Complex integration Cauchy's theorem

Ananda Dasgupta

MA211, Lecture 23

Properties of contour integrals

Properties of contour integrals

$$\int_{-C} f(z)dz = -\int_{C} f(z)dz$$

$$\int_{C_{1}+C_{2}} f(z)dz = \int_{C_{1}} f(z)dz + \int_{C_{2}} f(z)dz$$

Properties of contour integrals

$$\int_{-C} f(z)dz = -\int_{C} f(z)dz$$

$$\int_{C_1+C_2} f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz$$

▶ The *ML* inequality : If f(z) is continuous on the contour Γ then

$$\left| \int_C f(z) dz \right| \leq ML$$

where M is an upperbound for the modulus |f(z)| on C and L is the length of the contour C.

Let
$$f(z) = u(x, y) + iv(x, y)$$
, and $z(t) = x(t) + iy(t)$ $a \le t \le b$

Let
$$f(z) = u(x, y) + iv(x, y)$$
, and $z(t) = x(t) + iy(t)$ $a \le t \le b$

$$\int_C f(z)dz = \int_a^b f(z(t))z'(t)dt$$

Let
$$f(z) = u(x, y) + iv(x, y)$$
, and $z(t) = x(t) + iy(t)$ $a \le t \le b$

$$\int_{C} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt$$

$$= \int_{a}^{b} \left[u(x(t), y(t)) + iv(x(t), y(t))\right] \times \left[x'(t) + iy'(t)\right]dt$$

Let
$$f(z) = u(x, y) + iv(x, y)$$
, and
$$z(t) = x(t) + iv(t) \ a < t < b$$

$$\int_{C} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt$$

$$= \int_{a}^{b} \left[u(x(t), y(t)) + iv(x(t), y(t))\right]$$

$$\times \left[x'(t) + iy'(t)\right]dt$$

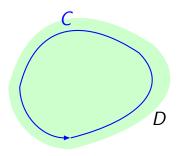
$$= \int_{a}^{b} \left[u(x, y)x'(t) - v(x, y)y'(t)\right]dt$$

$$+i \int_{a}^{b} \left[v(x, y)x'(t) + u(x, y)y'(t)\right]dt$$

Let
$$f(z) = u(x, y) + iv(x, y)$$
, and $z(t) = x(t) + iy(t)$ $a \le t \le b$

$$\int_{C} f(z)dz = \left[\int_{C} udx - vdy\right] + i\left[\int_{C} vdx + udy\right]$$

The Cauchy-Goursat theorem



Let f be holomorphic in a simply connected domain D. If C is a simple **closed** contour that lies in D, then

$$\oint_{\mathcal{C}} f(z) dz = 0$$

The proof is simple if we make the additional assumption that f'(z) is continuous.

The proof is simple if we make the additional assumption that f'(z) is continuous. This proof makes use of Green's theorem:

The proof is simple if we make the additional assumption that f'(z) is continuous. This proof makes use of Green's theorem:

Theorem

Let C be a simple closed curve in \mathbb{R}^2 with positive orientation and let R be the interior of C. If M and N are continuous and have continuous partial derivatives M_x , M_y , N_x , and N_y at all points on C and R, then

$$\oint_C M(x,y)dx + N(x,y)dy = \iint_R \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dxdy$$

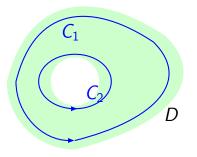
$$\oint_C f(z)dz = \left[\oint_C udx - vdy\right] + i\left[\oint_C udy + vdx\right]$$

$$\oint_{C} f(z)dz = \left[\oint_{C} udx - vdy \right] + i \left[\oint_{C} udy + vdx \right]
= \iint_{R} \left[-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] dxdy
+ i \iint_{R} \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dxdy$$

$$\oint_C f(z)dz = \left[\oint_C udx - vdy \right] + i \left[\oint_C udy + vdx \right]
= \iint_R \left[-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] dxdy
+ i \iint_R \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dxdy
= -\iint_R (u_y + v_x) dxdy
+ i \iint_R (u_x - v_y) dxdy$$

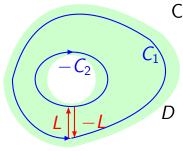
$$\oint_C f(z)dz = \left[\oint_C udx - vdy \right] + i \left[\oint_C udy + vdx \right]
= \iint_R \left[-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] dxdy
+ i \iint_R \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dxdy
= -\iint_R (u_y + v_x) dxdy
+ i \iint_R (u_x - v_y) dxdy = 0 (CR!)$$

