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Abstract

In recent years the study of complex systems with network theory, which is based

on graph theory, has become quite popular. To analyze a system, different network

models have been developed to capture the graph structure, constructed from lo-

cal interactions of the components of the system, and many parameters have been

introduced for analyzing the structure of the graph. These graph invariants can

capture certain structural information, but they are not sufficient for capturing all

qualitative aspects of a graph. One of the aims of graph theory is to identify the

unique and special features of a network from a particular class on one hand and

the universal qualities that are shared by other network structures on the other

hand. It has been considered as a big challenge to find some sort of signature

of networks from different sources and to measure how far one network is from

another. It is difficult to distinguish the structural differences between networks

from different sources, and thus it seems to be very hard to recognize the source

of a real network by looking at its structure, though networks constructed from

the same evolutionary process should share common structural properties. It is

also difficult to say something about the evolutionary process from the internal

connectivity pattern of a network.

The spectrum of the normalized graph Laplacian can reveal structural prop-

erties of a network and can be an important tool to help solve the structural

identification problem. From the spectrum, we attempt to develop a tool that

helps us to understand the network structure on a deep level and to identify the

source of the network to a greater extent. The information about different topo-

logical properties of a graph carried by the complete spectrum of the normalized

graph Laplacian is explored. We investigate how and why structural properties

are reflected by the spectrum and how the spectrum changes when compairing

different networks from different sources.

In order to understand the information contained in the spectrum of the nor-

malized Laplacian, we systematically investigate the behavior of the eigenvalues.
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The spectra of many biological and other networks, such as protein-protein inter-

action networks show a high multiplicity of the eigenvalue 1. Different internal

structures of the graph that produce a high multiplicity of eigenvalue 1 are iden-

tified and their effect on the spectrum is proved. The nature of the changing of

eigenvalue multiplicity under local and global operations like motif doubling, graph

joining and splitting is also investigated. We also expand this to other eigenvalues.

Thus we present the spectrum of the normalized graph Laplacian as a systematic

tool for the investigation of network structure.

Given a class of empirical networks, reconstruction schemes for elucidating the

evolutionary dynamics leading to these given data can be developed. This method

is exemplified for protein-protein interaction networks. Traces of duplication and

divergence processes in their evolutionary history are identified. In particular, we

can identify typical specific features that robustly distinguish protein-protein in-

teraction networks from other classes of networks, in spite of possible statistical

fluctuations in the underlying data.

It is a basic question in biology and other fields to identify the characteristic

properties that, on the one hand, are shared by structures from a particular realm,

like protein-protein interaction, internet, neural or power-grid networks, and that,

on the other hand, distinguish them from other structures. We apply our general

method, based on the spectrum of the normalized graph Laplacian, to obtain rep-

resentations, the spectral plots, that allow us to find and visualize such properties

systematically. We present such visualizations for a wide range of different net-

works and compare them with those for networks derived from theoretical schemes.

The differences that we find are quite striking and suggest that the search for uni-

versal properties of biological and other networks should be complemented by an

understanding of the more specific features and organizational principles of the

systems at different scales.

We introduce a tentative classification scheme for empirical networks based on

qualitative global properties detected through the spectral plot of the Laplacian of

the graph underlying the network. Our method identifies several distinct types of

networks across different areas of application and indicates the hidden regularity

properties of a given class of networks. Our study reflects that spectral distribution

is an important characteristic of a network. So we infer that spectral distribution

is an excellent diagnostic for categorizing different networks from different sources.

Computations that produce the whole spectrum of a large graph need a lot of
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space and time. We introduce a scheme for coarsening a graph to reduce its size.

The new graph produced by this method yields a spectral plot similar to that of the

original graph. This substitute solution is proposed to reduce the computational

complexity and space required for the computation while still giving an idea about

the pattern of the spectral plot of a large graph.
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Chapter 1

Introduction

Network theory is a useful tool for analyzing complex systems. Manifestation of

complex behavior is very common in the physical, biological and social sciences. In

a complex system, there are large numbers of components which interact with each

other. They may act according to some rules that can change over time, and that

might not be well understood (Amaral & Ottino, 2004). Since complex systems

are self-organized, they are quite adaptive to changes of their environment. The

interaction inside the system occurs between close neighbors, but since the system

is coupled, each interaction has some effect on the properties and construction of

the system. The interactions may follow some dynamics and according to that,

the system adopts some inheritance structure. So the dynamics have a great in-

fluence on the structure of the system. Conversely the structure may reflect some

properties of the dynamics. So there is an interplay between these two properties.

