourav Pal and D. Mukherjee (1980)	An alternative definition of the electron propagator in the super operator form and its relation to linear response theory	Pramana, 15, 531-543
2. Sourav Pal, M.D.Prasad and D.Mukherjee (1982)	On certain correspondences among various coupled cluster theories for closed shell systems	Pramana, 18, 261-270
3. M.D.Prasad, Sourav Pal and D.Mukherjee (1982)	Use of modified Propagators in many body perturbation theory	J.Chem.Soc(Far aday II),78,1743- 1752
4. Sourav Pal, M.D.Prasad and D. Mukherjee (1983)	Use of size-consistent energy functional in many electron theory of closed shells	Theor.Chim.Act a, 62, 523-536
5. Sourav Pal (1984)	A variational method to calculate static electronic properties	Theor.Chim.Act a, 66,151 -159

6. Sourav Pal (1984)	Use of a unitary wave function in the calculation of static electron properties	Theor.Chim.Act a, 66, 207-215
7. Sourav Pal, M.D Prasad and D. Mukherjee (1984)	Development of a size- consistent energy functional for open shell states	Theor.Chim.Act a, 66, 311-332
8. M.D.Prasad, Sourav Pal and D.Mukherjee (1985)	Some aspects of self- consistent propagator theories	Phys.Rev.A 31,1287 -1298
9. Sourav Pal, M.D.Prasad and D.Mukherjee (1985)	A variational coupled cluster theory for closed shells using a propagator modification procedure	Theor.Chim.Act a., 68,125-138
10. Sourav Pal (1985)	Study of approximate coupled-cluster methods for first order static properties	Theor.Chim.Act a.,68, 379-388
11. Sourav Pal (1986)	Analysis of coupled-cluster methods for first order static properties	Phys.Rev.A, 33, 2240-2244
12. Sourav Pal (1986)	Bivariational coupled cluster approach for study of static properties	Phys.Rev.A.34, 2682-2686
13. Sourav Pal, M.Rittby, R.J.Bartlett, D.Sinha and D.Mukherjee (1987)	Multireference coupled- cluster methods using an incomplete model space : Application to ionization potentials and excitation energies of formaldehyde	Chem.Phys.Lett . 137, 273-278
14. K.B.Ghose and Sourav Pal (1987)	Bivariational coupled-cluster method: Equation for first order property	Phys.Rev.A 36,1539-1542
15. Sourav Pal, M.Rittby, R.J.Bartlett, D.Sinha and D.Mukherjee (1987)	Multireference coupled- cluster methods using an incomplete model space : Application to ionization potentials and excitation energies of Formaldehyde(E)	Chem.Phys Lett,142,575
16. Sourav Pal, M.Rittby , R.J.Bartlett, D.Sinha and D.Mukherjee (1988)	Molecular applications of multireference coupled-cluster methods using an Incomplete model space	J.Chem.Phys.,8 8,4357-4365

17. Sourav Pal (1989)	Multireference coupled cluster response approach for the calculation of static properties	Phys.Rev.A,39, 39-42
18. Sourav Pal (1989)	Linearized bi variational coupled cluster approach: General scheme for the derivation of static properties	Phys.Rev.A39,2 712-2714
19. M.Rittby, Sourav Pal and R.J.Bartlett (1989)	Multi reference coupled cluster method : lonization potentials and excitation energies of ketene and Diazomethane	J.Chem.Phys.,9 0,3214 -3220
20. R. Mattie, M.Rittby, Sourav Pal and R.J.Bartlett (1989)	Applications of multi reference coupled cluster theory	Lect.Notes in chemistry, (Springer Verlag),50, 143-153) Ed.D.Mukherjee
21. Sourav Pal, M.Rittby, R.J Bartlett (1989)	Multi reference coupled cluster methods for ionization potentials with partial inclusion of triple excitations	Chem.Phys.Lett .,160,212-218
22. H.D.Meyer and Sourav Pal(1989)	A band-Lanczos method for computing matrix elements of a resolvent	J.Chem.Phys.,9 1,6195 -6204
23. D. Mukherjee and Sourav Pal (1989)	Use of Cluster expansion methods in the open shell correlation problem	Advances in Quantum Chemistry, 20,291-373
24. Sourav Pal(1990)	Coupled-cluster response approach: An improved variational strategy	Phys.Rev.A.,42, 4385-4387
25. R.Vetrivel, Sourav Pal and S.Krishnan(1991)	Property of iron containing ZSM-5 zeolite: A theoretical study based on quantum chemical calculations	J.Mol.Catal.,68, 385-397
26. K.B.Ghose and Sourav Pal(1991)	Multiple perturbation approach: Bounds to various order response	Chem.Phys.Lett .,187,637 -641

27. V. V. Bhate, A. D. Bhusari and Sourav Pal (1991)	Parallel ab initio quantum chemistry calculations on transputers	Advanced Computing, Ed. V. Bhatkar
28. Sourav Pal(1992)	An open shell coupled cluster response approach for static properties	Inter.J.Quantum .Chem., 41, 443-452,
29. Sourav Pal and K.B.Ghose (1992)	Analysis of coupled-cluster approach for higher order static properties	Phys.Rev.A,45, 1518-1522
30. A.D.Bhusari, V.Bhate & Sourav Pal(1992)	Parallelization of molecular electronic structure calculation	Current Science, 62, 293-297
31. K.B.Ghose and Sourav Pal(1992)	Multireference coupled- cluster calculations on CH ²⁺	J.Chem.Phys,97 ,3863-3864
32. H.D.Meyer, Sourav Pal & U.V.Riss(1992)	Inclusion of electron correlation for the target wave function in low energy e- N ₂ scattering	Phys.Rev.A.,46, 186-193
33. Sourav Pal and K. B. Ghose (1992)	Coupled-cluster approach for static properties	Current Science, 63, 667- 677
34. Pinak Chakrabarti and Sourav Pal(1993)	Difference in the energies of interaction at the binding sites in protein structure	Chem.Phys.Lett .,201,24-26
35. Sourav Pal, Nayana Vaval and R.K.Roy (1993)	The principle of maximum hardness: An ab initio study	J.Phys.Chem.,9 7,4404 -4406
36. Nayana Vaval, K.B.Ghose, Sourav Pal & D.Mukherjee (1993)	Fock space multi reference coupled-cluster theory: Fourth order correction to ionization potential	Chem.Phys.Lett .,209, 292-298
37. K.B.Ghose, Sourav Pal and H.D.Meyer (1993)	Correlated static exchange interaction calculation of e-N ₂ scattering using coupled-cluster technique	J.Chem.Phys.,9 9,945-949
38. K.B.Ghose, P.G.Nair & Sourav Pal (1993)	Implementation of stationary coupled-cluster response method	Chem.Phys.Lett .,211,15 -19
39. Sourav Pal, R.K.Roy, and A.Chandra (1994)	Change of hardness and chemical potential in chemical binding: A quantitative model	J.Phys.Chem.,9 8,2314-2317

40. Nayana Vaval,	On stationary multi	Dhys Doy A 40
	On stationary multi	Phys.Rev.A,49, 1623-1628
R.K.Roy and Sourav Pal	determinantal coupled-	1023-1020
(1994)	cluster response	
41. K.B.Ghose and	Influence of bond length on	J.Chem.Phys.,1
Sourav Pal (1994)	variation of static exchange	00, 4712-
	potential: A case study in e	
	N₂ scattering	
42. Nayana Vaval,	Stationary coupled-cluster	Proc.Ind.Acad.S
K.B.Ghose ,P.G.Nair and	response: role of cubic terms	ci.,106, 387-
Sourav Pal (1994)	in molecular properties	392
43. Nayana Vaval,	Nonlinear molecular	J.Chem.Phys,10
K.B.Ghose and Sourav Pal	properties using	1, 4914-4919
(1994)	biorthogonal response	
(=== :,	approach	
44. R.K.Roy, A.K.Chandra	Correlation of polarizability,	J.Phys.Chem.,
and Sourav Pal (1994)	hardness and electro-	98, 10447 -
(200.1,	negativity: Poly atomic	10450
	molecules	
45. R.K.Roy, A.K.Chandra	Hardness as a function of	J.Mol.Struct.
and Sourav Pal (1995)	polarizability in a reaction	(Theo.Chem),
, ,	profile	331, 261-265
46. Sourav Pal K.B.Ghose	Electron correlation in target	Inter.J.Quantum
and H.D.Meyer (1995)	molecule in low-energy e-N ₂	.Chem., 55,
_	scattering	291-297
47. A.K.Chandra, Sourav	Structure, energetics and	Chem.Phys.Lett
Pal, Ajay C. Limaye &	bonding of diacetylene	ers, 247, 95-
Shridhar R.Gadre(1995)	complexes with Hydrogen	100
	Fluoride: A theoretical	
	investigation	
48. A.K.Chandra and	Studies on diacetylene	Chem. Phys.
Sourav Pal (1995)	complexes with water and	Letters 241,
	ammonia	399-403
49. Sourav Pal and	Some novel relationships of	J.Phys.Chem,99
A.K.Chandra (1995)	polarizability with dipole	,13865 -13867
	moments	
50. R.K.Roy and Sourav	Chemical Potential and	J.Phys.Chem,
Pal (1995)	hardness of open shell	99,17822-
	radicals : Model for the	
	corresponding anions	
51. K.B.Ghose ,P.Piecuch,	State Selective multi-	J.Chem.Phys.,
Sourav Pal and	reference coupled-cluster	103, 6582-
L.Adamowicz (1996)	theory: In pursuit of property	6589
	calculation	
L	<u> </u>	I

