MATH 211Assignment 1

Q 1) Calculate the following:

(i)
$$\frac{(1+i)^3}{(1-i)^5}$$
 (ii) $(1-i\sqrt{3})^3(\sqrt{3}+i)^2$ (iii) $(\sqrt{3}+i)^6$

Q 2) (a) Prove De Moivre's formula

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

by induction on n.

- (b) Use De Moivre's formula to derive an expression for (a) $\cos 4\theta$ and (b) $\sin 4\theta$.
- **Q 3)** Find all roots for (a) $\sqrt[3]{1-i}$, (b) $\sqrt[4]{16}$ and (c) $\sqrt[8]{i}$.
- **Q** 4) (a) If $z \neq 1$ show that

$$1+z+z^2+\ldots+z^n=\frac{1-z^{n+1}}{1-z}.$$

What is the value of the sum if z = 1?

(b) Use $z = e^{i\theta}$ above to calculate the sums

$$\sum_{k=0}^{n} \cos(k\theta) \quad \text{and} \quad \sum_{k=0}^{n} \sin(k\theta).$$

- **Q 5)** For the function $f(z) = z^2 + z^{-2} 5$ calculate f(-1+i) and $f(1+i\sqrt{3})$.
- **Q 6)** Express the function $f(z) = \frac{z+2-i}{z-1+i}$ in the Cartesian form u(x,y) + iv(x,y).
- **Q 7)** Let $f(z) = r^2 \cos(2\theta) + ir^2 \sin(2\theta)$, where $z = re^{i\theta}$. Express f(z) in the form u(x,y) + iv(x,y).
- **Q 8)** Find the image in the w plane of the open disk $\{z \in \mathbb{C} : |z+1+i| < 1\}$ under the transformation $z \mapsto w = (3-4i)z + 6 + 2i$.
- **Q 9)** Find the image in the w plane of the right half plane $\{z \in \mathbb{C} : \text{Re}(z) > 1\}$ under the transformation $z \mapsto w = (-1+i) \, z 2 + 3i$.
- **Q 10)** What does the vertical line x = constant map into under the action of $f(z) = z^2$? What about the horizontal line y = constant? Show that the two resulting curves above intersect each other at right angles.
- **Q 11)** Sketch the set of points satisfying (a) Re $(z^2) > 4$, and (b) Im $(z^2) > 6$.
- **Q 12)** If $u(x,y) = \frac{x^2 + y^4}{x^2 + y^2}$, then show that the limit $\lim_{(x,y)\to(0,0)} u(x,y)$ does not exist. What about the

1

limit $\lim_{(x,y)\to(0,0)} v(x,y)$ where $v(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$?

Q 13) Let
$$f(z) = \frac{z^2}{|z|^2}$$
. Find

- (a) $\lim_{z\to 0} f(z)$ as z approaches 0 along the x axis.
- (b) $\lim_{z\to 0} f(z)$ as z approaches 0 along the y axis.
- (c) $\lim_{z\to 0} f(z)$ as z approaches 0 along the line y=x.
- (d) $\lim_{z\to 0} f(z)$ as z approaches 0 along the line y=2x.
- (e) $\lim_{z\to 0} f(z)$ as z approaches 0 along the parabola $y=x^2$.

What conclusion can you draw about $\lim_{z\to 0} f(z)$ from these results?

Q 14) Where are the following functions continuous?

(a)
$$z^4 - 9z^2 + iz - 2$$
 (b) $\frac{z+1}{z^3+1}$ (iii) $\frac{z^2+1}{z^4+2z^2+1}$ (iv) $\frac{x+iy}{x-y}$ (v) $\frac{x+iy}{x-iy}$

Q 15) Let f(z) be continuous for all values of $z \in \mathbb{C}$. Show that the functions g(z) and h(z) defined by $g(z) = f(\overline{z})$ and h(z) = f(z) are continuous for all values of z.

Q 16) Show using the Cauchy-Riemann conditions (and the corresponding sufficiency criteria) that the following functions are differentiable for all z = x + iy, and find f'(z)

(i)
$$f(z) = iz^3 + 4i$$

(ii)
$$f(z) = e^{z^2}$$

(iii)
$$f(z) = -2(xy + x) + i(x^2 - 2y - y^2)$$

(iii)
$$f(z) = -2(xy + x) + i(x^2 - 2y - y^2)$$

(iv) $f(z) = e^{2xy} \left[\cos(y^2 - x^2) + i\sin(y^2 - x^2)\right]$

Q 17) Find the real constants a and b such that the function f(z) = (2x - y) + i(ax + by) is entire. What can you say about a and b if you allow them to be complex.

Q 18) The polar form of the Cauchy-Riemann conditions proceeds by writing the function $f: \mathbb{C} \to \mathbb{C}$ in the form

$$f(z) = u(r, \theta) + iv(r, \theta),$$

where $z = re^{i\theta}$. By demanding that for a function to be differentiable at $z_0 \equiv r_0 e^{i\theta_0}$ the limits $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ must be the same as z approaches z_0 along a line of constant $r=r_0$ and along a line of constant $\theta=\theta_0$, derive the polar version of the Cauchy-Riemann conditions.

Use this condition to prove that the function $f(z) = z^4$ is differentiable everywhere.

Q 19) Derive the polar form of the Cauchy-Riemann conditions by starting from the Cartesian version, and carrying out the change of variables:

$$x = r\cos\theta, \qquad y = r\sin\theta$$

using the chain rules $u_r = u_x \frac{\partial x}{\partial r} + u_y \frac{\partial y}{\partial r}, \dots$

Q 20) Let the function f(z) be holomorphic in a domain D. If its modulus |f(z)| is constant in D, then show that f(z) is constant in D. Hint: Use the fact that $uu_x + vv_x = uu_y + vv_y = 0$ (why?) and the Cauchy-Riemann conditions.

Q 21) Where is the function

$$f(z) = (x^3 + 3xy^2) + i(y^3 + 3x^2y)$$

differentiable? Where is it analytic?

Q 22) Let a,b,c be real constants. Determine a relation between them so that the function u(x,y) = $ax^2 + bxy + cy^2$ is harmonic.

Q 23) Find the analytic function f(z) = u(x,y) + iv(x,y) given the following:

(i)
$$u\left(x,y\right)=y^3-3x^2y$$
 (ii) $u\left(x,y\right)=\sin y\sinh x$ (iii) $v\left(x,y\right)=e^y\sin x$ (iv) $v\left(x,y\right)=\sin x\cosh y$

Q 24) Let f(z) and $\overline{f(z)}$ be holomorphic functions of z over a domain D. Show that f(z) must be a constant

Q 25) If u is a harmonic function in a domain D and u+iv is holomorphic in D, then we call v the harmonic conjugate of u. Let v be the harmonic conjugate of u.

(a) Find the harmonic conjugate of v.

(b) Show that $h = v^2 - u^2$ is a harmonic function.