Because of this, it is useful to analyze the structure and its inheritance prop-

erties. Network theory, which is an emerging area of science; captures those

properties to some extent. Complex systems in various disciplines like bioscience,

neuroscience, meteorology, physics, computer science, artificial life, evolutionary

computation, economics, earthquake prediction, heart cell synchronization, im-

mune systems, reaction-diffusion systems have been extensively studied with the

help of network theory. One can allow the network configuration to change with

time, but nevertheless studying the structure at a fixed time reveals many un-

derlying principles of the system. From biological, social, economical, ecological,

and technical systems, one can construct networks in terms of the components

and interactions between the components of the system. A few examples of the

study of networks are in the areas of the world-wide web (WWW) (Albert et al.,

1999; Barabási, Albert, & Jeong, 2000; Broder et al., 2000; Huberman & Adamic,
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1999; Lawrence & Giles, 1998; Lawrence & Giles, 1999), the internet(Faloutsos

et al., 1999; Chen et al., 2002), powergrids (Watts & Strogatz, 1998), worldwide

air transportation (Guimera, Mossa, Turtschi, & Amaral, 2005), electronic circuits

(Milo et al., 2002), movie actor collaborations (Barabási & Albert, 1999; Newman,

Strogatz, & Watts, 2001), coauthorship (scientific collaborations) (Barabási et al.,

2002; Castro & Grossman, 1999; Grossman & Ion, 1995; Newman, 2001c; New-

man, 2001a; Newman, 2004), citation (Redner, 1998), linguistics (Cancho & Solé,

2001; Dorogovtsev & Mendes, 2001), human sexual contacts (Bearman, Moody, &

Stovel, 2004; De, Singh, Wong, Yacoub, & Jolly, 2004; Kretzschmar, 2000; Liljeros,

Edling, Amaral, Stanley, & Aberg, 2001), telephone calls (Aiello, Chung, & Lu,

2000; Aiello, Chung, & Lu, 2001), protein-protein interactions(Jeong et al., 2001),

protein folding (Greene & Higman, 2003; Scala, Amaral, & Barthelemy, 2001),

food webs (Huxham, Beaney, & Raffaelli, 1996; Martinez, 1991; Pimm, Lawton, &

Cohen, 1991), nervous systems (Koch & Laurent, 1999; Lago-Fernandez, Huerta,

Corbacho, & Siguenza, 2000; Watts & Strogatz, 1998; White et al., 1986), gene

regulation (Alon, Surette, Barkai, & Leibler, 1999; Milo et al., 2002; Oltvai &

Barabási, 2002), metabolic reactions (Jeong et al., 2000; Ravasz, Somera, Mongru,

Oltvai, & Barbasi, 2002; Wagner & Fell, 2001).

For a long time graph theory has played a vital role in analyzing and under-

standing network structure. There are many approaches to using graph theory to

analyze networks. The components of a network can be considered to be vertices

and relations or interactions between these components can be considered to be

edges of the graph. So whenever we wish to construct a network from a system,

first we have to decide and be very clear about what we should consider to be ver-

tices and which kinds of relations among these vertices should be considered to be

edge. But it is better to think about whether the network construction from one

system would be helpful to study that system or not, otherwise it wouldn’t worth

building a network from a given system. To analyze the network more intensely,

new methodologies, tools and parameters have also been introduced. Furthermore,

old methods of graph theory have been re-focused. Thus a new area of science,

network science, has been emerging based on graph theory.

1.1 A very short history of network theory

For years, these systems (networks) were considered as sets of components with

haphazard connections, mathematically framed in a random paradigm (Caldarelli,

Erzan, & Vespignani, 2004). And a conventional way to model these networks was



1.1 A very short history of network theory 3

to make random connections in-between the components (Solomonoff & Rapoport,

1951). Inspired by social structures, Erdős and Rényi proposed very simple model

(Erdős & Réanyi, 1959) to construct a random graph1 which can be represented

as a random network where every pair of nodes has probability p of being con-

nected by an edge. Many interesting properties of large random graphs emerge

for different values of p (Erdős & Réanyi, 1959; Erdős & Réanyi, 1960). Different

possible topologies of the random graph, with a given degree distribution, can be

constructed by the process(Molloy & Reed, 1995). Various parameters have been

constructed to analyze the inheritance structural properties of network, such as

degree distribution, average path length, diameter, betweenness centrality, transi-

tivity or clustering coefficient, etc. (see (Newman, 2003) for details). this suggests

introducing different models to capture the structural properties of real networks.