52. Sourav Pal, A.K.Chandra and R.K.Roy (1996)	Behavior of operational hardness : A critical study	Special issue of Theo.chem. 361, 57-61
53. Nayana Vaval and Sourav Pal (1996)	Stationary coupled-cluster approaches to molecular properties : A comparative study	Phys.Rev.A 54, 250- 258
54. Sourav Pal and Sampada C.Sabane(1996)	Correlated static-exchange interaction for electron-molecule scattering:Case study for LiH and H ₂	J.Chem.Phys, 104, 9779- 9782
55. Sumit Bhaduri, Abhijit Chatterjee, Sourav Pal, Shilpa Tawde and Doble Mukesh (1996)	Molecular orbital calculations on [Hru ₃ (CO) ₉ (PhNCO)] ⁻ and related clusters	Proc.Ind.Acad.S ci.,108, 495 - 503
56. Sourav Pal and Nayana Vaval (1996)	Stationary coupled-cluster functionals in molecular property calculations	Ind. J. Chem, 35A, 721-727
57. A.Chatterjee, A.K.Chandra, Sourav Pal, R.Vetrivel, M.Kubo and A.Miyamoto(1996)	Computer modelling studies to locate porphyrin complexes inside microporous material	In 'Catalysis- Modern Trends' N.M.Gupta and D.K.Chakrabart y (eds.,) Narosa Publishing House, New Delhi, P. 135
58. Sourav Pal (1996)	Correlated Approach to Molecular Properties	In 'Strongly correlated Electron Systems in Chemistry' S. Ramasesha and D. D. Sharma (eds.,) Narosa Publishing House, New Delhi P.88 –98
59. Nayana Vaval and Sourav Pal (1997)	Stationary coupled-cluster approaches to molecular properties: A comparative study(E)	Phys. Rev A , 55, 2482

60. Sailaja Krishnamurty, Ram Kinkar Roy, Rajappan Vetrivel, Suehiro Iwata and Sourav Pal (1997)	Local Hard-Soft Acid Base Principle: A Critical Study	J. Phys. Chem, A 101, 7253- 7257
61. S.Salai Cheetu Ammal, P.Venuvanalingam and Sourav Pal (1997)	Lithium Bonding Interaction in H ₂ CYLiF(Y=O,S) Complexes: A Theoretical Probe	J.Chem.Phys.10 7,4329 -4336
62. D.Ajitha and Sourav Pal (1997)	Time-dependent multi- reference coupled-cluster response approach for evaluating dynamic properties	Phys. Rev. A 56, 2658- 2664
63. Sourav Pal and Nayana Vaval (1997)	Analytic coupled-cluster based response approach using multi determinantal model Space	In 'Recent Advances in Coupled Cluster Methods' Rodney J Bartlett (ed.), World Scientific Publishing Co. Pvt. Ltd, Singapore P.255-273
64. S.Krishnamurty, Sourav Pal and R.Vetrivel (1998)	The influence of the nature and size of the cluster models on the electronic properties of zeolite in molecular modelling studies	Studies in surface science and catalysis 113, 321
65. S.Krishnamurty, Sourav Pal, R. Vetrivel, A.K. Chandra, A.Goursot and F.Fajula (1998)	The influence of geometric parameters on the electronic properties of faujasite cluster models as derived from density functional theory and Hartree Fock Self-consistent field methods	J. Mol. Catal A. 129, 287-295,
66. Nayana Vaval, Sourav Pal and D.Mukherjee (1998)	Fock space multi reference coupled cluster theory: Noniterative inclusion of triples for excitation energies	Theoretical Chemistry Accounts 99, 100-105

67. R.K.Roy, S.Krishnamurty, P.Geerlings and Sourav Pal (1998)	Local softness and hardness based reactivity descriptors for predicting intra and intermolecular reactivity sequences: Carbonyl compounds	J.Phys.Chem A 102, 3746- 3755
68. A.B. Kumar, N. Vaval and Sourav Pal (1998)	Extended coupled-cluster functional for molecular properties: Study of analytic and numerical approach	Chem. Phys. Letters, 295,189-194
69. Nayana Vaval and Sourav Pal(1999)	Molecular property calculation for excited states using a multireference coupled cluster approach	Chem. Phys. Letters, 300, 125-130
70. D. Ajitha, Nayana Vaval and Sourav Pal(1999)	Multi – reference coupled cluster based analytic response approach for evaluating molecular properties: Some pilot results.	J. Chem. Phys. 110, 2316- 2322
71. S. Tenno, S. Iwata, Sourav Pal and D. Mukherjee (1999).	Generalization of the coupled cluster response theory to multi-reference expansion spaces: an application of the coupled cluster singles and doubles effective Hamiltonian	Theor. Chem. Acc. 102, 252-261
72. R.C.Deka, Sourav Pal , A.Goursot and R.Vetrivel (1999)	Influence of zeolite composition on the selectivity of alkylation reaction for the synthesis of p-isobutylethylbenzene: A computational study	Catalysis Today 49, 221-227
73. R. K. Roy, Sourav Pal and K. Hirao(1999)	On non-negativity of Fukui function indices	J. Chem. Phys, 110, 8236- 8245
74. N. Watanabe, S. Tenno, Sourav Pal and S. Iwata and Y. Udagawa(1999)	Size-extensive calculations of static structure factors from the coupled cluster singles and doubles model	J. Chem. Phys. 111, 827-832

75. D. Ajitha and Sourav Pal (1999)	Dipole moments of open- shell radicals using an analytic linear response approach in the Fock space multi-reference coupled cluster method	Chem. Phys. Letters 309, 457 -462
76. R.C. Deka, R. Vetrivel and Sourav Pal (1999)	Application of Hard-Soft Acid-Base principle to study Bronsted Acid sites in zeolite clusters : A quantum chemical study	J. Phys. Chem A 103, 5978- 5982
77. Nayana Vaval and Sourav Pal (1999)	Adiabatic states of Ozone using Fock space multi-reference coupled cluster method	J. Chem. Phys 111, 4051- 4055
78. D. Ajitha and Sourav Pal (1999)	Z-vector formalism for the Fock space multi-reference coupled cluster method: Elimination of the response of the highest valence sector amplitudes	J. Chem. Phys 111, 3832- 3836 and 9892 (E)
79. K. R. S. Chandra Kumar, Sourav Pal, A. Goursot and R. Vetrivel (1999)	Influence of the cation distribution on the electric field strength inside the Na-A zeolite cavity: A molecular modeling approach	In 'Recent Trends in Catalysis', P. 197-202, Eds. V. Murugesan, B. Arabindoo and M. Palanichamy, Narosa Publishing House
80. Anirban Hazra and Sourav Pal (2000)	Weak interaction between HCHY(Y=O,S) and LiCl: A theoretical study	Theochem 497, 157-163
81. Sourav Pal and D. Ajitha(2000)	Dipole moment of open shell radicals using the Fock space multi-reference coupled cluster linear response approach: Full singles and doubles approximation	Ind. J. Chem A (Special issue) 39A, 60-67

82. Sourav Pal and K.R.S. Chandrakumar (2000)	A critical study of local reactivity descriptors for weak interactions: A qualitative and quantitative analysis	J. Amer. Chem. Soc. 122, 4145- 4153
83. R. K. Roy, K. Hirao and S. Pal (2000)	On non-negativity of Fukui function indices-II	J. Chem. Phys. 113, 1372- 1379
84. Sailaja Krishnamurty and Sourav Pal (2000)	Intermolecular reactivity trends using the concept of group softness	J. Phys. Chem. A, 104, 7639- 7645
85. K. R. Shamasundar and Sourav Pal (2001)	Development of an efficient linear response approach to the Hilbert space multi-reference coupled-cluster theory	J. Chem. Phys. 114, 1981- 1988
86. D. Ajitha and Sourav Pal (2001)	Dipole moments of adiabatic excited states using Fock space multireference coupled cluster analytic response approach	J. Chem. Phys 114, 3380- 3384
87. Nayana Vaval, A. B. Kumar and Sourav Pal (2001)	Extended Coupled Cluster Approach for Molecular Properties: Study of H₂O and HF Complexes	Int. J. Mol Sci. 2, 89-102
88. K. R. S. Chandrakumar and Sourav Pal (2001)	A Novel Theoretical Model for Molecular Recognition of Multiple-site Interacting Systems Using Density Response Functions	J. Phys. Chem. B 105, 4541- 4544,
89. K. R. Shamasundar and Sourav Pal (2001)	Development of an efficient linear response approach to the Hilbert space multi-reference coupled-cluster theory	J. Chem. Phys. (E) 115, 1979
90. Nayana Vaval and Sourav Pal (2001)	Study of Constant Term for Electron-Molecule Scattering: F ₂ , H ₂ CO and H ₂ O target examples	Chem. Phys. Letters <u>345,</u> <u>319-324</u>

