Ananda Dasgupta

MA211, Lecture 9

If $\phi: \mathbb{R}^2 \to \mathbb{R}$ and the derivative $\phi_x, \phi_y, \phi_{xx}, \phi_{yy}$ are all continuous and if $\phi(x, y)$ satisfies Laplace's equation

$$\phi_{xx}(x,y) + \phi_{yy}(x,y) = 0$$

then $\phi(x, y)$ is called a **harmonic** function.

If $\phi: \mathbb{R}^2 \to \mathbb{R}$ and the derivative $\phi_x, \phi_y, \phi_{xx}, \phi_{yy}$ are all continuous and if $\phi(x, y)$ satisfies Laplace's equation

$$\phi_{xx}(x,y) + \phi_{yy}(x,y) = 0$$

then $\phi(x, y)$ is called a **harmonic** function.

Theorem

Let f(z) = u(x, y) + iv(x, y) be a holomorphic function in the domain $D \subset \mathbb{C}$. If all second order partial derivatives of u and v are continuous, then both u and v are harmonic functions in D.

If $\phi: \mathbb{R}^2 \to \mathbb{R}$ and the derivative $\phi_x, \phi_y, \phi_{xx}, \phi_{yy}$ are all continuous and if $\phi(x, y)$ satisfies Laplace's equation

$$\phi_{xx}(x,y) + \phi_{yy}(x,y) = 0$$

then $\phi(x, y)$ is called a **harmonic** function.

Theorem

Let f(z) = u(x, y) + iv(x, y) be a holomorphic function in the domain $D \subset \mathbb{C}$. If all second order partial derivatives of u and v are continuous, then both u and v are harmonic functions in D.

As we will see later, if f(z) is holomorphic, then all partial derivatives of u and v are continuous - so that this holds for all holomorphic functions.

Proof.

Since f is holomorphic in D, it satisfies the CR equations

$$u_x = v_y$$
 and $u_y = -v_x$

Proof.

Since f is holomorphic in D, it satisfies the CR equations

$$u_x = v_y$$
 and $u_y = -v_x$

Thus $u_{xx} = v_{yx}$ and $u_{yy} = -v_{xy}$.

Proof.

Since f is holomorphic in D, it satisfies the CR equations

$$u_x = v_y$$
 and $u_y = -v_x$

Thus $u_{xx} = v_{yx}$ and $u_{yy} = -v_{xy}$. Since the partial derivatives v_{xy} , v_{yx} are continuous, we have $v_{yx} = v_{xy}$.

Proof.

Since f is holomorphic in D, it satisfies the CR equations

$$u_x = v_y$$
 and $u_y = -v_x$

Thus $u_{xx}=v_{yx}$ and $u_{yy}=-v_{xy}$. Since the partial derivatives v_{xy} , v_{yx} are continuous, we have $v_{yx}=v_{xy}$. Thus

$$u_{xx} + u_{yy}$$

Proof.

Since f is holomorphic in D, it satisfies the CR equations

$$u_x = v_y$$
 and $u_y = -v_x$

Thus $u_{xx} = v_{yx}$ and $u_{yy} = -v_{xy}$. Since the partial derivatives v_{xy} , v_{yx} are continuous, we have $v_{yx} = v_{xy}$. Thus

$$u_{xx} + u_{yy} = v_{yx} - v_{xy}$$

Proof.

Since f is holomorphic in D, it satisfies the CR equations

$$u_x = v_y$$
 and $u_y = -v_x$

Thus $u_{xx}=v_{yx}$ and $u_{yy}=-v_{xy}$. Since the partial derivatives v_{xy}, v_{yx} are continuous, we have $v_{yx}=v_{xy}$. Thus

$$u_{xx} + u_{yy} = v_{yx} - v_{xy} = v_{xy} - v_{xy}$$

Proof.

Since f is holomorphic in D, it satisfies the CR equations

$$u_x = v_y$$
 and $u_y = -v_x$

Thus $u_{xx}=v_{yx}$ and $u_{yy}=-v_{xy}$. Since the partial derivatives v_{xy} , v_{yx} are continuous, we have $v_{yx}=v_{xy}$. Thus

$$u_{xx} + u_{yy} = v_{yx} - v_{xy} = v_{xy} - v_{xy} = 0$$

Proof.