Erdős and Rényi’s random graph has a typical kind (“Poisson”) of degree distri-

bution (Bollobás, 1985). To capture the properties of low average path length

and high clustering coefficient of real networks, Watts and Strogatz proposed a

model that exhibits a “small-world phenomenon” (Milgram, 1967) by randomiz-

ing a fraction Pr of links (edges) connecting nodes in a regular ring lattice (Watts

& Strogatz, 1998). Networks generated by this model also have degree distribu-

tions similar to Erdős and Rényi’s random graphs, but with a more pronounced

peak, whereas most real networks have a power-law degree distribution (Albert

et al., 1999; Barabási & Albert, 1999; Guimera et al., 2005; Jeong et al., 2001;

Jeong et al., 2000; Redner, 1998). Degree distributions that follow a power law

are invarient of scale, so they are also called scale-free2 degree distributions. Thus,

networks that have a power law degree distribution are sometimes called scale-free

networks (Barabási & Albert, 1999), although only their degree distributions are

scale-free3. Probably the first observation of a power law degree distribution in a

real network was made by Price in a network of citations of scientific papers in 1965

1Probably first random graph model was proposed by Solomonoff and Rapoport in 1951
(Solomonoff & Rapoport, 1951).

2A function f(x) which is invariant under a multiplicative factor (rescaling) of the independent
variable x is called scale-free. Since the only solution of f(ax) = bf(x) follows a power law,
‘power-law’ and ‘scale-free’ have been considered to be the same property. For details on the
power law, see (Newman, 2005).

3In many papers, the term scale-free has been used for power-law degree distributions, though
the function that has the characteristic ‘power-law’ is only invariant under multiplicative scaling.
But in a more sensible way, two different scale-free properties could be considered. One is ‘scale-
free in space’, related to the concept of self similarity of the subgraph or local graph. And another
is ‘scale-free in time’, which is the property of a model for generating a network with a particular
feature at all times. e. g. , a model is scale-free in time if it generates power-law graphs with the
same exponent regardless of the choice of time scale. See more in (Chung & Lu, 2006).
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(Price, 1965). Price explained the emergence of the property of a power law degree

distribution with the help of a model (Price, 1976), which was based on the previ-

ous work by Simon on wealth distributions in 1950 (Simon, 1955). After looking

at power law degree distributions in the WWW network (Albert et al., 1999; Ku-

mar, Raghavan, Rajagopalan, & Tomkins, 1999), Barabási and Albert proposed a

model (Barabási & Albert, 1999) to generate a network that exhibits the property

of scale-free degree distribution. In this evolving network model, a new node is at-

tached to the network not in random way, but by establishing connections towards

higher-degree nodes. The preference towards getting a new connection with an

existing node i with degree ni depends on the probability pi = niP
j nj

. So growing

a network by attaching a new node to already existing nodes by edges with this

preference (sometimes referred to us preferential attachment), there emerges the

network with a power law degree distribution. Since then, many models have been

introduced to capture the structural properties of real networks.

1.2 Necessity of new method and outline of my

work

Though there are many parameters and tool exist in graph theory, but they could

not capture enough qualitative feature of networks. There is no good enough

method to indicate the hidden regularity properties, to provide evidence for pro-

cesses like node duplication behind the evolution or construction of a given class

of networks, and to identify several distinct types of networks across different do-

mains of applications.

Spectral analysis of the normalized graph Laplacian can reveal inheritance

structural properties of a network and can be an important part of the path to-

wards solving the above problem. From the spectrum of the normalized Laplacian

matrix, I have attempted to develop a tool that helps understand deep properties

of the network structure, so that we can recognize the source of the network. I

have explored the information about different topological properties of a graph

carried by the complete spectrum of the normalized graph Laplacian. I have in-

vestigated how and why structural properties are reflected by the spectrum and

how the spectrum changes according to different networks from different sources.

For a large network, not only the particular eigenvalues carry information about

the structure, but also the density of the eigenvalues at particular points carries

much information. Furthermore, I have categorized the different types of networks

according to their spectrum. This study shows that spectral distribution is an
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important characteristic of a network. So I have inferred that spectral distribution

is an excellent diagnostic for categorizing different networks from different sources.

What could be the evolutionary process behind the formation of similar struc-

tures? There is an interplay between the dynamics of the network and inheritance

structures. So evolutionary processes that are responsible for the construction

of the network could be studied from the spectrum of the connectivity matrix.

Different graph operations related to the evolution of a network produce specific

eigenvalues. Constructions with these operations describe certain processes of

graph formation that leave characteristic traces in the spectrum. So a useful plau-

sible hypothesis about evolutionary processes could be made, and it would be easy

to find the evolutionary assumption that is of highest relevance for the evolution

of that system by investigating the spectrum of a graph constructed from actual

data. Based on this idea, I have reconstructed a protein-protein interaction net-

work which is structurally closer to real protein-protein interaction networks than

previous models.

1.3 Overview of the dissertation

The presentation of the thesis is as follows.

Chapter 1 contains a brief introduction to the study of complex systems with

network theory, which essentially developed from graph theory. The key milestones

in the development of network modeling are briefly described. The necessity of

spectral analysis for a qualitative structural study of a graph are explained.