Deformation of contour



Let C_1 and C_2 be two simple closed positively oriented contours such that C_2 lies interior to C_1 . If f is holomorphic in a domain D that contains both C_1 and C_2 and the region between them then

$$\oint_{C_1} f(z)dz = \oint_{C_2} f(z)dz$$



Consider the simple closed contour

$$C^* = C_1 + L + (-C_2) + (-L)$$

Consider the simple closed contour

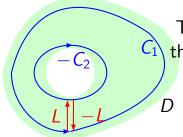
$$C^* = C_1 + L + (-C_2) + (-L)$$

 $C^* = C_1 + L + (-C_2) + (-L)$ The function f(z) is holomorphic in the interior of the loop C^* .

Consider the simple closed contour

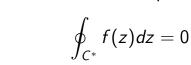
$$C^* = C_1 + L + (-C_2) + (-L)$$

$$\oint_{C^*} f(z) dz = 0$$

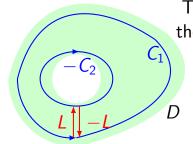


Consider the simple closed contour

$$C^* = C_1 + L + (-C_2) + (-L)$$



$$\oint_{C_1+L+(-C_2)+(-L)} f(z)dz = 0$$



Consider the simple closed contour

$$C^* = C_1 + L + (-C_2) + (-L)$$

$$\oint_{C^*} f(z) dz = 0$$

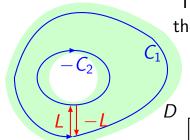
$$\left[\oint_{C_1} + \int_{L} + \oint_{-C_2} + \int_{-L} \right] f(z) dz = 0$$

Consider the simple closed contour

$$C^* = C_1 + L + (-C_2) + (-L)$$

$$\oint_{C^*} f(z) dz = 0$$

$$\left[\oint_{C_1} + \int_{L} - \oint_{C_2} - \int_{L} \right] f(z) dz = 0$$

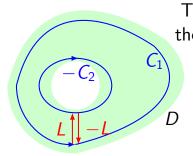


Consider the simple closed contour

$$C^* = C_1 + L + (-C_2) + (-L)$$

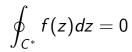
$$\oint_{C^*} f(z)dz = 0$$

$$\oint_{C_1} f(z)dz - \oint_{C_2} f(z)dz = 0$$

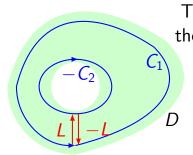


Consider the simple closed contour

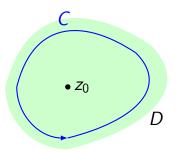
$$C^* = C_1 + L + (-C_2) + (-L)$$



$$\oint_{C_1} f(z)dz = \oint_{C_2} f(z)dz$$

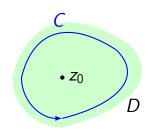


The Cauchy integral formula

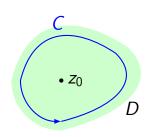


Let f be holomorphic in the simply connected domain D and let C be a simple closed positively oriented contour that lies in D. If z_0 is a point that lies interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

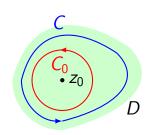


f is holomorphic at $z_0 \implies$ that it is continuous there.



f is holomorphic at $z_0 \Longrightarrow$ that it is continuous there. Thus given any $\epsilon > 0, \exists \delta$ such that

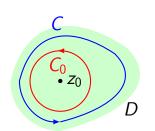
$$|z-z_0|<\delta \implies |f(z)-f(z_0)|<\epsilon$$



f is holomorphic at $z_0 \Longrightarrow$ that it is continuous there. Thus given any $\epsilon > 0, \exists \delta$ such that

$$|z-z_0|<\delta \implies |f(z)-f(z_0)|<\epsilon$$

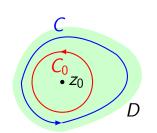
Choose $0 < \alpha \le 1$ such that $C_0 = \{|z - z_0| = \alpha \delta\}$ lies interior to C.



f is holomorphic at $z_0 \Longrightarrow$ that it is continuous there. Thus given any $\epsilon > 0, \exists \delta$ such that

$$|z-z_0|<\delta \implies |f(z)-f(z_0)|<\epsilon$$

$$\therefore \int_C (z-z_0)^{-1} dz = 2\pi i$$
 if C is a circle centered at z_0 ,