Since f is holomorphic in D, it satisfies the CR equations

$$u_x = v_y$$
 and $u_y = -v_x$

Thus $u_{xx} = v_{yx}$ and $u_{yy} = -v_{xy}$. Since the partial derivatives v_{xy} , v_{yx} are continuous, we have $v_{yx} = v_{xy}$. Thus

$$u_{xx} + u_{yy} = v_{yx} - v_{xy} = v_{xy} - v_{xy} = 0$$

So that u is harmonic

Proof.

Since f is holomorphic in D, it satisfies the CR equations

$$u_x = v_y$$
 and $u_y = -v_x$

Thus $u_{xx} = v_{yx}$ and $u_{yy} = -v_{xy}$. Since the partial derivatives v_{xy} , v_{yx} are continuous, we have $v_{yx} = v_{xy}$. Thus

$$u_{xx} + u_{yy} = v_{yx} - v_{xy} = v_{xy} - v_{xy} = 0$$

So that u is harmonic - the proof for v is similar.

A known holomorphic function f = u + iv can be used as a "source" of two harmonic functions u and v!

A known holomorphic function f = u + iv can be used as a "source" of two harmonic functions u and v!

For example, we know that $f(z) = z^3$ is holomorphic everywhere.

A known holomorphic function f = u + iv can be used as a "source" of two harmonic functions u and v!

For example, we know that $f(z) = z^3$ is holomorphic everywhere.

This gives us two harmonic functions:

A known holomorphic function f = u + iv can be used as a "source" of two harmonic functions u and v!

For example, we know that $f(z) = z^3$ is holomorphic everywhere.

This gives us two harmonic functions:

$$u(x,y) = x^3 - 3xy^2$$

A known holomorphic function f = u + iv can be used as a "source" of two harmonic functions u and v!

For example, we know that $f(z) = z^3$ is holomorphic everywhere.

This gives us two harmonic functions:

$$u(x,y) = x^3 - 3xy^2$$

 $v(x,y) = 3x^2y - y^3$

Harmonic conjugates

If we are given a function u(x,y) which is harmonic in $D \subset \mathbb{C}$ and if we can find a function v(x,y) such that the partial derivatives of u and v satisfy the Cauchy-Riemann conditions everywhere in D then v(x,y) is called the **harmonic conjugate** of u(x,y).

Harmonic conjugates

If we are given a function u(x,y) which is harmonic in $D \subset \mathbb{C}$ and if we can find a function v(x,y) such that the partial derivatives of u and v satisfy the Cauchy-Riemann conditions everywhere in D then v(x,y) is called the **harmonic conjugate** of u(x,y).

If such a v(x, y) can be found, then

$$f(z) = u(x,y) + iv(x,y)$$

is holomorphic in D.

$$u(x,y) = x^2 - y^2$$

$$u(x, y) = x^2 - y^2$$

 $u_{xx} + u_{yy} = 2 - 2 = 0$

so that u is harmonic on \mathbb{C} .

$$u(x, y) = x^2 - y^2$$

 $u_{xx} + u_{yy} = 2 - 2 = 0$

so that u is harmonic on \mathbb{C} . If v(x, y) is a harmonic conjugate to u, then

$$u(x, y) = x^2 - y^2$$

 $u_{xx} + u_{yy} = 2 - 2 = 0$

so that u is harmonic on \mathbb{C} . If v(x, y) is a harmonic conjugate to u, then

$$v_x = -u_y = 2y$$

$$v_y = u_x = 2x$$

$$u(x, y) = x^2 - y^2$$

 $u_{xx} + u_{yy} = 2 - 2 = 0$

so that u is harmonic on \mathbb{C} . If v(x, y) is a harmonic conjugate to u, then

$$v_x = -u_y = 2y$$

$$v_y = u_x = 2x$$

It is easy to see that this implies that the harmonic conjugate to u is

$$v(x,y) = 2xy + c$$

Given a harmonic function u(x, y) we can find its harmonic conjugate as follows:

▶ One CR equation gives $v_x = -u_y$.