Preliminaries needed for the following chapters are given in Chapter 2. The

elementary notions of graph theory, network theory and spectral graph theory used

in the text are defined. Three generic network models and the properties of the

graphs constructed by them are briefly described.

In Chapter 3, constructions of different networks from real systems are demon-

strated. Also, the difficulties and complications for qualitative structural analyses

are explained. Questions related to common and varying features between the

networks from different classes or domains are posed.

In the beginning of Chapter 4, a brief history and application of spectral anal-

ysis is given. An outline of previous studies on the spectral density of graphs is
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drawn. Then we introduce the normalized graph Laplacian operator and described

three important properties of this operator. Well-known results on the eigenvalues

of this operator are discussed. The relation between the Cheeger constant and first

nontrivial eigenvalue of this operator is described, At the end, we present examples

of the spectra of different elementary graphs.

In Chapter 5, we turn to visualization of the spectrum of the normalized graph

Laplacian operator. By presenting several spectral plots of the normalized graph

Laplacian of different simulated artificial graphs and contrasting them with those

of real networks from different domains, we show that the plots differ among graphs

from different domains and classes. At the beginning, we discuss different meth-

ods for plotting the spectrum. In this chapter, we also show that the spectral plot

is a useful and simple technique for visualizing the qualitative properties of a graph.

In Chapter 6, we investigate how and why structural properties are reflected

by the spectrum of the normalized graph Laplacian. We systematically investi-

gate the behavior of this spectrum under local and global operations like motif

doubling, graph joining and splitting. The eigenvalue 1 plays a particular role,

and we therefore emphasize those constructions that change its multiplicity in a

controlled manner, like iterated duplication of nodes. Constructions with different

graph operations related to the evolution of a network produce specific eigenvalues

and describe certain processes of graph formation that leave characteristic traces

in the spectrum. We show how useful and plausible hypotheses about evolutionary

processes can be made by investigating the spectrum of a graph constructed from

actual data.

From the spectral plot of the normalized graph Laplacian, the essential qual-

itative properties of a network can be simultaneously deduced. Given a class of

empirical networks, reconstruction schemes for elucidating the evolutionary dy-

namics leading to the given data can be developed based on the evolutionary

hypotheses made using the spectrum of the graph. This method is exemplified for

protein-protein interaction networks in Chapter 7. We also identify traces of du-

plication and divergence processes in their evolutionary history, the typical specific

features that robustly distinguish protein-protein interaction networks from other

classes of networks, in spite of possible statistical fluctuations in the underlying

data.

In Chapter 8, we introduce a tentative classification scheme for empirical net-

works based on qualitative global properties detected through the spectrum of the
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(normalized) Laplacian of the graph underlying the network. It is shown that our

method identifies several distinct types of networks across different domains of

applications, indicating hidden regularity properties.

The computation of the whole spectrum of a large graph needs a lot of space

and time. A scheme for coarsening a graph to reduce its size, is introduced in

Chapter 9. The new graph produced by this method yields a spectral plot similar

to that of the original graph. This substitute solution is proposed to reduce the

computational complexity and space required for the computation while still giv-

ing an idea about the pattern of the spectral plot of a large graph.

The thesis concludes with Chapter 10, where the main conclusions of the anal-

ysis are described and possible directions for future research are proposed.
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Chapter 2

Preliminaries

Before going on to explain the results of this thesis, we would like to look into

the basics of graph theory (for more information and details on graph theory, see

(Bollobás, 1998; Godsil & Royle, 2001; Merris, 2001)) and generic models of net-

work theory. So in this chapter, basic notions and facts that are used to formulate

and solve problems discussed in this thesis are explained. Some definitions are

illustrated with short examples.

2.1 Basics of graph theory

The foundation of graph theory was influenced by the Königsberg bridge puzzle

introduced by Euler in 1736 (Euler, 1736). Later, investigations of social problems

by Erdős were a benchmark for the start of formal graph theory. Here we look

into some basic notions of the subject.

Definition 2.1.1. A graph Γ (typically written as Γ = (V,E)) is an ordered pair

of two sets, a non empty set V = V (Γ), called vertex set, consisting of objects

i, j, . . . , that are called vertices (sometimes also called nodes) and another set

E = E(Γ), called edge set, consists of edges. One edge connects two vertices. Two

same vertices can be connected by multiple edges and one edge can connect one

vertex to itself. The cardinality of the set V is called the order of the graph, and

the cardinality of the set E is called the size1 of the graph.

Definition 2.1.2. If e = {i, j : i and j ∈ V (Γ)} ∈ E(Γ), we call the vertices i

and j adjacent (to each other) or connected (to each other) or neighbors (of one

another). We denote this by i ∼ j. The edge e can be represented as a pair of

vertices, (i, j), and denoted by ij.