91. Ram Kinkar Roy, Kimihiko Hirao, Sailaja Krishnamurty and Sourav Pal (2001)	Mulliken population analysis based evaluation of condensed Fukui function indices using fractional molecular charge	J. Chem. Phys 115, 2901- 2907
92. Sailaja Krishnamurty, Sourav Pal, Annick Goursot and Rajappan Vetrivel (2001)	Quantum chemical calculations on the stability of different conformations of silicate building block structures in relevance to zeolite synthesis	Microporous and Mesoporous Materials, 48, 383- 390
93. K. R. S. Chandrakumar and Sourav Pal (2002)	DFT and local reactivity descriptor studies on the Nitrogen sorption selectivity from air by sodium and calcium exchanged zeolite- A	Colloid and Surfaces A 205, 127-138
94. K. R. S. Chandrakumar and Sourav Pal (2002)	The Concept of Density Functional Theory Based Descriptors and its Relation with the Reactivity of Molecular Systems: A Semi- Quantitative Study	Int. J. Mol. Sci. 3, 324-337
95. S. G. Sudrik, S. P. Chavan, K. R. S. Chandrakumar, Sourav Pal, S. K. Date, S. P. Chavan, and H. R. Sonawane (2002)	Microwave Specific Wolff Rearrangement of α- Diazoketones and Its Relevance to the Nonthermal and Thermal Effect	J. Org. Chem. 67, 1574- 1579
96. K. R .S. Chandra Kumar and Sourav Pal (2002)	Study of Local Hard-Soft Acid-Base Principle to Multiple-Site Interactions	J. Phys. Chem. A. 106, 5737- 5744
97. K. R .S. Chandra Kumar and Sourav Pal (2002)	A systematic study on the reactivity of Lewis acid-base complexes through the local hard-soft-acid-base complexes	J. Phys. Chem. A. 106, 11775- 11781
98. K. R. Shamasundar and Sourav Pal (2002)	Higher energy derivatives in Hilbert space multi-reference coupled-cluster theory: A constrained variational approach	Int. J. Mol. Sci. 3, 710-732

99. Sourav Pal and Nayana Vaval (2002)	Extended coupled-cluster approach for static properties	Recent Research Developments in Physical Chemistry, 6, P. 527-542, Edited by Dr. S. G. Pandalai, Transworld Research Network
100. D. Ajitha, Kimihiko Hirao and Sourav Pal (2003)	Energies and dipole moments of excited state of ozone and ozone radical cation using Fock space multi-reference coupled- cluster analytical response approach	Collect. Czech. Chem. Commun. 68, 47-60
101. Sharan Shetty, Sourav Pal and D. G. Kanhere (2003)	A study of electronic and bonding properties of Sndoped Lin Sn clusters and aluminium based binary clusters through electron localization function	J. Chem. Phys.118, 7288-7296
102. K.B. Sophy and Sourav Pal (2003)	Density functional response approach for the linear and non-linear electric properties of molecules	J.Chem.Phys.11 8, 10861- 10866
103. K. R. S. Chandrakumar and Sourav Pal (2003)	Study of local hard-soft-acid- base principle: Effects of basis set, electron correlation and the electronic partitioning method	J. Phys. Chem A.107, 5755- 5762
104. Sourav Pal and Nayana Vaval (2004)	Electric properties using stationary coupled-cluster method	Journal of. Computational Methods in Science and Engineering
105. Sharan Shetty, D. G. Kanhere and Sourav Pal (2004)	Metallo-Antiaromatic Al ₄ Na ₄ and Al ₄ Na ₃ - Compounds:A Theoretical Investigation	J. Phys. Chem. A 108, 628-631

106. Y. Sajeev, M. K. Mishra, N. Vaval and S. Pal(2004)	Fock space multi-reference coupled cluster calculations based on an underlying bivariational self consistent field on Auger and shape resenance	J. Chem. Phys., 120, 67 - 72
107. R. W. A. Havenith, P. W. Fowler, E. Steiner, S. Shetty, D. G. Kanhere, Sourav Pal (2004)	Aromaticity and antiaromaticity of Li _x Al ₄ clusters: Ring current patterns versus electron counting	Phys. Chem. Chem. Phys., 6, 285-288
108. K. R. Shamasundar, Subashini Asokan and Sourav Pal (2004)	A constrained variational approach for energy derivatives in Fock space multi-reference coupled-cluster theory	J. Chem. Phys. 120, 6381- 6398
109. P. U. Manohar, N. Vaval and Sourav Pal (2004)	Extended coupled-cluster approach for Magnetizabilities of small molecules	Chem. Phys. Letters, 387, 442-447
110. K. B. Sophy and Sourav Pal (2004)	Electric properties of BH, CO and H ₂ O molecules by density functional response approach	J. Mol. Struct (Theochem) 676, 89-95
111. Nayana Vaval and Sourav Pal (2004)	A fully relaxed extended coupled-cluster approach for molecular properties	Chem. Phys. Letters, 398, 194-200
112. Akhilesh Tanwar and Sourav Pal (2004)	Behavior of the Local Reactivity Descriptors during Complexation: A Case Study of BXX'X' 'NH ₃ (X, X', X'' = H, F)	J. Phys. Chem A 108, 11838- 11845
113. K. V. Raman and Sourav Pal (2004)	Mathematics in Chemistry	Reference Book, published by Vikas Publishing House Pvt. Ltd., New Delhi

114. Ayan Datta and Sourav Pal (2005)	Effects of conjugation length and donor-acceptor functionalization on the non- linear optical properties of organic push-pull molecules using density functional theory	J. Mol. Struct. (Theochem) 715, 59-64
115. Y. Sajeev and Sourav Pal (2005)	A general formalism of the Fock space multireference coupled cluster method for investigating molecular electronic resonances	Mol. Phys. 103, 2267-2275
116. Y. Sajeev, R. Santra and Sourav Pal (2005)	Analytically continued Fock space multireference coupled-cluster theory: Application to the ² Π g shape resonance in e-N2 scattering	J. Chem. Phys, 122, 234320 (10 pages)
117. D. Davis, K. Sreekumar, Y. Sajeev and Sourav Pal (2005)	Optimization of Nonlinear Optical Properties by Substituent Position, Geometry and Symmetry of the Molecule: An ab Initio Study	J. Phys. Chem. B 109, 14093- 14101
118. Nayana Vaval, P. U. Manohar and Sourav Pal (2005)	Spectroscopic properties of the halogen oxides using Fock space multi-reference coupled-cluster method	Collect. Czech. Chem. Commun. 70, 851-863
119. Lubos Horny, Henry F. Schaefer III, Ivan Hubac and Sourav Pal (2005)	On the single-root approach within the framework of coupled-cluster theory in Fock space	Chem.Phys. 315, 240-250
120. Akhilesh Tanwar and Sourav Pal (2005)	Separability of local reactivity descriptors	J. Chem. Sci, 117, 497-505
121. Y. Sajeev, R. Santra and Sourav Pal (2005)	Correlated complex independent particle potential for calculating electronic resonances	J.Chem. Phys. 123, 204110 (10 pages)

122. Sourav Pal and K.B. Sophy (2005)	Density functional response approach for electric properties of molecules	Lecture Series on Computer and Computational Sciences (Brill Academic Publishers) 3, 142-151
123. Sharan Shetty, Sourav Pal, D. G. Kanhere and A. Goursot (2006)	A quantitative and a qualitative study of the resonance assisted double proton transfer in formic acid dimer	Ind. J. Chem A 45, 202-212
124. S. Shetty, Sourav Pal, D. G. Kanhere and A. Goursot (2006)	Structural, Electronic and Bonding properties of zeolite Sn-Beta: A periodic density functional theory study	Chemistry: A European Journal,12, 518-523
125. S. Shetty, R. Kar, D. G. Kanhere and Sourav Pal (2006)	Inter-cluster reactivity of Metallo-aromatic and anti- aromatic Compounds and Their Applications in Molecular Electronics: A Theoretical Investigation	J. Phys. Chem. A 110, 252-256
126. P. U. Manohar, N. Vaval and S. Pal (2006)	Constrained variational response to Fock-space multi-reference coupled cluster theory: Some pilot applications.	J. Mol. Struct (Theochem) Special Issue, 768, 91-96
127. A. Tanwar, D. R. Roy, Sourav Pal and P. K. Chattaraj (2006)	Minimum magnetizability principle	J. Chem. Phys. 125, 056101 (2 pages)
128. G. Fischer, A. Goursot*, B. Coq, G. Delahay and Sourav Pal (2006)	Theoretical Study of N₂O reduction by CO in Fe-BEA zeolite	ChemPhysChe m 7, 1795 - 1801
129. Sourav Pal, Y. Sajeev and Nayana Vaval (2006)	Analytically continued Fock space multi-reference coupled-cluster theory: Application to the shape resonance	Chem.Phys. 329, 283-289

