Name: Roll No.: Time: 15 mins

1. The modulus and argument of the complex number $\frac{1+i}{1-i}$ are

- A. 1 and $\frac{3\pi}{2}$, respectively.
- B. 1 and $\frac{\pi}{2}$, respectively.
- C. 2 and $-\frac{\pi}{2}$, respectively.
- D. 2 and $\frac{\pi}{2}$, respectively

Solution:

$$\left| \frac{1+i}{1-i} \right| = \frac{|1+i|}{|1-i|} = \frac{\sqrt{2}}{\sqrt{2}} = 1$$

 $Arg(1 \pm i) = \pm \frac{\pi}{4}$, so that

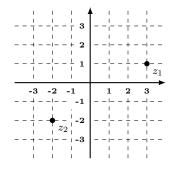
$$\operatorname{Arg}\left(\frac{1+i}{1-i}\right) = \operatorname{Arg}(1+i) - \operatorname{Arg}(1-i) = \frac{\pi}{2}$$

2. The real part of (2+3i)(3-2i) is

- A. 12
- B. 0
- C. 13
- D. -12

Solution: $Re[(2+3i)(3-2i)] = 2 \times 3 - 3 \times (-2) = 12$

The complex numbers z_1 and z_2 are shown 3. as points in an Argand diagram in the figure alongside. What is z_1 $\overline{z_2}$?



A.
$$-8 + 4i$$

B.
$$-8 - 4i$$

C.
$$8 + 4i$$

D.
$$4 - 8i$$

Solution:
$$z_1 = 3 + i$$
, $z_2 = -2 - 2i$. So that

$$z_1\bar{z_2} = (3+i)(-2+2i) = -8+4i$$

- 4. Given two non-zero complex numbers z_1 and z_2 , consider the four combinations (i) $\frac{z_1\overline{z_2}}{\overline{z_1}z_2}$,
 - (ii) $\frac{z_1\overline{z_2}}{z_1+\overline{z_2}}$, (iii) $\frac{z_1z_2}{\overline{z_1}}$ and (iv) $\frac{z_1\overline{z_1}}{z_2\overline{z_2}}$. In general, the following have unit modulus:
 - A. (i) and (iii) only.
 - B. (i) only.
 - C. (ii) only.
 - D. (i), (iii) and (iv) only.

Solution: Use the facts that $\forall z, w \in \mathbb{C}$, we have $|z| = |\bar{z}|, |zw| = |z||w|, |z/w| = |z|/|w|$.

5. The function $f(z) = e^{iz}$ can be written in the form of two real functions, u(x,y) and v(x,y): f(z) = u(x,y) + iv(x,y), where x and y are the real and imaginary parts of z, respectively. Then

A.
$$u = e^{-y} \cos x, \ v = e^{-y} \sin x.$$

B.
$$u = e^x \cos y$$
, $v = e^x \sin y$.

C.
$$u = e^{-y} \cos x$$
, $v = -e^{-y} \sin x$.

D.
$$u = e^x \cos y$$
, $v = e^{-x} \sin y$.

Solution:

$$e^{iz} = e^{ix-y} = e^{-y}e^{ix} = e^{-y}(\cos x + i\sin x)$$

6. Let 1, ω and ω^2 be the three cube roots of unity $\left(\omega = \frac{-1 + \sqrt{3}i}{2}\right)$. Then $1 + 3\omega + \omega^2$ is

$$\mathbf{A.} \ 2\omega$$

B.
$$-2\omega$$

C.
$$1 + \omega$$

D.
$$1 + \omega^2$$

Solution: Since $\omega^3 - 1 = 0$, $\omega \neq 1$, we have $1 + \omega + \omega^2 = 0$ So

$$1 + 3\omega + \omega^2 = 1 + \omega + \omega^2 + 2\omega = 2\omega$$

7. Let ζ be one of the 52-nd root of unity with $0 < \text{Arg } \zeta < \frac{\pi}{20}$. Then $\text{Arg } \zeta^{108}$ is

A.
$$\frac{2\pi}{13}$$

B.
$$-\frac{2\pi}{13}$$

C.
$$\frac{\pi}{13}$$

D.
$$-\frac{\pi}{13}$$

Solution: The 52nd roots of unity are of the form

$$\exp\left(i\frac{2\pi m}{52}\right), \qquad m = 0, 1, 2, \dots 51$$

Since $0 < \text{Arg}\zeta < \frac{\pi}{20}$ we must have $\zeta = \exp\left(i\frac{\pi}{26}\right)$. Again, since $\zeta^{52} = 1$, we have

$$\zeta^{108} = \zeta^{2 \times 52 + 4} = \zeta^4 = \exp\left(i\frac{2\pi}{13}\right)$$

8. The equation $x^{24} + a = 0$ has, for all real non-zero numbers a,

A. 24 distinct complex roots

B. one real root and 23 non-real complex roots.

C. 24 complex roots, not all distinct.

D. two real roots, and no other roots.

Solution: Note that the roots of the equations are the 24 24-th roots of the real number -a. This has a real root only when a < 0, in general all roots are complex. It is easy to see that they are also all distinct.

9. The set

$$\{z \in \mathbb{C} : |z - z_0| \ge a\}$$

- A. is open for all $a \in \mathbb{R}, a \leq 0$.
- B. is open for all $a \in \mathbb{R}, a > 0$.
- C. is open for all $a \in \mathbb{R}$.
- D. is never open for any $a \in \mathbb{R}$.

Solution: If $a \leq 0$, then the set is $\mathbb{C}!$

- 10. The function $f(z) = z\bar{z}$ is
 - A. differentiable but not holomorphic at the origin.
 - B. holomorphic at the origin.
 - C. differentiable nowhere.
 - D. differentiable on the coordinate axes.

Solution: For $f(z) = z\bar{z}$, we have $u(x,y) = x^2 + y^2$ and v(x,y) = 0. Thus

$$u_x = 2x, \quad u_y = 2y, \quad v_x = v_y = 0$$

so that the partial derivatives are continuous and the Cauchy-Riemann conditions $u_x = v_y$ and $u_y = -v_x$ is satisfied only for z = 0. So, it is differentiable only at the origin, and holomorphic nowhere.

- 11. The function f(z) is known to be entire. You also know that its imaginary part is $x^2 y^2$. Then
 - A. its real part is -2xy.
 - B. its real part is 2xy.
 - C. its real part is $x^2 + y^2$.
 - D. it is impossible to have an entire function whose imaginary part is $x^2 y^2$.

Solution: Although you can find the solution using the C-R conditions, it is actually a lot simpler to note that $x^2 - y^2$, being the *real* part of the entire function z^2 , is the *imaginary* part of the entire function iz^2 .