1In literature, size of the graph has also been used to mean the cardinality of the vertex set.
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Definition 2.1.3. An edge (i, i) is called a self-loop or simply a loop. By the

definition, there could be more than one edge with the same vertices; edges are

called parallel edges or multi-edges. Fig. 2.1(a) shows a graph where edges e6 and

e9 are parallel edges and edge e3 is self loop.

A graph with no self-loops or multi-edges is called a simple graph. Fig. 2.1(b)

is an example of simple graph.
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(a) (b)

Figure 2.1: (a) A graph with 9 vertices and 10 edges. (b) A simple graph with 9

vertices and 8 edges.

Definition 2.1.4. For a simple graph, the degree ni of a vertex i is the number of

vertices wchich are adjacent to i. In Fig. 2.1(b), the vertices v1, v3, v4 and v5 are

adjacent to vertex v2. So the degree of the vertex v2 is 4. The monotonic sequence

of degrees of V = V (Γ) is called degree sequence of the graph Γ. A vertex with

degree zero is called an isolated vertex. A vertex with degree 1 is called a pendant

vertex. In Fig. 2.1(b), vertex v1 is a pendant vertex and vertex v9 is an isolated

vertex.

Definition 2.1.5. Let kn be the number of vertices with degree n in a graph Γ.

Then the distribution of kn as a function of n is called the degree distribution of

the graph Γ.

Definition 2.1.6. A graph Γ′ = (V ′, E ′) is called subgraph of a graph Γ = (V,E),

if V ′ ⊆ V and E ′ ⊂ E. A subgraph of Γ induced by V ′ is Γ[V ′] = (V ′, E ∩ V ′(2)).

For example, in Fig. 2.2, graph (b) is a subgraph of graph (a).
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(a) (b)

Figure 2.2: Graph (b) is a subgraph of graph (a).

Definition 2.1.7. Two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) are called iso-

morphic if there exists a bijection ω : V1 → V2 that posseses the adjacent vertices

relation, i. e. , i ∼ j ⇐⇒ ω(i) ∼ ω(j), for all i, j. If there exists an isomorphism

(other than the identity map) from a graph Γ to itself, then Γ is called symmetric.

For instance, the two graphs in Fig. 2.3 are isomorphic. Here vertex pl corresponds

to vertex ql, for l = 1, . . . , 5. They are both also automorphic.
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Figure 2.3: Two isomorphic graphs. They are symmetric also.

Definition 2.1.8. A graph is called r-regular or regular of degree r if each of its

vertices have degree r. Fig. 2.4 is an example of a 3-regular graph.

Definition 2.1.9. A graph P is called path if it is of the form

V (P ) = {p0, p1, . . . , pl}, E(P ) = {p0p1, p1p2, . . . , pl−1pl}.

All vertices, p0, . . . , pl are not necessarily to be distinct. The vertices p0 and pl
are called the endvertices of P . Specifically, vertex p0 is called the initial vertex
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Figure 2.4: A regular graph of degree 3.

and vertex pl is called the terminal vertex. The cardinality of the set E(P ), l, is

called the length of P . Generally, a path of length N is denoted by PN . Now, if

all vertices, p1, . . . , pl are distinct and p0 = pl, the graph is called a cycle. The

cardinality of the set E, l is called the order or length of the cycle C. Generally, a

cycle of order N is denoted by CN . Fig. 2.3 is an example of C5.

Definition 2.1.10. A graph is called connected if, for every pair of vertices i and

j, there exists a path where i and j are endvertices. Otherwise, the graph is

called disconnected. A disconnected graph consists of more than one connected

graphs, and these connected subgraphs are called the components of the discon-

nected graph. Fig. 2.2 shows examples of connected graphs, and Fig. 2.1 gives

examples of disconnected graphs.
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Figure 2.5: A tree.

Definition 2.1.11. A tree is a connected graph without any cycle. See Fig. 2.5

for an example.

Definition 2.1.12. A graph Γ is called a bipartite graph if the vertex set V (Γ)

can be decomposed into two disjoint subsets V1 and V2, such that each edge of Γ
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(a) (b)

Figure 2.6: Bipartite graphs. (b) is a complete bipartite graph K3,4.

connects a vertex in V1 with a vertex in V2. Hence there is no edge which joins

two vertices in the same subset. Fig. 2.6 shows examples of bipartite graphs.

If every vetex of one subset is connected by edges with all vertices of other

subset, then the bipartite graph is called a complete bipartite graph, and is usually

denoted byKm,n, wherem and n are the cardinalities of the two subsets. Fig. 2.6(b)

is an example of complete bipartite graph, K3,4.