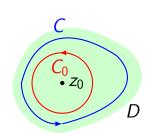


f is holomorphic at $z_0 \Longrightarrow$ that it is continuous there. Thus given any $\epsilon > 0, \exists \delta$ such that

$$|z-z_0|<\delta \implies |f(z)-f(z_0)|<\epsilon$$

 $\therefore \int_C (z-z_0)^{-1} dz = 2\pi i$ if C is a circle centered at z_0 ,

$$f(z_0) = \frac{f(z_0)}{2\pi i} \int_{C_0} \frac{dz}{z - z_0}$$

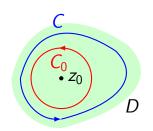


f is holomorphic at $z_0 \Longrightarrow$ that it is continuous there. Thus given any $\epsilon>0, \exists \delta$ such that

$$|z-z_0|<\delta \implies |f(z)-f(z_0)|<\epsilon$$

 $\therefore \int_C (z-z_0)^{-1} dz = 2\pi i$ if C is a circle centered at z_0 ,

$$f(z_0) = \frac{f(z_0)}{2\pi i} \int_{C_0} \frac{dz}{z - z_0} = \frac{1}{2\pi i} \int_{C_0} \frac{f(z_0) dz}{z - z_0}$$

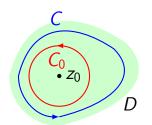


f is holomorphic at $z_0 \Longrightarrow$ that it is continuous there. Thus given any $\epsilon > 0, \exists \delta$ such that

$$|z-z_0|<\delta \implies |f(z)-f(z_0)|<\epsilon$$

The deformation theorem says

$$\frac{1}{2\pi i} \int_C \frac{f(z) dz}{z - z_0} = \frac{1}{2\pi i} \int_{C_0} \frac{f(z) dz}{z - z_0}$$



$$f(z_0) = \frac{1}{2\pi i} \int_{C_0} \frac{f(z_0) dz}{z - z_0}$$
$$\frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z - z_0} = \frac{1}{2\pi i} \int_{C_0} \frac{f(z) dz}{z - z_0}$$

$$f(z_0) = \frac{1}{2\pi i} \int_{C_0} \frac{f(z_0) dz}{z - z_0}$$

$$\int f(z) dz \qquad 1 \qquad \int f(z) dz$$

$$\int_{D} \frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z - z_0} = \frac{1}{2\pi i} \int_{C_0} \frac{f(z) dz}{z - z_0}$$

$$\left|\frac{1}{2\pi \mathfrak{i}}\int_{C}\frac{f(z)\,dz}{z-z_{0}}-f(z_{0})\right| = \frac{1}{2\pi}\left|\int_{C_{0}}\frac{f(z)-f(z_{0})}{z-z_{0}}dz\right|$$

$$C$$
 C_0
 C_0

$$f(z_0) = \frac{1}{2\pi i} \int_{C_0} \frac{f(z_0) dz}{z - z_0}$$

$$\frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z - z_0} = \frac{1}{2\pi i} \int_{C_0} \frac{f(z) dz}{z - z_0}$$

$$\left| \frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z - z_{0}} - f(z_{0}) \right| = \frac{1}{2\pi} \left| \int_{C_{0}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right| \\ \leq \frac{1}{2\pi} \int_{C_{0}} \frac{|f(z) - f(z_{0})|}{|z - z_{0}|} |dz|$$

$$f(z_0) = \frac{1}{2\pi i} \int_{C_0} \frac{f(z_0) dz}{z - z_0}$$
$$\frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z - z_0} = \frac{1}{2\pi i} \int_{C_0} \frac{f(z) dz}{z - z_0}$$

$$\left| \frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z - z_{0}} - f(z_{0}) \right| = \frac{1}{2\pi} \left| \int_{C_{0}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right|$$

$$\leq \frac{1}{2\pi} \int_{C_{0}} \frac{|f(z) - f(z_{0})|}{|z - z_{0}|} |dz|$$

$$\leq \frac{1}{2\pi} \frac{\epsilon}{\alpha \delta} 2\pi \alpha \delta$$

$$f(z_0) = \frac{1}{2\pi i} \int_{C_0} \frac{f(z_0) dz}{z - z_0}$$
$$\frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z - z_0} = \frac{1}{2\pi i} \int_{C_0} \frac{f(z) dz}{z - z_0}$$

$$\left| \frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z - z_{0}} - f(z_{0}) \right| = \frac{1}{2\pi} \left| \int_{C_{0}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right|$$

$$\leq \frac{1}{2\pi} \int_{C_{0}} \frac{|f(z) - f(z_{0})|}{|z - z_{0}|} |dz|$$

$$\leq \frac{1}{2\pi} \frac{\epsilon}{\alpha \delta} 2\pi \alpha \delta = \epsilon \quad \Box$$

Let D be a simply connected domain, and let $I = [a, b] \subset \mathbb{R}$ be a closed interval.