130. A. Tanwar, B. Bagchi and Sourav Pal (2006)	Interaction induced shifts in O-H stretching frequency of water in halide-ion water clusters: A microscopic approach with a bond descriptor	J.Chem. Phys. 125, 214304 (6 pages)
131. Y. Sajeev and Sourav Pal (2007)	Calculation of Negative Ion Shape Resonances Using Coupled Cluster Theory	Current Topics of Atomic, Molecular and Optical Physics, Ed. Chandana Sinha and Shib Shankar Bhattacharyya (WORLD SCIENTIFIC PUBL) PP. 187 - 198.
132. R. Kar, K. R. S. Chandrakumar and Sourav Pal (2007)	The Influence of Electric Field on the Global and Local Reactivity Descriptors: Reactivity and Stability of the weakly Bonded Complexes	J.Phys. Chem. 111, 375 - 383
133. K. B. Sophy, P. Calaminici and and Sourav Pal (2007)	Density functional static dipole polarizability and first-hyperpolarizability calculations of Na _n (n=2, 4, 6, 8) clusters using an approximate CPKS method and its comparison with MP2 calculations	J. Chem. Theory and Computation 3, 716-727
134. P. U. Manohar and Sourav Pal (2007)	Dipole moments and polarizabilities of some small radicals using constrained variational response to Fock space multi-reference coupled-cluster theory	Chem. Phys. Letters 438, 321-325
135. N. Gupta, R. Garg, K. K. Shah, A. Tanwar, and Sourav Pal (2007)	Deprotonation of 1,2- Dialkylpyridinium lons: A DFT Study of Reactivity and Site-Selectivity	J. Phys. Chem. A 111, 8823- 8828

136. I. Heidari, Sourav Pal, B. S. Pujari and D. G. Kanhere (2007)	Electronic structure of spherical quantum dots using coupled cluster method	J. Chem. Phys. 127, 114708 (6 pages)
137. Bhakti S. Kulkarni, Akhilesh Tanwar and Sourav Pal (2007)	Reactivity descriptors and electron density analysis for ligand chemistry: A case study of 2,2'-bipyridine and its analogues	J. Chem. Sciences, 119, 489-499
138. Arijit Bag, P. U. Manohar and Sourav Pal (2007)	Analytical dipole moments and dipole polarizabilities of oxygen mono fluoride and nitrogen dioxide: A constrained variational response to Fock space multi-reference coupled- cluster method	Computing Letters, 3, 351- 358
139. S. Pal, Nayana Vaval and Y. Sajeev (2007)	Shape Resonance in electron molecule scattering using coupled cluster method	Ind. J. Phys. 81, 1061-1067
140. P. U. Manohar and Sourav Pal (2007)	Constrained Variational Response to Fock-Space Multi-Reference Coupled- Cluster Theory: Formulation for Excited-State Electronic Structure Calculations and Some Pilot Applications	COMPUTATION AL METHODS IN SCIENCE AND ENGINEERING: Theory and Computation: Old Problems and New Challenges., AIP Conference Proceedings, 963, pp. 337- 344
141. S. Shetty, B. S. Kulkarni, D.G. Kanhere, A. Goursot and Sourav Pal (2008)	A Comparative Study of Structural, Acidic and Hydrophobic properties of Sn-BEA with TiBEA using Periodic Density Functional Theory	J. Phys. Chem, B 112, 2573- 2579
142. Rahul Kar and Sourav Pal (2008)	Electric field response of molecular reactivity descriptors	Theor Chem Accounts, 120, 375-383

143. T. Kelkar, D. G. Kanhere and Sourav Pal (2008) 144. Tuhina Kelkar, Sourav Pal and D G Kanhere (2008)	First principles calculations of thermal equations of state and thermodynamical properties of MgH2 at finite temperatures Density functional investigations of electronic structure and	Computational Material Science, 42, 510-516 ChemPhysChe m 9, 928-934
	dehydrogenation reactions of Al- and Si-substituted magnesium hydride	
145. Subrata Banik, Sourav Pal and M Durga Prasad (2008)	Calculation of vibrational energy of molecule using coupled cluster linear response theory in bosonic representation: Convergence studies	J. Chem. Phys., 129, 134111 (9 Pages)
146. K. B. Sophy, Sapana V Shedge and Sourav Pal (2008)	Non-iterative density functional response approach: Application to NLO properties of para- nitroaniline and its methyl substitituted derivatives	J. Phys. Chem A 112, 11266- 11272
147. Rahul Kar and Sourav Pal (2009)	Electric field effects on chemical reactivity	Monograph, Chapter 25 "Chemical Reactivity Theory: A Density functional View", Ed. P K Chattaraj (CRC Press), P. 363- 377
148. H. S. De, S. Krishnamurthy and Sourav Pal (2009)	A Density functional Investigation of Relativistic Effects on the Structure and Reactivity of Tetrahedral Gold Clusters	J. Phys. Chem C, 113, 7101- 7106

149. Deepti Mishra and Sourav Pal (2009)	Ionisation Potential and Structure Perturbation of Adenine, Thymine, Guanine and Cytosine Bases and Their Base Pairs: A quantification of reactive sites	J. Mol, Struct (Theochem), 902, 96-102
150. R. Lalitha, Nayana Vaval and Sourav Pal (2009)	Diamagnetic magnetizability of doublet radicals using constrained Fock space multi-reference coupled- cluster response approach	Intern J. Quantum Chemistry 109, 2191
151. E. Eliav, A. Borschevsky, K. R. Shamasundar, Sourav Pal, and U. Kaldor (2009)	Intermediate Hamiltonian Hilbert space coupled cluster method: theory and pilot application	Intern J Quantum Chem 109, 2909- 2915
152. T. Kelkar and Sourav Pal (2009)	A computational study of electronic structure, thermodynamics and kinetics of hydrogen desorption from Al- and Sidoped alpha-, gamma-, and beta-MgH2	J. Mater. Chem 19, 4348 - 4355
153. R. Kar and Sourav Pal (2009)	Effect of solvent having different dielectric constant on reactivity: A Conceptual DFT approach	Intern J Quantum Chem (In Press) DOI: 10.1002/qua.22 333
154. A. Bag, P. U. Manohar, N. Vaval and Sourav Pal (2009)	First- and Second-order electrical properties computed at the FSMRCCSD level for excited states of closed-shell molecules using the constrained-variational approach	J. Chem. Phys. 131, 024102

155. P U. Manohar, K. R. Shamasundar, A. Bag, N. Vaval and Sourav Pal (2010)	On some aspects of Fock space multi-reference coupled-cluster singles and doubles energies and optical properties	Chapter 14 in "Recent Progress in coupled cluster methods: Theory and Applications, Series: Challenges and Advances in Computational Chemistry and Physics, Vol 11" , P. Carsky, J. Paldus and J. Pittner Ed. Springer, 375- 394
156. Bhakti S. Kulkarni, S. Krishnamurty and Sourav Pal (2010)	Interaction of Sn- and Ti- substituted BEA zeolite with H2O: Ab initio study of convergence as a function of plane wave cut-off	Chem Phys Letters 484, 374 - 379
157. H. S. De, Sailaja Krishnamurthy and Sourav Pal (2010)	Understanding the reactivity properties of Au_n ($6 \le n \le 13$) clusters using density functional theory based reactivity descriptors	J. Phys. Chem C, 114, 6690- 6703
158. Daniel Theis, Yuriy G. Khait, Sourav Pal and Mark R. Hoffmann (2010)	Molecular electric dipole moments using the GVVPT2 variant of multireference perturbation theory	Chem Phys Letters 487, 116-121
159. Sapana V. Shedge, Javier Carmona Espíndola, Sourav Pal and Andreas M. Köster (2010)	Comparison of Auxiliary Density Perturbation Theory and Non-iterative Approximation to Coupled Perturbed Kohn-Sham Method: Case study of Polarizabilities of Disubstituted Azoarene Molecules	J. Phys. Chem A 114, 2357- 2364

160.A. Bag, S. Bhattacharyya and Sourav Pal (2010)	Static hyper-polarizability of open shellmolecules computed at the FSMRCCSD level using constrained variational approach	Recent Advances in Spectroscopy, Ed. R K Chaudhuri, M. V. Mekkaden, A. V. Raveendran and A. S. Narayanan, P. 99-109 (Springer)
161. S. Saha, R.K. Roy and Sourav Pal (2010)	CDASE-A Reliable Scheme to Explain the Reactivity Sequence between Diels-Alder Pairs	PhysChemChe mPhys. 12, 9328-9338
162. Bhakti S. Kulkarni, Sailaja Krishnamurty and Sourav Pal (2010)	Probing Lewis Acidity and Reactivity of Sn- and Ti- beta zeolite using industrially important moieties: A Periodic Density Functional Study	J. Mol. Cata A 329, 36-43
163. Tuhina Adit Maark and Sourav Pal (2010)	A Model Study of Effect of M = Li ⁺ , Na ⁺ , Be ^{2+,} Mg ^{2+,} and Al ³⁺ Decoration on Hydrogen Adsorption in Metal Organic Framework MOF-5	Int. J. Hydrogen Energy 35, 12846-12857
164. S. Banik, Sourav Pal and M. D. Prasad (2010)	Calculation of vibrational transition matrix elements and dipole moment expectation values by coupled cluster method	J. Chem. Theory and Computatio, 6, 3198-3204
165. Sourav Pal (2010)	Fock space multi-reference coupled cluster method for energies and energy derivatives	Mol. Phys. 108, 3033-3042
166. R. Lalitha, Nayana Vaval and Sourav Pal (2011)	Effect of triples to dipole moments in Fock-space multireference coupled cluster method	J. Chem. Theory and Computation 7, 876-883