Definition 2.1.13. A star SN is a complete bipartite graph where one subset of

the vertex set contains only one vertex. Fig. 2.7 shows a star graph S6.
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Figure 2.7: A star graph S6.

Definition 2.1.14. The path length or shortest distance lij between two vertices i

and j is the length of the shortest path (which is a subgraph of the original graph)

where the vertices i and j are the endvertices. For both graphs in Fig. 2.2, the

path length between vertices v1 and v3 is 2 (the length of the path v1,v2,v3). The

average path length of a connected graph is the average of all shortest distances

over all vertex pairs.
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Definition 2.1.15. The maximum over all shortest distances in a graph is called

the diameter2 of the graph. For example, the diameter of the graphs in Fig. 2.5 is

5, in Fig. 2.4 it is 3, in Fig. 2.7, Fig. 2.3, Fig. 2.2 it is 2, but in Fig. 2.8 it is 1.

Definition 2.1.16. A cut-set or edge-cut is a subset of edges whose removal dis-

connects the graph. Similarly, a vertex-cut is a subset of vertices whose removal

disconnects the graph.

 

Figure 2.8: The completely connected graph of order 6, K6.

Definition 2.1.17. A totally or fully or completely connected graph is a graph

where every pair of vertices is connected by an edge. This graph is also called a

complete graph. The complete graph of order N is denoted by KN . Fig. 2.8 shows

the graph K6. A completely connected subgraph is called a clique.

Definition 2.1.18. A directed graph or digraph is consists of a set V of vertices

i, j, . . . and a set of edges E which are ordered pairs (i, j) of vertices. We write the

edge with ordered pair (i, j) as i→ j. Here, j is called the head or terminal vertex,

and i is called the tail or initial vertex of the edge. The number edges with i as

the initial vertex (resp. terminal vertex) is called the outdegree (resp. indegree) of

the vertex i.

Transitivity or clustering coefficient: It has been observed in many graphs

(networks) that neighbors of a vertex are connected to each other. In terms

of the structural properties of a network, transitivity implies the presence of

a large number of triangle–sets, or three vertices connected to one another.

The quantitative definition of transitivity (sometimes called the clustering

coefficient) is

C =
3× number of tringles

total number of connected triples of vertices
,

2In the literature, the term ”diameter” sometimes also denotes the avarage path length.
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i. e. , the fraction of triples that are triangles. So 0 ≤ C ≤ 1. In simple terms,

C is the mean probability that two vertices that have a common neighbor

will themselves be neighbors. For the graph in Fig. 2.2(b) C = 3×1
5

= 3/5.

Another definition of the clustering coefficient was proposed by Watts and

Strogatz (Watts & Strogatz, 1998). Here C = 1
N

∑
iCi, where

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
=

2Ei
ni(ni − 1)

.

Where Ei is the number of edges between the neighbors of vertex i. Here,

we calculate in reverse way – unlike the first definition, we have to find the

mean of the ratio of triangle and triples, rather than the ratio of means. For

the graph in Fig. 2.2(b), C1 = 0, C2 = 1/3, C3 = 1, and C4 = 1, so C = 7/12.

2.1.1 Connectivity matrices

A graph Γ = (V,E) can be represented by different kinds of matrices. These

matrices are called connectivity matrices. The eigenvalues of these connectivity

matrices are important for analyzing the graph’s structure. Here, we will have a

look into a few such matrices, like the adjacency matrix, the Laplacian matrix and

the normalized Laplacian matrix.

Let ni and nj be the degrees of the vertices i and j, respectively, of the graph Γ.

Now we can define the aforementioned matrices as follows.

Adjacency matrix: The matrix A = [aij] with the form

aij =

{
1, if ij is an edge

0, otherwise

is called the adjacency matrix.

Laplacian matrix: The matrix L = [aij] with the form

aij =


ni, if i = j

−1, if ij is an edge

0, otherwise

is called the Laplacian matrix.
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Normalized Laplacian matrix: According to the normalization factor choosen,

the normalized Laplacian matrix can have different forms. Here are examples

of two different normalized Laplacian matrices.

1. The nomalized Laplacian matrix denoted by L = [aij] has the form

aij =


1, if i = j and ni 6= 0

− 1√
ninj

, if ij is an edge

0, otherwise.

2. The normalized Laplacian matrix ∆ = [aij] has the form

aij =


1, if i = j and ni 6= 0

− 1
nj
, if ij is an edge

0, otherwise.

Relationship between these matrices

For a graph Γ, let D be the diagonal matrix with entries the degree of vertices,

i. e. ,

D(i, j) =

{
ni, if i = j

0, otherwise .

The relation between the adjacency matrix A and the non-normalized Laplacian

matrix L is

L = D − A.