Let D be a simply connected domain, and let $I = [a, b] \subset \mathbb{R}$ be a closed interval. Let f(z, t) and its partial derivative $f_z(z, t)$ with respect to z be continuous functions for all z in D and all t in I.

Let D be a simply connected domain, and let $I = [a, b] \subset \mathbb{R}$ be a closed interval. Let f(z, t) and its partial derivative $f_z(z, t)$ with respect to z be continuous functions for all z in D and all t in I. Then

$$F(z) = \int_a^b f(z,t)dt$$

is holomorphic on D

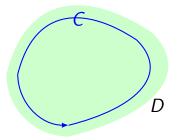
Let D be a simply connected domain, and let $I = [a, b] \subset \mathbb{R}$ be a closed interval. Let f(z, t) and its partial derivative $f_z(z, t)$ with respect to z be continuous functions for all z in D and all t in I. Then

$$F(z) = \int_a^b f(z,t)dt$$

is holomorphic on D and

$$F'(z) = \int_a^b f_z(z,t)dt$$

The Cauchy integral formula for derivatives



Let f be holomorphic in the simply connected domain D, and let C be a simple closed positively oriented contour that lies in D. If z is a point that lies interior to C, then

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

Parameterize the contour C by z(t), $a \le t \le b$.

Parameterize the contour C by z(t), $a \le t \le b$. Then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

Parameterize the contour C by z(t), $a \le t \le b$. Then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t)}{z(t) - z_0} dt$$

Parameterize the contour C by z(t), $a \le t \le b$.

Then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t)}{z(t) - z_0} dt$$

This is of the form

$$f(z_0) = \int_a^b \phi(z_0, t) dt$$

Parameterize the contour C by z(t), $a \le t \le b$.

Then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t)}{z(t) - z_0} dt$$

This is of the form

$$f(z_0) = \int_a^b \phi(z_0, t) dt$$

where

$$\phi(z_0,t) = \frac{1}{2\pi i} \frac{f(z(t))z'(t)}{z(t)-z_0}$$

Parameterize the contour C by z(t), $a \le t \le b$.

Then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t)}{z(t) - z_0} dt$$

This is of the form

$$f(z_0) = \int_{a}^{b} \phi(z_0, t) dt$$

where

$$\phi(z_0,t) = \frac{1}{2\pi i} \frac{f(z(t))z'(t)}{z(t)-z_0}$$

so that

$$\phi_{z_0}(z_0,t) = \frac{1}{2\pi i} \frac{f(z(t))z'(t)}{(z(t)-z_0)^2}$$

Parameterize the contour C by z(t), $a \le t \le b$.

Then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t)}{z(t) - z_0} dt$$

This is of the form

$$f(z_0) = \int_{a}^{b} \phi(z_0, t) dt$$

where

$$\phi(z_0,t) = \frac{1}{2\pi i} \frac{f(z(t))z'(t)}{z(t)-z_0}$$

so that

$$\phi_{z_0}(z_0,t) = \frac{1}{2\pi i} \frac{f(z(t))z'(t)}{(z(t)-z_0)^2}$$

Liebnitz's rule yields

$$f'(z_0) = \int_a^b \phi_{z_0}(z_0, t) dt$$

Liebnitz's rule yields

$$f'(z_0) = \int_a^b \phi_{z_0}(z_0, t) dt$$
$$= \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t)}{(z(t) - z_0)^2} dt$$

Liebnitz's rule yields

$$f'(z_0) = \int_a^b \phi_{z_0}(z_0, t) dt$$

$$= \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t)}{(z(t) - z_0)^2} dt$$

$$= \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

Liebnitz's rule yields

$$f'(z_0) = \int_a^b \phi_{z_0}(z_0, t) dt$$

$$= \frac{1}{2\pi i} \int_a^b \frac{f(z(t))z'(t)}{(z(t) - z_0)^2} dt$$

$$= \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

We can continue with the function f'(z) and inductively prove the formula for all n.

Let f be holomorphic in the simply connected domain D that contains the circle

$$C : |z - z_0| = R.$$

Let f be holomorphic in the simply connected domain D that contains the circle $C: |z-z_0|=R.$ If $|f(z)|\leq M$ holds for all points on C.