167. Sapana V. Shedge, Sourav Pal and Andreas Koster (2011)	Validation and application of auxiliary density perturbation theory and non-iterative approximation to coupled-perturbed Kohn-Sham approach for calculation of dipole-quadrupole polarizability	Chem. Phys. Letters, 510, 185-190
168. Deepti Mishra, Sourav Pal and Sailaja Krishnamurty (2011)	Understanding the molecular conformations of Nadimyristoyl phosphatidyl glycerol (DMPG) using DFT-based method	Molecular Simulation, 37, issue 11, 953- 963.
169. Bhakti Kulkarni, Sailaja Krishnamurthy and Sourav Pal (2011)	"Size and Shape Sensitive Reactivity Behavior of Al _n (n = 2-5, 13, 30 and 100) Clusters Towards N ₂ Molecule: A First Principles Investigation	J. Phys. Chem C , 115 14615- 14623
170.Mudit Dixit, Tuhina A. Maark and Sourav Pal (2011)	Ab initio and Periodic DFT Investigation of Hydrogen Storage on Light Metal-Decorated MOF-5	International Journal of Hydrogen Energy , 36, 10816-10827
171. Himadri Sekhar De, Sailaja Krishnamurty, Deepti Mishra and Sourav Pal (2011)	Finite temperature Behavior of Gas Phase Neutral Au _n (3 $<=$ n $<=$ 10) Clusters: A first Principles Investigation	J. Phys. Chem. C, 115, 17278
172. Sapana V. Shedge, Sayali P. Joshi, Sourav Pal (2012)	Behaviour of Density Functional Theory for Electric Response Properties ad Distorted Geometries of Molecule	Theo. Chem. Acc. 131, 1094
173. Aryya Ghosh, Jitendra Gupta, Sourav Pal and Nayana Vaval (2012)	Constrained variational approach for energy derivatives in intermediate Hamiltonian Fock space coupled cluster theory	Chemical Physics, 401, 45-49

174. R. Lalitha, Debarati Bhattacharya, Nayana Vaval and Sourav Pal (2012)	Fock-space multi-reference coupled-cluster response with the effect of triples on dipole moment of CIO and SF radicals	J. Chem. Sci. 124, 223- 232
175. Achintya Dutta, Nayana Vaval and Sourav Pal (2012)	NOx catalyzed pathway of ozone hole formation :A coupled cluster investigation	J. Chem. Theor. Comput. 8, 1895-1901
176. Gowri Priya, Amol S. Kotmale, Rupesh L. Gawade, Deepti Mishra, Sourav Pal, Vedavadi Puranik, P.R. Rajamohanan and G.J. Sanjayan (2012)	Helical folding in heterogeneous foldamers without inter-residual backbone hydrogen-bonding	Chem.Comm, 48, 8922-8924
177.S. S. Kale, A S Kotmale, A K Dutta, S. Pal , P R Rajamohanan and G J Sanjayan (2012)	Conformational modulation of Ant-pro oligomers using chirality alteration of proline residues	Org. Biomol. Chem. 10, 8426-8433
178. Sayali Joshi, Achintya Dutta, Sourav Pal and Nayana Vaval (2012)	Extended coupled cluster for Raman and Infrared spectra of small molecules	Chem. Phys. 403, 25-32
179. Himadri Sekhar De, Sailaja Krishnamurty and Sourav Pal (2012)	A First Principle Investigation on the Thermal Stability of a Golden Fullerene: A case study of Au ₃₂	Catalysis Today 198, 106-09
180. Mudit Dixit, Kamalika Ghatak, Tuhina Adit Maark , Rajeev Ahuja and Sourav Pal (2012)	Scandium Decorated MOF-5 as Potential Candidates for Room Temperature Hydrogen Storage: A Solution for the Clustering Problem in MOFs	J Phys Chem C, 116, 17336- 17342
181. Aryya Ghosh, Nayana Vaval and Sourav Pal (2012)	Equation-of-motion coupled- cluster method for the study of shape resonance	J. Chem. Phys. 136,234110
182. Subrata Banik, Sourav Pal, and Mallampalli Durga Prasad (2012)	Vibrational Multi-reference Coupled Cluster Theory in bosonic representation	J Chem Phys 137, 114108(10 pages)

183. Sapana V Shedge, Sourav Pal and Andreas Koster (2012)	Theoretical study of frequency and temperature dependence of dipolequadrupole polarizability of P4 and adamantine	Chem . Phys. Letters, 552, 146—150
184.Subhash P. Chavan, Sumanta Garai, Achintya Kumar Dutta, Sourav Pal (2012)	Friedel-Crafts Acylation Reactions Using Esters	European Journal of Organic Chemistry 35, 6841- 6845
185. Sourav Pal (2012)	Descriptors as Probes for Inter-Molecular Interactions and External Perturbation	Structure & bonding 149, 131-158
186. Ideh Heidari, Nayana Vaval, Sourav Pal and D.G. Kanhere (2013)	Polarizability of few-electron quantum dots: Extended coupled-cluster response approach	Chem. Phys. Letters 555,263-267
187. K. R. S. Chandrakumar, Rahul Kar and Sourav Pal (2013)	Semi-Quantitative Aspects of Density Based Descriptors and Molecular Interactions: A More Generalized Local Hard-Soft Acid-Base Principle	Electronic Structure and Reactivity, Pg.391-414,Ed. S. K. Ghosh and P.K. Chattaraj (CRC Press) I
188 Debarati Bhattacharya, Nayana Vaval, and Sourav Pal (2013)	Electronic transition dipole moments and dipole oscillator strengths within Fock-space multi-reference coupled cluster framework - An efficient and novel approach	J. Chem. Phys. 138, 094108 (9 pages)
189. Jitendra Gupta, P. U. Manohar, Aryya Ghosh,Nayana Vaval and Sourav Pal (2013)	Extended coupled cluster through nth perturbation order for molecular response properties:A comparative study,	Chem. Phys. 417, 45-51

190. S. Bhattacharya, Nayana Vaval and Sourav Pal (2013)	Fock space multireference coupled-cluster theory : Study of shape resonances	Intern J Quantum Chem , 113,1690-95
191. Aryya Ghosh, Anagha Karne, S. Pal and Nayana Vaval (2013)	CAP/EOM-CCSD method for the study of potential curves of resonant states	Phys.Chem.Che m. Phys 15, 17915-21
192.Aryya Ghosh, S Pal and N. Vaval (2013)	Study of interatomic coulombic decay of Ne(H2O)n (n=1,3) clusters using equation of motion coupled cluster method	<i>J. Chem. Phys</i> , 139,064112
193. Jitendra Gupta, Nayana Vaval, and Sourav Pal (2013)	A Lagrange multiplier approach for excited state properties through Intermediate Hamiltonian formulation of Fock space multireference coupled-cluster theory.	J. Chem. Phys. 139, 074108
194.Achintya Dutta, Sourav Pal, and Debashree Ghosh (2013)	Perturbative approximations to single and double spin flip equation of motion coupled cluster singles doubles methods	J. Chem. Phys 139, 124116 (11 pages)
195. Achintya Dutta, Nayana Vaval and Sourav Pal (2013)	EOMIP-CCSD(2): An Efficient N ⁵ Scaling Method For Structure and Properties of Doublet Radicals"	J. Chem. Theo & Comp 9, 4313-4331
196. Susanta Das ,Sailaja Krishnamurty and Sourav Pal (2013)	Understanding the Site Selectivity in Small Sized Neutral and Charged Al _n (4 <n <7)="" a="" adsorption.<="" based="" clusters="" density="" descriptors:="" functional="" molecule="" on="" reactivity="" study="" td="" theory="" using="" validation="" water=""><td>J. Phys. Chem. A 117, 8691- 8702</td></n>	J. Phys. Chem. A 117 , 8691- 8702

197. Manzoor Dar; Sourav Pal, Sailaja Krishnamurty (2013)	Influence of Charge and Ligand on the Finite Temperature Behavior of Gold Clusters: A BOMD study on Au6 Cluster	J. Phys. Chem. C 117 , 20982- 20990
198. Susanta Das, Sapana Shedge and Sourav Pal (2013)	A Critical Study of Charge Transfer Parameter for the Calculation of Interaction Energy Using Local Hard-Soft Acid-Base Principle	J. Phys. Chem. A, 117 ,10933- 10943
199. Deepti Mishra, Susanta Das, Sailaja Krishnamutry and Sourav Pal (2013)	Hydration Behaviour of different head groups of phospolipids using density functional theory: A validation from Fukui functions for prediction of active sites of hydration	Mol. Simulations, 39 , 937-955
200. Kapil Kumar, Mudit Dixit, J M Khire and Sourav Pal (2013)	Atomistic details of effect of disulfide bond reduction on active site of Phytase B from Aspergillus niger: A MD Study.	Bioinformation, 9 , 963–967
201. Bhakti S. Kulkarni, Deepti Mishra and Sourav Pal (2013)	Role of substituents on the reactivity and electron density profile of diimine ligands: A Density Functional Theory based study	Journal of Chemical Sciences, 125 , 1247-1258
202. Vidhika Sharma, Mudit Dixit, Vibha R Satsangi, Sahab Dass, Sourav Pal and Rohit Shrivastav (2014)	Photoelectrochemical splitting of water with nanocrystalline Zn _{1-x} Mn _x O thin films: First-Principle DFT computations supporting the systematic experimental endeavor	Int. J. Hydrogen Energy , 39 , 3637-3648