- ▶ One CR equation gives $v_x = -u_y$.
- ► This can be solved by

$$v(x,y) = -\int u_y(x,y)dx + C(y)$$

Given a harmonic function u(x, y) we can find its harmonic conjugate as follows:

- ▶ One CR equation gives $v_x = -u_y$.
- This can be solved by

$$v(x,y) = -\int u_y(x,y)dx + C(y)$$

► Substitute this in the other CR equation $v_y = u_x$.

- ▶ One CR equation gives $v_x = -u_y$.
- ▶ This can be solved by

$$v(x,y) = -\int u_y(x,y)dx + C(y)$$

- ▶ Substitute this in the other CR equation $v_y = u_x$.
- ▶ This yields a differential equation for C(y),

- ▶ One CR equation gives $v_x = -u_y$.
- This can be solved by

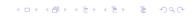
$$v(x,y) = -\int u_y(x,y)dx + C(y)$$

- ▶ Substitute this in the other CR equation $v_y = u_x$.
- ▶ This yields a differential equation for C(y),
- ▶ where all terms with x should cancel.

- ▶ One CR equation gives $v_x = -u_y$.
- This can be solved by

$$v(x,y) = -\int u_y(x,y)dx + C(y)$$

- Substitute this in the other CR equation $v_y = u_x$.
- ▶ This yields a differential equation for C(y),
- where all terms with x should cancel.
- ▶ Solving this gives us v.



$$u(x,y) = xy^3 - yx^3$$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$
 $u_{xx} = -6xy, \quad u_{yy} = 6xy$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$u_{xx} = -6xy$$
, $u_{yy} = 6xy$

Thus *u* is harmonic

$$u_{xx}+u_{yy}=0$$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$v_x(x,y) = -u_y(x,y) = -3xy^2 + x^3$$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$v_x(x,y) = -u_y(x,y) = -3xy^2 + x^3$$

 $v(x,y) = \int (-3xy^2 + x^3) dx + C(y)$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$v_x(x,y) = -u_y(x,y) = -3xy^2 + x^3$$

$$v(x,y) = \int (-3xy^2 + x^3) dx + C(y)$$

$$= \frac{1}{4}x^4 - \frac{3}{2}x^2y^2 + C(y)$$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$v_x(x,y) = -u_y(x,y) = -3xy^2 + x^3$$

$$v(x,y) = \int (-3xy^2 + x^3) dx + C(y)$$

$$= \frac{1}{4}x^4 - \frac{3}{2}x^2y^2 + C(y)$$

$$v_y(x,y) = u_x(x,y) \implies$$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$v_x(x,y) = -u_y(x,y) = -3xy^2 + x^3$$

$$v(x,y) = \int (-3xy^2 + x^3) dx + C(y)$$

$$= \frac{1}{4}x^4 - \frac{3}{2}x^2y^2 + C(y)$$

$$\frac{d}{dy}C(y) - 3x^2y = y^3 - 3x^2y$$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$v_x(x,y) = -u_y(x,y) = -3xy^2 + x^3$$

$$v(x,y) = \int (-3xy^2 + x^3) dx + C(y)$$

$$= \frac{1}{4}x^4 - \frac{3}{2}x^2y^2 + C(y)$$

$$\frac{d}{dy}C(y)=y^3$$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$v_x(x,y) = -u_y(x,y) = -3xy^2 + x^3$$

$$v(x,y) = \int (-3xy^2 + x^3) dx + C(y)$$

$$= \frac{1}{4}x^4 - \frac{3}{2}x^2y^2 + C(y)$$

$$C(y) = \frac{1}{4}y^4 + c$$

$$u(x, y) = xy^3 - yx^3$$

 $u_x = y^3 - 3x^2y, \quad u_y = 3xy^2 - x^3$

$$v_x(x,y) = -u_y(x,y) = -3xy^2 + x^3$$

$$v(x,y) = \int (-3xy^2 + x^3) dx + C(y)$$

$$= \frac{1}{4}x^4 - \frac{3}{2}x^2y^2 + C(y)$$

$$v(x,y) = \frac{1}{4}x^4 + \frac{1}{4}y^4 - \frac{3}{2}x^2y^2 + ic$$

Complex variable techniques can be used to study harmonic functions.