Let f be holomorphic in the simply connected domain D that contains the circle $C: |z-z_0|=R.$ If $|f(z)|\leq M$ holds for all points

 $C: |z-z_0|=R.$ If $|f(z)|\leq M$ holds for all points on C, then

$$\left|f^{(n)}(z_0)\right| \leq \frac{n!M}{R^n} \text{ for } n \in \mathbb{N}$$

Let f be holomorphic in the simply connected domain D that contains the circle

 $C: |z-z_0|=R.$ If $|f(z)|\leq M$ holds for all points on C, then

$$\left|f^{(n)}\left(z_0\right)\right|\leq rac{n!M}{R^n} ext{ for } n\in\mathbb{N}$$

Let f be holomorphic in the simply connected domain D that contains the circle

 $C: |z-z_0|=R.$ If $|f(z)|\leq M$ holds for all points on C, then

$$\left|f^{(n)}\left(z_0\right)\right|\leq rac{n!M}{R^n} ext{ for } n\in\mathbb{N}$$

$$\left|f^{(n)}(z_0)\right| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \right|$$

Let f be holomorphic in the simply connected domain D that contains the circle

 $C: |z-z_0|=R.$ If $|f(z)|\leq M$ holds for all points on C, then

$$\left|f^{(n)}\left(z_0\right)\right|\leq rac{n!M}{R^n} ext{ for } n\in\mathbb{N}$$

$$\left|f^{(n)}(z_0)\right| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \right|$$

$$\leq \frac{n!}{2\pi} \oint_C \frac{|f(z)|}{|z-z_0|^{n+1}} |dz|$$

Let f be holomorphic in the simply connected domain D that contains the circle $C: |z-z_0|=R.$ If $|f(z)|\leq M$ holds for all points on C, then

$$\left|f^{(n)}(z_0)\right| \leq \frac{n!M}{R^n} \text{ for } n \in \mathbb{N}$$

$$\left| f^{(n)}(z_0) \right| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz \right|$$

$$\leq \frac{n!}{2\pi} \oint_C \frac{|f(z)|}{|z - z_0|^{n+1}} |dz|$$

$$\leq \frac{n!}{2\pi} \frac{M}{R^{n+1}} 2\pi R$$

Let f be holomorphic in the simply connected domain D that contains the circle $C: |z-z_0|=R.$ If $|f(z)|\leq M$ holds for all points on C, then

$$\left|f^{(n)}(z_0)\right| \leq \frac{n!M}{R^n} \text{ for } n \in \mathbb{N}$$

$$\left| f^{(n)}(z_0) \right| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz \right|$$

$$\leq \frac{n!}{2\pi} \oint_C \frac{|f(z)|}{|z - z_0|^{n+1}} |dz|$$

$$\leq \frac{n!}{2\pi} \frac{M}{R^{n+1}} 2\pi R = \frac{n! M}{R^n}$$

A function f is called **entire** if it is holomorphic everywhere on \mathbb{C} .

A function f is called **entire** if it is holomorphic everywhere on \mathbb{C} .

If f is entire and is bounded for all $z \in \mathbb{C}$, then it is constant.

A function f is called **entire** if it is holomorphic everywhere on \mathbb{C} .

If f is entire and is bounded for all $z \in \mathbb{C}$, then it is constant.

Suppose $|f(z)| \leq M$ for all z.

A function f is called **entire** if it is holomorphic everywhere on \mathbb{C} .

If f is entire and is bounded for all $z \in \mathbb{C}$, then it is constant.

Suppose $|f(z)| \le M$ for all z. For arbitrary z_0 , consider the circle $|z - z_0| = R$.

A function f is called **entire** if it is holomorphic everywhere on \mathbb{C} .

If f is entire and is bounded for all $z \in \mathbb{C}$, then it is constant.

Suppose $|f(z)| \le M$ for all z. For arbitrary z_0 , consider the circle $|z - z_0| = R$. Then Cauchy's inequality for n = 1 yields

$$|f'(z_0)|<\frac{M}{R}$$

A function f is called **entire** if it is holomorphic everywhere on \mathbb{C} .

If f is entire and is bounded for all $z \in \mathbb{C}$, then it is constant.