203. Achintya Dutta, P. U Manohar, Nayana Vaval and Sourav Pal(2014)	Ground state of Naphthyl Cation: Singlet or Triplet	<i>J. Chem. Phys</i> 140 ,114312
204. Achintya Dutta; Dar, Manzoor; Nayana Vaval; Sourav Pal (2014)	Structure, Stability and Properties of Trans Peroxo Nitrate Radical: The Importance of Non-dynamic Correlation	J. Phys. Chem. A 118 , 1350- 1362
205. Manzoor Dar, Sailaja Krishnamurty, Sourav Pal (2014)	Effect of Silicon Doping on the Reactivity and Catalytic Activity of Gold Clusters	J. Phys. Chem C, 118 , 7501- 7507
206. Himadri Pathak, B. K. Sahoo, B. P. Das, Nayana Vaval, Sourav Pal (2014)	Relativistic equation-of- motion coupled-cluster method: Application to closed-shell atomic systems	Phys. Rev A 89 , 042510
207. Achintya Kumar Dutta, Jitendra Gupta, Himadri Pathak, Nayana Vaval, Sourav Pal (2014)	Partitioned EOMEA-MBPT (2): An Efficient N5 Scaling Method for Calculation of Electron Affinities	J. Chem. Theory and Comput, 10 , 1923-1933
208. Mudassir K. Munshi, Swapna M. Gade, Manoj V. Mane, Deepti Mishra, Sourav Pal, Kumar Vanka, Vilas H. Rane, Ashutosh A. Kelkar (2014)	1,8-Diazabicyclo[5.4.0] undec-7-ene (DBU): A highly efficient catalyst in glycerol carbonate synthesis	J. Mol. Catal A 391 , 144-149

209. Debarati Bhattacharya, Nayana Vaval, Sourav Pal (2014)	Electronic transition dipole moment: A semi- biorthogonal approach within valence universal coupled cluster framework	Intern J Quantum Chem 114, 1212- 1219
210. Sourav Pal (2014)	Complex absorbing potential based coupled-cluster methods to metastable states	Abstract of the Papers for 248th National Meeting of the American- Chemical- Society (ACS), San Francisco, CA
211.Manzoor Dar and Sourav Pal (2014)	Enhanced Interaction of Molecular Oxygen with Amino Acid Complexes of Silver and Gold Clusters	Ind. J. Chem A, 53 (Special Issue) 996- 1000
212. Himadri Pathak, Aryya Ghosh, B. K. Sahoo, B. P. Das, Nayana Vaval and Sourav Pal (2014)	Relativistic equation of motion coupled cluster method for the double ionization potentials of the closed shell atoms	Phys. Rev. A. Rapid communication 90 , 010501
213.Y. Sajeev, Aryya Ghosh, Nayana Vaval , Sourav Pal (2014)	Coupled cluster methods for autoionization resonances	Int. Review in Physical Chemistry , 33 , 397
214. Madhulita Das, B. K. Sahoo and Sourav Pal (2014)	Relativistic Spectroscopy of Plasma Embedded Li-like Systems with the Screening Effects in the Two-body Debye Potentials	Journal of Physics B 47 , 175701

215. Aryya Ghosh, Nayana Vaval, R. J. Bartlett and Sourav Pal (2014)	CAP/EOM-CCSD method for the potential energy curve of CO2- anion	J. Chem. Phys. 141 , 164113
216. Achintya Dutta, Jitendra Gupta, Nayana Vaval and Sourav Pal(2014)	Intermediate Hamiltonian Fock Space Multi-reference Coupled Cluster Approach to Core Excitation Spectra	J. Chem. Theory and Comput 10, 3656-3668
217. Susanta Das, Sourav Pal and Sailaja Krishnamurthy (2014)	Dinitrogen Activation by Silicon and Phosphorus Doped Aluminum Clusters	J. Phys. Chem C 118, 19869- 19878
218. Prateek Pandya, Lokesh Kr Agarwal, Neelima Gupta and Sourav Pal (2014)	Molecular recognition pat- tern of cytotoxic alkaloid vin- blastine with multiple targets	Journal of Molecular Graphics and Modelling, 54,1-9
219. Aryya Ghosh, Sourav Pal and Nayana Vaval (2014)	Interatomic coulombic decay in (HF) _n ,(n=2-3) clusters using CAP/EOM-CCSD method	<i>Mol. Phys</i> . 112, 669-73
220. Manzoor Dar and Sourav Pal (2014)	Hydrogen atom chemisorbed gold clusters as highly active catalysts for oxy- gen activation and CO oxidation	J. Phys. Chem C, 118, 30057- 30062
221. Himadri Pathak, Sudip Sasmal, Malaya K. Nayak, Nayana Vaval, and Sourav Pal (2014)	Relativistic implementation of equation-of-motion coupled- cluster method for the ionization problem: Application to molecules	Phys. Rev. A 90 , 062501

222. Kamalika Ghatak, Turbasu Sengupta, Sailaja Krishnamurty and Sourav Pal (2015)	Computational Investigation on the Catalytic Activity of Rh6 and Rh4Ru2 Clusters Towards Methanol Activation	Theoretical Chemistry Ac- counts 134, 1597
223. Himadri Pathak, Bijaya Sahoo, Turbasu Sengupta, B. P. Das , Nayana Vaval and Sourav Pal (2015)	A Relativistic Equation-of- motion Coupled-Cluster In- vestigation of the Trends of Single and Double Ionization Potentials in the He and Be Isoelectronic Systems	<i>J. Phys. B</i> 48 : 115009
224. Muntazir S Khan, Sourav Pal, Reddithota R (2015)	Computational Strategies For Understanding The Na- ture Of Interaction In Dioxin Imprinted Nanoporous Trap- pers	Journal of Molecular Recognition, 28 , 427-437.
225. Sudip Sasmal, Himadri Pathak, Malaya Nayak, Nayana Vaval and Sourav Pal (2015)	Calculation of P,T-odd interaction constant of PbF using Z-vector method in the relativistic coupled-cluster framework	J. Chem. Phys. 143, 084119
226. Anagha S. Karne, Nayaa Vaval, Sourav Pal, J M Vasquez-Perez, An- dreas Koster and Patrizia Calaminici (2015)	Systematic comparison of DFT and CCSD dipole mo- ments, polarizabilities and hyperpolarizabilities	Chem. Phys Letters, 635, 168-173; Corri- gendum, 636, 228-229
227. R. Lalitha, Nayana Vaval and Sourav Pal (2015)	Partial Triples Excitation to the Fock Space Multi-refer- ence Singles and Doubles: Dipole Moment of Doublet Radicals	Proc.International Conference of Computational methods in science and Engineering 2010 (IC-CMSE-2010) AIP Conference Proceedings, 1642, 223-226

228. Achintya Dutta, Nayana Vaval and Sourav Pal (2015)	EOMIP-CCSD(2)* :an efficient method for calculation of ionization potential	J. Chem. Theo. & Comp 11 (6), pp 2461-2472
229. Achintya Dutta, Turbasu Sengupta, Nayana Vaval and Sourav Pal (2015)	Electron attachment to DNA and RNA Nucleobases: An EOMCC investigation	Int. J. Quantum. Chem, 112 , 753-764
230.Achintya Dutta, Nayana Vaval and Sourav Pal (2015)	A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster calculations: Theory, implementation and examples	J. Chem. Phys. 142: 044113. DOI: 10.1063/1.490 6233
231. Sudip Sasmal, Himadri Pathak, Malaya K. Nayak, Nayana Vaval, and Sourav Pal (2015)	Relativistic extended coupled cluster method for magnetic hyperfine structure constant	Phys Rev A 91, 022512
232.Sudip Sasmal, Himadri Pathak, Malaya K. Nayak, Nayana Vaval, and Sourav Pal (2015)	Implementation of the Z-vector method in the relativistic-coupled-cluster framework to calculate first-order energy derivatives: Application to the SrF molecule	Phys Rev A 91 , 030503(R)
233 Aryya Ghosh, Sourav Pal and Nayana Vaval (2015)	Lifetime of inner-shell hole states of Ar (2p) and Kr (3d) using equation-of-motion coupled cluster method	J. Chem Phys 143, 024305