Complex variable techniques can be used to study harmonic functions.

Theorem

If u(x, y) and v(x, y) are harmonic conjugate functions, then u(x, y)v(x, y) is harmonic.

Complex variable techniques can be used to study harmonic functions.

Theorem

If u(x, y) and v(x, y) are harmonic conjugate functions, then u(x, y)v(x, y) is harmonic.

Proof.

We can, of course, directly verify that the Laplace equation is obeyed by uv (\bigcirc).

Complex variable techniques can be used to study harmonic functions.

Theorem

If u(x, y) and v(x, y) are harmonic conjugate functions, then u(x, y)v(x, y) is harmonic.

Proof.

Complex variable techniques can be used to study harmonic functions.

Theorem

If u(x, y) and v(x, y) are harmonic conjugate functions, then u(x, y)v(x, y) is harmonic.

Proof.

An elegant proof:

 \triangleright Since u and v are harmonic conjugates,

Complex variable techniques can be used to study harmonic functions.

Theorem

If u(x, y) and v(x, y) are harmonic conjugate functions, then u(x, y)v(x, y) is harmonic.

Proof.

- ▶ Since *u* and *v* are harmonic conjugates,
- f(z) = u + iv is holomorphic.

Complex variable techniques can be used to study harmonic functions.

Theorem

If u(x, y) and v(x, y) are harmonic conjugate functions, then u(x, y)v(x, y) is harmonic.

Proof.

- ▶ Since *u* and *v* are harmonic conjugates,
- f(z) = u + iv is holomorphic.
- ► So is $(f(z))^2$.

Complex variable techniques can be used to study harmonic functions.

Theorem

If u(x, y) and v(x, y) are harmonic conjugate functions, then u(x, y)v(x, y) is harmonic.

Proof.

- ▶ Since *u* and *v* are harmonic conjugates,
- f(z) = u + iv is holomorphic.
- So is $(f(z))^2$.
- ► Thus $uv = \frac{1}{2}\Im\left(\left(f(z)\right)^2\right)$ is harmonic.

► Fluid flow in 2D.

- ▶ Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys

- ▶ Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys

- ▶ Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys
 - $\nabla \cdot \vec{\mathbf{v}} = 0, \ \nabla \times \vec{\mathbf{v}} = 0.$
 - $\vec{v}(x,y) \equiv p(x,y) + iq(x,y) \implies$

- Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys
 - $\nabla \cdot \vec{\mathbf{v}} = 0, \ \nabla \times \vec{\mathbf{v}} = 0.$
 - $\vec{v}(x,y) \equiv p(x,y) + iq(x,y) \implies$
 - $p_x + q_y = 0$, $q_y p_x = 0$.

- Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys
 - $\nabla \cdot \vec{\mathbf{v}} = 0, \ \nabla \times \vec{\mathbf{v}} = 0.$
 - $\vec{v}(x,y) \equiv p(x,y) + iq(x,y) \implies$
 - $p_x + q_y = 0, \ q_y p_x = 0.$
 - $\overline{\vec{v}} = p iq$ is holomorphic.

- Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys
 - $\nabla \cdot \vec{\mathbf{v}} = 0, \ \nabla \times \vec{\mathbf{v}} = 0.$
 - $\vec{v}(x,y) \equiv p(x,y) + iq(x,y) \implies$
 - $p_x + q_y = 0, \ q_y p_x = 0.$
 - $\vec{v} = p iq$ is holomorphic.
- ▶ Electrostatics in 2D.

- Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys
 - $\nabla \cdot \vec{\mathbf{v}} = 0, \ \nabla \times \vec{\mathbf{v}} = 0.$
 - $\vec{v}(x,y) \equiv p(x,y) + iq(x,y) \implies$
 - $p_x + q_y = 0, \ q_y p_x = 0.$
 - $\vec{v} = p iq$ is holomorphic.
- Electrostatics in 2D.
- ▶ Heat flow in 2D.

- Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys
 - $\nabla \cdot \vec{\mathbf{v}} = 0, \ \nabla \times \vec{\mathbf{v}} = 0.$
 - $\vec{v}(x,y) \equiv p(x,y) + iq(x,y) \implies$
 - $p_x + q_y = 0, \ q_y p_x = 0.$
 - $\vec{v} = p iq$ is holomorphic.
- Electrostatics in 2D.
- ▶ Heat flow in 2D.
- ► Conformal field theory.

- Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys
 - $\nabla \cdot \vec{\mathbf{v}} = 0, \ \nabla \times \vec{\mathbf{v}} = 0.$
 - $\vec{v}(x,y) \equiv p(x,y) + iq(x,y) \implies$
 - $p_x + q_y = 0, \ q_y p_x = 0.$
 - $\vec{v} = p iq$ is holomorphic.
- Electrostatics in 2D.
- ▶ Heat flow in 2D.
- Conformal field theory.
- ► String theory.

- Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys
 - $\nabla \cdot \vec{\mathbf{v}} = 0, \ \nabla \times \vec{\mathbf{v}} = 0.$
 - $\vec{v}(x,y) \equiv p(x,y) + iq(x,y) \implies$
 - $p_x + q_y = 0, \ q_y p_x = 0.$
 - $\vec{v} = p iq$ is holomorphic.
- Electrostatics in 2D.
- ▶ Heat flow in 2D.
- Conformal field theory.
- String theory.

- Fluid flow in 2D.
 - Irrotational flow of an ideal fluid obeys
 - $\nabla \cdot \vec{\mathbf{v}} = 0, \ \nabla \times \vec{\mathbf{v}} = 0.$
 - $\vec{v}(x,y) \equiv p(x,y) + iq(x,y) \implies$
 - $p_x + q_y = 0, \ q_y p_x = 0.$
 - $\vec{v} = p iq$ is holomorphic.
- Electrostatics in 2D.
- ▶ Heat flow in 2D.
- Conformal field theory.
- String theory.

Complex analysis helps in all these physical applications and more ...

If w = uv we have,

If w = uv we have,

$$w_x = u_x v + u v_x, \quad w_y = u_y v + u v_y$$

If w = uv we have,

$$w_x = u_x v + u v_x, \quad w_y = u_y v + u v_y$$

$$w_{xx} = u_{xx}v + 2u_xv_x + uv_{xx},$$

$$w_{yy} = u_{yy}v + 2u_yv_y + uv_{yy}$$

If
$$w = uv$$
 we have,

$$w_x = u_x v + u v_x, \quad w_y = u_y v + u v_y$$

$$w_{xx} = u_{xx}v + 2u_xv_x + uv_{xx},$$

$$w_{yy} = u_{yy}v + 2u_yv_y + uv_{yy}$$

$$w_{xx} + w_{yy} = (u_{xx} + u_{yy}) v + 2u_x v_x + 2u_y v_y + u (v_{xx} + u_{yy})$$

If w = uv we have,

$$w_x = u_x v + u v_x, \quad w_y = u_y v + u v_y$$

$$w_{xx} = u_{xx}v + 2u_xv_x + uv_{xx},$$

$$w_{yy} = u_{yy}v + 2u_yv_y + uv_{yy}$$

$$w_{xx} + w_{yy} = (u_{xx} + u_{yy}) v + 2u_x v_x + 2u_y v_y + u (v_{xx} + u_{yy})$$

= 0 \cdot v + 2u_x (-u_v) + 2u_v u_x + u \cdot 0

If
$$w = uv$$
 we have,

$$w_x = u_x v + u v_x, \quad w_y = u_y v + u v_y$$

$$w_{xx} = u_{xx}v + 2u_xv_x + uv_{xx},$$

$$w_{yy} = u_{yy}v + 2u_yv_y + uv_{yy}$$

$$w_{xx} + w_{yy} = (u_{xx} + u_{yy}) v + 2u_x v_x + 2u_y v_y + u (v_{xx} + u_{yy})$$

= 0 \cdot v + 2u_x (-u_y) + 2u_y u_x + u \cdot 0
= 0