The relationships with the normalized Laplacian matrix are

L = D−
1
2LD−

1
2

= I −D−
1
2AD−

1
2 ,

where I is the identity matrix and D−
1
2 is a diagonal matrix with D(i, i) = − 1√

ni
and all other elements zero.

Relation between two normalized Laplacian matrices is

∆ = D
1
2LD−

1
2

These two matrices are similar and hence they have same spectrum.
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2.1.2 Eigenvalues of a graph

Let A be the adjacency matrix of the graph Γ of order N . Let I be the identity

matrix of order N , and let λ be a scalar. Then the determinant |A− λI| which is

an ordinary polynomial in λ of N -th degree with scalar coefficients, is called the

characteristic polynomial of Γ.

The roots of the equation

|A− λI| = 0

are called the eigenvalues of the graph Γ (also of the matrix A). The set of

eigenvalues is called the spectrum of the graph Γ. The multiplicity of an eigenvalue

λ is called the algebraic multiplicity of λ.

The equation

Au = λu (2.1)

is called an eigenvalue equation. A nonzero solution u of the equation (2.1) is

called an eigenvector or eigenfunction for the eigenvalue λ. The vector space con-

structed from the set of eigenvectors corresponding to a particular eigenvalue λ

is called the eigenspace of λ. The dimension of the eigenspace of an eigenvalue

λ is the geometric multiplicity of λ. For a symmetric matrix, the geometric and

algebraic multiplicities of an eigenvalue are equal.

The (normalized) Laplacian spectrum of a graph is the set of all eigenvalues of

its (normalized) Laplacian matrix.

Examples: For the graph Γ = S4, the star graph with four vertices (Figure

(2.9)), the connectivity matrices are as follows:

1 

2 

3 4 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: A star graph S4 of order 4.
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The adjacency matrix is

A =


0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

 ,

and the spectrum is A(S) = {−
√

3, 0, 0,
√

3}. The Laplacian matrix is

L =


3 −1 −1 −1

−1 1 0 0

−1 0 1 0

−1 0 0 1

 ,

and the spectrum is L(S) = {0, 1, 1, 4}. The normalized Laplacian matrices

are

L =


1 − 1√

3
− 1√

3
− 1√

3

− 1√
3

1 0 0

− 1√
3

0 1 0

− 1√
3

0 0 1

 , ∆ =


1 −1 −1 −1

−1
3

1 0 0

−1
3

0 1 0

−1
3

0 0 1

 ,

and both have spectrum {0, 1, 1, 2}.

2.2 Three generic models

Very frequently, three different basic network models are reffered to in the litera-

ture. They are Erdős–Rényi’s random graph model, Watts–Strogatz’s small–world

model, and Barabási–Albert’s scale–free model. Due to their differing fundamental

properties, these are often used for comparing with other models and considered

to be basic models in network theory.

2.2.1 Erdős–Rényi’s random graph

Erdős and Rényi proposed a very simple model (Erdős & Réanyi, 1959) for a

random graph (network). The model is as follows:

For a graph constructed from N vertices, the existence of a connection be-

tween each vertex pair depends on a fixed probability p. That means that while

constructing the network, one could make a decision to connect (resp. not connect)

a pair of vertices by an edge with the probability p (or 1 − p). So the expected



2.2 Three generic models 19

number of edges within the graph is pN(N−1)
2

. The graph generated by this model

with fixed N and p is usually denoted by GN,p
3. Most of the properties of this

random graph have been studied for large graph size, i. e. , in the limit N → ∞
(Erdős & Réanyi, 1959; Erdős & Réanyi, 1960; Erdős & Réanyi, 1961). One mo-

tivation behind taking the large limit is to keep the mean degree n̄ = p(N − 1)

constant. The probability that a vertex has degree n is

pn =

(
N − 1

n

)
pn(1− p)N−1−n ' n̄ne−n̄

n!
. (2.2)

For fixed n, equality holds for N → ∞. This is the reason why this graph is

called a “Poisson random graph”. Many internal structural properties emerge

with different values of p. For instance, when p is small (p < 1
N

), there are few

edges in the graph, so almost all vertices are disconnected. Most of the connected

components are small and have size at most O(logN), which is independent of

p. Now, if we increase the value of p, when it reaches 1/N (at p = 1
N

, n̄ = 1),

suddenly a giant component appears in the graph. So there is a phase transition

at n̄ = 1. For p > 1
N

, the graph tends to be connected. More precisely, when

p = logN+b+o(1)
N

, for some positive real value b, the probability that the graph is

connected tends to exp(−e−b).

What is a small-world

[Watts and Strogatz, “Collective dynamics of ‘small-world’
networks”, Nature, 393 (1998)]

Start with regular 1D lattice, add links uniformly at random:

Figure 2.10: Transition from a lattice to a random network via small-world network.