234. Subrata Banik, Sourav Pal and M Durga Prasad (2015)	Study of Molecular Vibration by Coupled Cluster Method: Bosonic Approach	Proc.International Conference of Computational methods in science and Engineering 2010 (IC-CMSE-2010) AIP Conference Proceedings, 1642, 227-230
235. Turbasu Sengupta,Susanta Das and Sourav Pal (2015)	Oxidative addition of C-I bond on aluminum nanoclusters	Nanoscale 7, 12109-12125
236. Debarati Bhattacharya, Achintya Kumar Dutta, Jitendra Gupta and Sourav Pal (2015)	Perturbative order analysis of the similarity transformed Hamiltonian in Fock-space coupled cluster theory: Difference energy and electric response properties	Mol. Phys (Special issue), 113, 2046-2060
237.Dar Manzoor and Sourav Pal(2015)	Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.	J. Phys. Chem. A 119 , 6162-6170
238. Dar Manzoor, Sailaja Krishnamurty, Sourav Pal (2016)	Endohedrally Doped Gold Nanocages: Efficient Catalysts for O ₂ Activation and CO Oxidation	Physical Chem- istry Chemical Physics , 18 , 7068 - 7074
239. Himadri Pathak, Sudip Sasmal, Malaya K. Nayak, Nayana Vaval, and Sourav Pal (2016)	Relativistic equation-of- motion coupled-cluster method for the electron attachment Problem	<i>COMPTC</i> , 1076 , 94-100

240. Susanta Das, Turbasu Sengupta, Achintya Dutta and Sourav Pal (2016)	Electron Detachment and Subsequent Structural Changes of Water Clusters	J Phys Chem A 120 , 1065- 1073
241. Sudip Sasmal, Hi- madri Pathak, Malaya K. Nayak, Nayana Vaval, and Sourav Pal (2016)	Search for parity and time reversal violating effects in HgH: Relativistic coupled- cluster study	<i>J. Chem. Phys</i> , 144 , 124307
242. Mudit Dixit, Dan Thomas Major and Sourav Pal (2016)	Hydrogen adsorption in ZIF- 7: A DFT and ab initio molecular dynamics study	Chemical Physics Letters, 651 , 178-182
243.Turbasu Sengupta, Susanta Das and Sourav Pal (2016)	Transition Metal Doped Aluminum Clusters: An Account of Spin	J. Phys. Chem C, 120 , 10027- 10040
244. Madhulita Das, B K Sahoo and Sourav Pal (2016)	Plasma-screening effects on the electronic structure of multiply charged Al ions us- ing Debye and ionsphere models	Phys. Rev A 93 , 052513
245. Sudip Sasmal, Hi- madri Pathak, Malaya Nayak, Nayana Vaval and Sourav Pal (2016)	Relativistic coupled-cluster study of RaF as a candidate for parity and time reversal violating interaction	Phys Rev A 93 , 062506
246. Deepak Kumar, Sourav Pal and Sailaja Kr- ishnamurty (2016)	N ₂ Activation on Al Metal Clusters: Catalyzing role of BN-doped Graphene Support	Physical Chemistry Chemical Physics 18, 27721- 27727

247. Vidhika Sharma, Mohit Prasad, S. Jadkar and Sourav Pal (2016)	Influence of carbon and phosphorus doping on electronic properties of ZnO	Journal of Materials Science: Materials in Electronics 27,12318–12322
248. Turbasu Sengupta and Sourav Pal (2016)	Radical Attached Aluminum Nanoclusters: An Alternative Way for Cluster Stabilization	Physical Chemistry Chemical Physics 18 , 21746-21759
249. Santosh K. Singh, Deepak Kumar,Vishal M. Dhavale, Sourav Pal, Sreekumar Kurungot (2016)	Strategic Preparation of Efficient and Durable NiCo-alloy Supported N-Doped Porous Graphene as an Oxygen Evolution Electrocatalyst: A Theoretical and Experimental Investigation	Advanced Materials Interfaces, 3, (Issue 20) Pages 1-14 DO:10.1002/admi.201600 532
250. Himadri Pathak, Sudip k. Sasmal, Malaya K. Nayak, Nayana Vaval and Sourav Pal (2016)	Relativistic equation-of-motion coupled-cluster method using open-shell reference wavefunction: Application to ionization potential	J. Chem. Phys, 145, 074110
251. Manzoor Dar, Sailaja Krishnamurty and Sourav Pal (2016)	Contriving a Catalytically Active Structure From an Inert Conformation: A Den- sity Functional Investiga- tion of Al, Hf and Ge Dop- ing on Au ₂₀ Tetrahedral Cluster	J. Phys Chem C 120, 19636- 19641
252. Tumpa Sadhukhan, Bipasa Samanta, Shaz Ali and Sourav Pal (2016)	Theoretical Study of C-X [X = Cl, Br] Bond Activation on Aluminum Nanocluster	Theoretical Chemistry Ac- counts 135 , 234 (Pg 1-10)

253. Sudip Sasmal, Kaushik Talukdar, Malaya Nayak, Nayana Vaval and Sourav Pal (2016)	Calculation of hyperfine structure constants of small molecules using Z-vector method in the relativistic coupled-cluster framework	Journal of Chemical Sciences (Special Issue), 128 , 1671-1675
254. Turbasu Sengupta, Bipasa Samanta and Sourav Pal (2017)	Effect of Ligand Attachment on the C–I Bond Dissociation Process on Aluminum Nanoclusters: A DFT Investigation	The Journal of Physical Chemistry C, 121, 17354- 17364
255. Aryya Ghosh, Sourav Pal and Nayana Vaval (2017)	Auger decay rates of core hole states using equation of motion coupled cluster method	Chemical Physics 482 , 160-164
256. Sudip Sasmal, Kaushik Talukdar, Malaya Nayak, Nayana Vaval and Sourav Pal (2017)	Electron-nucleus scalar- pseudoscalar interaction in PbF: Z-vector study in the relativistic coupled-cluster framework	Molecular Physics , 115, 2807-12
257. Tumpa Sadhukhan, Dharitri Das, Pratik Kalekar, Vidya Avasare and Sourav Pal (2017)	Fenton's Reagent Catalysed Release of Carbon Monoox- ide from 1,3-Dihydroxy Ace- tone	<i>J Phys Chem A,</i> 121 4569–4577
258. Turbasu Sengupta, Muntazir S. Khan and Sourav Pal (2017)	Mechanistic Investigation of the Carbon–Iodine Bond Activation on the Niobium–Carbon Cluster	ACS Omega, 2, 5335-5347

259. Deepak Kumar, Sailaja Krishnamurty and Sourav Pal (2017)	Dissociative Adsorption of Molecular Hydrogen on BN-Doped Graphene Supported Aluminium Clusters	J Phys Chem C 121, 26493- 26498
260. Achintya Dutta, Nayana Vaval and Sourav Pal (2018)	Assessment of low scaling approximations to EOM-CCSD method for ionization potential	Intern J Quan- tum Chem , 118 , e25594
261. Pooja Jain, Sourav Pal and Vidya Avasare (2018)	Ni(COD) ₂ Catalyzed <i>Ipso</i> -Silylation of 2-Methoxynaphthalene: A Density Functional Theory Study	Organometallic s 37 , 1141-49
262. Muntazir Saba Khan and Sourav Pal (2018)	Quantum mechanical studies on dioxin-imprinted polymer precursor composites: Fundamental insights to enhance the binding strength and selectivity of biomarkers	J Mol Recogni- tion 10.1002/ jmr.2736
263. Arijit Saha, Soumen Payra, Balaranjan Selvaratnam, Sumantra Bhattacharya, Sourav Pal, Ranjit Koodali and Subhash Banerjee (2018)	Hierarchical Mesoporous RuO2/Cu2O Nanoparticle- Catalyzed Oxidative Homo/Hetero Azo-Coupling of Anilines	ACS Sustain- able Chemistry and Engineer- ing 6 , 11345– 11352
264. Dharitri Das, Muntazir Khan, Gayatree Barik, Vidya Avasare and Sourav Pal (2018)	Computational Approach to Unravel the Role of Hydrogen Bonding in the Interaction of NAMI-A-DNA with Nucleobases and Nucleotides	J Phys Chem (10.1021/acs.jpca.7 b12617).
265. Kaushik Talukdar, Sudip Sasmal, Malaya K. Nayak, Sourav Pal and Nayana Vaval (2018)	Correlation trends in the magnetic hyperfine structure of atoms: A relativistic coupled-cluster case study	Phys. Rev. A 98 , 022507

266.Deepak Kumar, K. Senthamarai, T. Govindaraja, Sailaja Krishnamurty, K. Selvaraj and Sourav Pal (2018)	Dissociative chemisorption of hydrogen molecule on defective graphene supported aluminum clusters: A computational study	Physical Chemistry Chemical Physics 41, 26506-26512
267. Gayatree Barik and Sourav Pal (2018)	Monlayer transition metal dichalcogenide Mo _{1-x} W _x S ₂ alloys as efficient anode materials for lithium ion batteries	<i>J Phys Chem C,</i> 122 , 25837–25848
268.Bipasa Samanta, Turbasu Sengupta and Sourav Pal (2018)	Specificity of Amino Acid– Aluminum Cluster Interaction and Subsequent Oxygen Activation by the above Complex	J. Phys. Chem C 122, 28310– 28323
269. Gayatree Barik and Sourav Pal (2019)	Energy Gap-Modulated Blue Phosphorene as Flexible Anodes for Lithium- and Sodium-Ion Batteries	<i>J. Phys. Chem C,</i> 123, 2808–2819
270. Kaushik Talukdar, Malaya K Nayak, Nayana Vaval and Sourav Pal (2019)	Nuclear parity- and time- reversal-symmetry violation in the 201HgH molecule	Phys. Rev. A 99, 032503
271. Kaushik Talukdar, Malaya K Nayak, Nayana Vaval and Sourav Pal (2019)	Relativistic coupled-cluster investigation of parity (P) and time-reversal (T) symmetry violations in HgF	J Chem Phys, 150, 084304
272. Bipasa Samanta, Turbasu Sengupta and Sourav Pal (2019)	Aluminum cluster for CO and O_2 adsorption	J Mol Modeling, 25 , 2