Suppose $|f(z)| \le M$ for all z. For arbitrary z_0 , consider the circle $|z - z_0| = R$. Then Cauchy's inequality for n = 1 yields

$$|f'(z_0)|<\frac{M}{R}$$

Taking $R \to \infty$ gives $|f'(z_0)| = 0$ for arbitrary z_0 . \square

The fundamental theorem of algebra

If $P(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree n > 0, then it has at least one zero.

The fundamental theorem of algebra

If $P(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree n > 0, then it has at least one zero.

Proof:

Assume that P(z) has no zeroes.

If $P(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree n > 0, then it has at least one zero.

Proof:

If $P(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree n > 0, then it has at least one zero.

Proof:

$$|f(z)| = \frac{1}{|P(Z)|}$$

If $P(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree n > 0, then it has at least one zero.

Proof:

$$|f(z)| = \frac{1}{|P(Z)|}$$

= $\frac{1}{|z|^n} \frac{1}{|a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}|}$

If $P(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree n > 0, then it has at least one zero.

Proof:

$$|f(z)| = \frac{1}{|P(Z)|}$$

$$= \frac{1}{|z|^n} \frac{1}{\left|a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right|}$$

$$\to 0 \quad \text{for } |z| \to \infty$$

If $P(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree n > 0, then it has at least one zero.

Proof:

$$|f(z)| = \frac{1}{|P(Z)|}$$

$$= \frac{1}{|z|^n} \frac{1}{\left|a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right|}$$

$$\to 0 \quad \text{for } |z| \to \infty$$

$$\therefore \exists R : |z| > R \implies |f(z)| < 1$$

If $P(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree n > 0, then it has at least one zero.

Proof:

$$|f(z)| = \frac{1}{|P(Z)|}$$

$$= \frac{1}{|z|^n} \frac{1}{\left|a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right|}$$

$$\to 0 \quad \text{for } |z| \to \infty$$

$$\therefore \exists R : |z| > R \implies |f(z)| < 1$$

Now $|f(z)| = \sqrt{[u(x,y)]^2 + [v(x,y)]^2}$ is a continuous function of x and y.

Now $|f(z)| = \sqrt{[u(x,y)]^2 + [v(x,y)]^2}$ is a continuous function of x and y. \therefore a continuous function on a compact set is bounded,

Now $|f(z)| = \sqrt{[u(x,y)]^2 + [v(x,y)]^2}$ is a continuous function of x and y. \therefore a continuous function on a compact set is

∵ a continuous function on a compact set is bounded,

$$\exists K : |z| \leq R \implies |f(z)| < K$$

Now $|f(z)| = \sqrt{[u(x,y)]^2 + [v(x,y)]^2}$ is a continuous function of x and y.

: a continuous function on a compact set is bounded,

$$\exists K : |z| \leq R \implies |f(z)| < K$$

|f(z)| is bounded on $\mathbb C$ by $M=\max\{K,1\}$.

Now $|f(z)| = \sqrt{[u(x,y)]^2 + [v(x,y)]^2}$ is a continuous function of x and y. \therefore a continuous function on a compact set is bounded.

$$\exists K : |z| \leq R \implies |f(z)| < K$$

|f(z)| is bounded on $\mathbb C$ by $M=\max\{K,1\}$. Liouville's theorem proves that f(z) is a constant

Now $|f(z)| = \sqrt{[u(x,y)]^2 + [v(x,y)]^2}$ is a continuous function of x and y. \therefore a continuous function on a compact set is bounded.

$$\exists K : |z| \leq R \implies |f(z)| < K$$

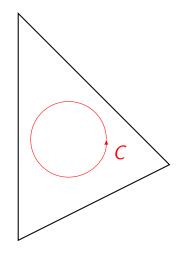
|f(z)| is bounded on $\mathbb C$ by $M=\max\{K,1\}$. Liouville's theorem proves that f(z) is a constant – a contradiction.

The Cauchy-Goursat theorem was first proven by Cauchy.

The Cauchy-Goursat theorem was first proven by Cauchy. His proof, which we have already studied, makes the additional assumption that f'(z) is continuous.

The Cauchy-Goursat theorem was first proven by Cauchy. His proof, which we have already studied, makes the additional assumption that f'(z) is continuous.

Goursat gave a proof of Cauchy's theorem that does not depend on this additional assumption.

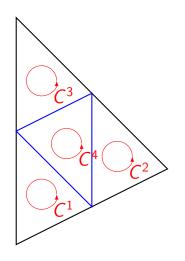


We consider the contour integral

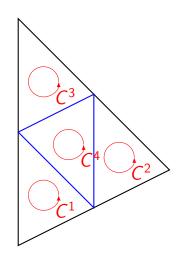
$$\oint_C f(z)dz$$

where C is a triangular contour which is contained in a simply connected domain where f is holomorphic.