S	73. Dharitri Das, Pooja Jain, ourav Pal and Vidya Avasare 2019)	Mechanistic Investigations of Aluminum Nitrite Assisted Aryl Nitrile Synthesis through C(sp³)– C(sp²) Bond Cleavage of Aryl Ketones	J. Phys. Chem C, 123,, 23439-23445
	74. Gayatree Barik and ourav Pal (2019)	Defect Induced Performance Enhancement of Monolayer MoS2 for Li- and Na-Ion Batteries	J. Phys. Chem. C 123 , 21852-21865
	75.Gayatree Barik and Sourav al (2020)	Strain Engineered BlueP-MoS2 van der Waals Heterostructure with Im- proved Lithiation/Sodiation for LIBs and SIBs	Phys Chem Chem Phys, 22 , 1701- 1714
S Ja	76. Suhita Basumallick, umantra Bhattacharyya, Irina nna, Nayana Vaval and Sourav al (2020)	Shape resonance of sulphur dioxide anion excited states using the CAP-CIP-FSMRCCSD method	Mol Phys, 118 , 1-8 doi: 10.1080/00268976.202 0.1726521
K	77. Kaushik Talukdar, Malaya . Nayak, Nayana Vaval and ourav Pal (2020)	Role of electron correlation in the P,T-odd effects of CdH: A relativistic coupled-cluster investigation	Phys Rev A 101 , Article Number 032505
	78. Pooja Jain, Sourav Pal and idya Avasare (2020)	Hydrogen Bonding and Non-Covalent Interactions Assisted Nickel (0) Catalysed Reversible Alkenyl Functional Group Swapping: A Computational Study	Catalysis Science and Technology, 10 , 1747-1760
S	79. Himadri Pathak, Sudip asmal, Kaushik Talukdar, , Ialaya Nayak, Nayana Vaval nd Sourav Pal (2020)	Relativistic double-ionization equation-of-motion coupled-cluster method: Application to low-lying doubly ionized states	J. Chem Phys. 152 , Article Num- ber104302

280.Suhita Basumallick, Sourav Pal and Mihai V Putz (2020)	Fock-Space Coupled Cluster Theory: Systematic Study of Partial Fourth order Triples Schemes for Ionization Potential and Comparison with Bondonic Formalism	Int. J. Mol. Sci. 21, 6199
281. Kaushik Talukdar, Malaya Nayak, Nayana Vaval and Sourav Pal (2020)	Electronic structure parameter of nuclear magnetic quadrupole moment interaction in metal monofluorides	J. Chem. Phys. 153 , 184306
282. Gayatree Barik and Sourav Pal (2020)	Two-Dimensional Square Octagonal Molybdenum Disulfide: An Effective Anode Material for LIBs/SIBs Application	Advanced Theory and Simulations, 2000157 (11 pages) https://doi.org/10.1002/ adts.202000157
283. Suhita Basumallick, Y. Sajeev, Sourav Pal and Nayana Vaval (2020)	Negative ion resonance states: The Fock space coupled-cluster way	J. Phys. Chem , Invited Feature Article A 124 , 10407-10421
284. Kaushik Talukdar, Malaya Nayak, Nayana Vaval and Sourav Pal (2020)	Relativistic coupled-cluster study of BaF in search of CP violation	J. Phys B. A. Mol. Opt. Phys. 53 , 135102
285. Sourav Pal and Swapan K. Ghosh (2020)	Status of quantum chemistry research in India	Proc Indian National Science Academy, 86 , 975- 982

286. Aryya Ghosh, Sourav Pal and Nayana Vaval (2021)	Interatomic coulombic decay in Neon Helium cluster: A complex absorbing potential based equation- of-motion coupled cluster investigation	Molec. Phys. In Press , : e1884300
287. Suhita Basumallick, Mihai V Putz and Sourav Pal (2021)	Three-Body Excitations in Fock-Space Coupled-Cluster: Fourth Order Perturbation Correction to Electron Affinity and Its Relation to Bondonic Formalism	<i>Int J Mol Sci</i> . 22, 8953
288. Gayatree Barik and Sourav Pal (2021)	Two-Dimensional Graphene/BlueP/MoS2 van der Waals Multilayer Heterostructure as a High-Performance Anode Material for LIBs	J Phys Chem C 125 (17), 8980- 8992 (D. D. Sarm Festschrift)
289. Vidya Avasare, Simran Virani, Dharitri Das and Sourav Pal (2021)	Computational Exploration of the Efficacy of Fe(II)PNN Versus Fe(II)NNN Pincer Complexes in the Hydrogenation of Carbon Dioxide to Methanol	J. Phys Chem C, 125,(44), 24350– 24362 (Anniversary Special issue)
290. Irina Jana, Suhita Basumallick, Sourav Pal and Nayana Vaval (2021)	Resonance Study: effect of partial triples excitation using CAP-based Fock-space multi-reference coupled cluster	Int J Quantum Chem 121 :e26738

291. Soumi Haldar, Kaushik Talukdar, Malaya K Nayak and Sourav Pal (2021)	Molecular frame dipole moment of diatomic molecules within relativistic coupled-cluster framework: A comparative study of expectation value versus energy derivative approach Partial fourth order schemes of	Int J Quantum Chem 121 :e26764 J. Ind Chem Soc.
292. Suhita Basumallick and Sourav Pal (2021)	triples in Fock-space coupled- cluster theory: Ionization potentials of ozone	98, 100166
293. Saurabh Vinod Parmar, Vidya Avasare and Sourav Pal (2021)	Unraveling the Effect of Aromatic Groups in Mn(I)NNN Pincer Complexes on Carbon Dioxide Activation Using Density Functional Study	Frontiers in Chemistry (Special Issue on Computational Catalysis) 9 , 778718
294. Gayatree Barik and Sourav Pal (2021)	Haeckelite Phosphorous: An Emerging 2D Allotrope of Phosphorous for Potential Use in LIBs/SIBs	Physical Chemistry Chemical Physics 23(46) DOI:10.1039/ D1CP03662A

295. Aabid Hamid, Nidhi Deswal, Sourav Pal and Ram Kinkar Roy (2022)	Components of Density Functional Reactivity Theory Based Stabilization Energy: Descriptors for Thermodynamic and Kinetic Reactivity	Chapter in a book on CHEMICAL REACTIVITY Theories, Principles and Approaches Ed. Savaş Kaya L. von Szentpaly
296.Wahida Rahaman, Ariit Bag and Sourav Pal (2022)	"Influence of Linker Orientation and Regulative Factor(s) in Liposomal Gene Delivery: A Molecular Level Investigation	J. Phys. Chem A 126 , 11, 1816-1822
297. Reshma Jose, Srinivasu Kancharlapalli, Tapan K. Ghanty, Sourav Pal, Gopalan Rajaraman (2022)	Decisive Role of Spin-States and Spin-Coupling in Dictating Selective O2 Adsorption in Chromium(II) MOF	Chemistry: A European Journal, https://doi.org/ 10.1002/ chem.202104526, 28, e202104526
298. Gayatree Barik and Sourav Pal (2022)	2D MoS2-MoSe2 and MoS2-NbS2 Lateral Hetero Structures as Anode Materials for LIBs/SIBs	Applied Surface Science (In Press)

299. Amrita Gogoi, Priti Singh, Sourav Pal and Mudit Dixit (2022)	Unravelling Mechanistic Details of Ru-Bis(pyridyl)borate Complex Catalyst for Dehydrogenation of Ammonia-Borane	Inorganic Chemistry, 61 , 10283–10293
300. Reshma Jose, Sourav Pal and R Gopalan (2023)	A Theoretical Perspective to Decipher the Origin of High Hydrogen Storage Capacity in Mn(II) Metal-Organic Framework	ChemPhysChem (In Press)
301. Sobitri Sen, Arijit Bag and Sourav Pal (2023)	Activation and Conversion of molecular nitrogen to the precursor of ammonia on silicon substituted cyclo[18]carbon: A DFT design	ChemPhysChem 2023, 24, e202200627.
302. Reshma Jose, Garima Bangar, Sourav Pal and G Rajaraman (2023)	Role of molecular modelling in the development of metal-organic framework for gas adsorption applications	J. Chem. Sci. 135: 19 https://doi.org/10.1 007/s12039-022- 02130-5 Physical Chemistry
303. Gayatree Barik and Sourav Pal (2023)	Monolayer Molybdenum Diborides containing Flat and Buckled Boride Layers as Anode Materials for Lithium-Ion Batteries	Physical Chemistry Chemical Physics (In Press)

304. Amrita Gogoi, Mudit Dixit and Sourav Pal (2023)		J. Phys. Chem (Submitted)
	Designing an Iron Based-	
	Bis(pyridyl)borate Complex Cata-	
	lyst for Ammonia-Borane Dehydro-	
	genation using Density Functional	
	Theory	