We want to show that this vanishes

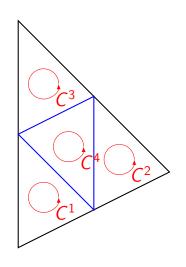


Split the triangle into four equal pieces.



Split the triangle into four equal pieces.

$$\oint_C f(z)dz = \sum_{i=1}^4 \oint_{C^i} f(z)dz$$

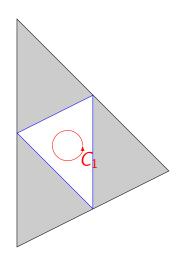


Split the triangle into four equal pieces.

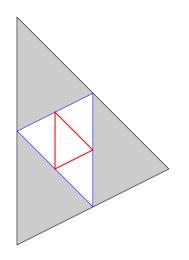
$$\oint_C f(z)dz = \sum_{i=1}^4 \oint_{C^i} f(z)dz$$

For at least one i

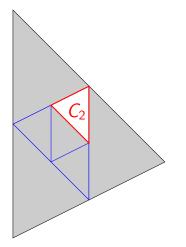
$$\left| \oint_C f(Z) dz \right| \le 4 \left| \oint_{C^i} f(Z) dz \right|$$



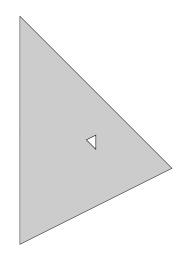
We choose that particular C^i as C_1 and repeat the procedure.



We choose that particular C^i as C_1 and repeat the procedure.



We choose that particular C^i as C_1 and repeat the procedure. This gives us C_2 .

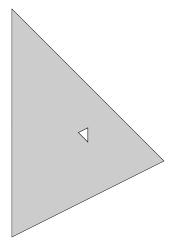


Repating this procedure gives us a sequence of triangular contours (C_n) such that

interior of $C_{n+1} \subset$ interior of C_n

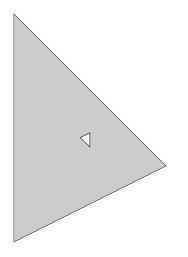
and

$$\left| \oint_{C_n} f(Z) dz \right| \leq 4 \left| \oint_{C_{n+1}} f(Z) dz \right|$$

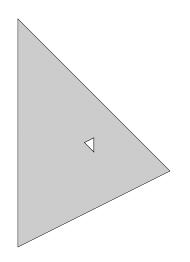


Our original integral is bounded by

$$\left|\oint_C f(Z)dz\right| \leq 4^n \left|\oint_{C_n} f(Z)dz\right|$$



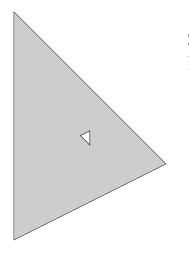
Let us denote the triangle C_n and its interior by T_n .



Let us denote the triangle C_n and its interior by T_n .

By Cantor's theorem $\exists z_0 \in \mathbb{C}$:

$$\bigcap_{n=1}^{\infty} T_n = \{z_0\}$$

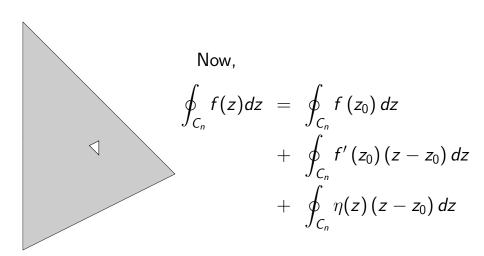


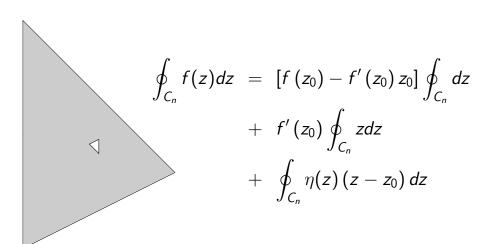
Since f(Z) is holomorphic at z_0 , $\exists \eta(z)$ such that

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \eta(z)(z - z_0)$$

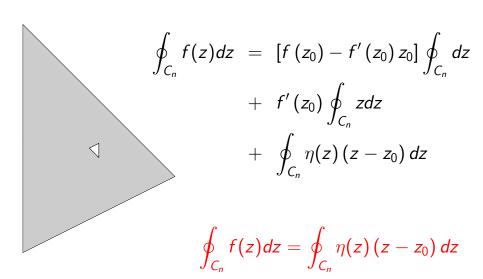
and

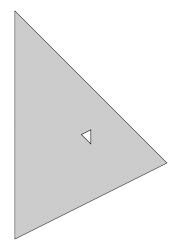
$$\lim_{z\to z_0}\eta(z)=0$$





An outline:





$$\therefore \lim_{z \to z_0} \eta(z) = 0, \ \forall \epsilon > 0$$

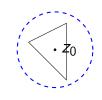
 $\exists \delta > 0$:

$$|z-z_0|<\delta \implies |\eta(z)|<rac{\epsilon}{L^2}$$

where L is the perimeter of the triangle C.

Choose a $n \in \mathbb{N}$ such that

$$T_n \subset B_\delta(z_0)$$



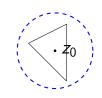
Choose a $n \in \mathbb{N}$ such that

$$T_n \subset B_\delta(z_0)$$

For all z on C_n we must have

$$|z-z_0|<\frac{L_n}{2}$$

where L_n is the perimeter of C_n .



Choose a $n \in \mathbb{N}$ such that

$$T_n \subset B_\delta(z_0)$$

For all z on C_n we must have

$$|z-z_0|<\frac{L_n}{2}=\frac{L}{2^{n+1}}$$

where L_n is the perimeter of C_n .

$$\left|\oint_C f(z)dz\right| \leq 4^n \left|\oint_{C_n} f(z)dz\right|$$

$$\left| \oint_{C} f(z) dz \right| \leq 4^{n} \left| \oint_{C_{n}} f(z) dz \right|$$

$$= 4^{n} \left| \oint_{C_{n}} \eta(z) (z - z_{0}) dz \right|$$

$$\left| \oint_{C} f(z)dz \right| \leq 4^{n} \left| \oint_{C_{n}} f(z)dz \right|$$

$$= 4^{n} \left| \oint_{C_{n}} \eta(z)(z - z_{0}) dz \right|$$

$$\leq 4^{n} \underbrace{\frac{\epsilon}{L^{2}} \frac{L}{2^{n+1}}}_{M} \underbrace{\frac{L}{2^{n}}}_{L}$$

$$\left| \oint_{C} f(z)dz \right| \leq 4^{n} \left| \oint_{C_{n}} f(z)dz \right|$$

$$= 4^{n} \left| \oint_{C_{n}} \eta(z) (z - z_{0}) dz \right|$$

$$\leq 4^{n} \underbrace{\frac{\epsilon}{L^{2}} \frac{L}{2^{n+1}}}_{M} \underbrace{\frac{L}{2^{n}}}_{L} = \frac{\epsilon}{2}$$

$$\left| \oint_{C} f(z)dz \right| \leq 4^{n} \left| \oint_{C_{n}} f(z)dz \right|$$

$$= 4^{n} \left| \oint_{C_{n}} \eta(z) (z - z_{0}) dz \right|$$

$$\leq 4^{n} \underbrace{\frac{\epsilon}{L^{2}} \frac{L}{2^{n+1}}}_{M} \underbrace{\frac{L}{2^{n}}}_{L} = \frac{\epsilon}{2} = 0$$

$$\left| \oint_{C} f(z)dz \right| \leq 4^{n} \left| \oint_{C_{n}} f(z)dz \right|$$

$$= 4^{n} \left| \oint_{C_{n}} \eta(z) (z - z_{0}) dz \right|$$

$$\leq 4^{n} \underbrace{\frac{\epsilon}{L^{2}} \frac{L}{2^{n+1}}}_{M} \underbrace{\frac{L}{2^{n}}}_{L} = \frac{\epsilon}{2} = 0$$

We can carry the proof on to a general polygon by subdividing it into triangles,

$$\left| \oint_{C} f(z)dz \right| \leq 4^{n} \left| \oint_{C_{n}} f(z)dz \right|$$

$$= 4^{n} \left| \oint_{C_{n}} \eta(z) (z - z_{0}) dz \right|$$

$$\leq 4^{n} \underbrace{\frac{\epsilon}{L^{2}} \frac{L}{2^{n+1}}}_{M} \underbrace{\frac{L}{2^{n}}}_{L} = \frac{\epsilon}{2} = 0$$

We can carry the proof on to a general polygon by subdividing it into triangles, and onto a general closed contour by approximating it with a polynomial.