Original figure is taken from (Watts & Strogatz, 1998).

3Technically GN,p is the ensemble of all such graphs, where each graph with m edges appears
with the probability pm(1− p)

N(N−1)
2 −m.
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2.2.2 Watts–Strogatz’s small–world network

To generate a graph with a high clustering coefficient which is independent of

network size and a low average path length (the small world phenomenon (Milgram,

1967), popularly known as six degrees of separation (Guare, 1990)) Watts and

Strogatz introduced a less sophisticated model (Watts & Strogatz, 1998). This

model is based on the idea of rewiring a fraction, Pr, of edges within a regular

lattice (Watts & Strogatz, 1998; Watts, 1999b; Watts, 1999a). This model could

be constructed with a high-dimensional lattice, but most of the studies have been

done on one-dimensional lattices. The construction scheme is as follows:

Take a regular ring lattice with N vertices where every node is connected to

its first K neighbors (K/2 on either side). To get a sparse but connected network,

it is better to consider N � K � ln(N)� 1. Now rewire each edge of the lattice

with probability p = Pr (to exclude multiple edges and loops in the original model

of Watts and Strogatz, only one end of an edge is rewired4). So pNK/2 edges will

be rewired. A transition from order to randomness, i. e. , regular lattice to (an

almost) random graph is observed when we vary p from 0 to 1 (see Fig. 2.10).

Watts and Strogatz showed computationally that there exists a sizable region in

between p = 0 and p = 1 where the model has the properties of low average path

length and high clustering coefficient (see Fig. 2.11).

For the regular ring lattice (i. e. , when p = 0), the clustering coefficient is
3(K−2)
4(K−1)

, which tends to 3/4 for large K. The mean geodesic distance between

vertices tends to N/2K for large N . For P = 1, i. e. , where every edge is rewired,

the graph is very similar to Erdős and Rényi’s random graph, and has a very

low clustering coefficient ' K/N as well as typical geodesic distances of order

ln(N)/ ln(K).

2.2.3 Barabási–Albert’s scale–free network

Barabási and Albert proposed a growing model with preferential attachment of new

vertex (Barabási & Albert, 1999). A graph constructed from this model follows

a power law degree distribution (Barabási & Albert, 1999; Barabási, Albert, &

Jeong, 1999). The model is as follows:

Start with a small number (m0) of vertices. At each time step, add a new

vertex to the network and connect that new vertex to m(≤ m0) already existing

vertices in the network, but choosing any already existing vertex i with degree ni

4In the model we have used in this work, both ends of an edge have been rewired, but self
loops and multiple edges have always been avoided. This two-end rewiring does not change the
statistical properties we are interested in.
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Transition from a lattice to a small world

lattice         small world          random

There is a broad interval of p over which                       but    )0()( CpC ! )1()( lpl !

Figure 2.11: Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graph described in Fig. 2.10. Original figure is taken from

the lecture notes of Réka Albert.

depending on the probability p = niP
j nj

.

Here we will see how the power-law property emerges in the degree distribution.

For simplicity, we fix m0 = 1, i. e., we start with a single isolated vertex. Let ni,t
be the degree of a vertex i at time t. Let pk,t be the probability that a vertex, i

has degree (ni,t =) k at time step t. Let the total number of vertices at time t

be Nt(= t) and Nk,t be the number of vertices with degree k at time t. So, the

probability that a new incoming vertex attaches to a node of degree k at time step

t+ 1 is:

pk,t
k∑
i ni,t

=
kpk,t

2mNk,t

(2.3)

So, at each time step t, for a new arriving vertex with m edges,

Nk,t+1 = Nk,t +
m(k − 1)

2mt
Nk−1,t −

mk

2mt
Nk,t, for k > m,

Nm,t+1 = Nk,t + 1− m2

2mt
Nm,t, for k = m.

(2.4)
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Now pk,t = Nk,t/Nt = Nk,t/t⇒ Nk,t = tpk,t. So

(t+ 1)pk,t+1 = tpk,t +
(k − 1)

2
pk−1,t −

k

2
pk,t, for k > m,

(t+ 1)pm,t+1 = tpm,t + 1− m

2
pm,t, for k = m.

(2.5)

Solving pk at the steady state, when pk,t = pk, we get

pk =
(k − 1)

(k + 2)
pk−1, for k > m

pm =
2

(m+ 2)
, for k = m.

(2.6)

With recursion, we get

pk =
(k − 1)(k − 2) . . . (m)

(k + 2)(k + 1) . . . (m+ 3)
pm =

2m(m+ 1)

(k + 2)(k + 1)k
. (2.7)

So for k � 1, pk ∼ k−3.



Chapter 3

Difficulties and Challenges in

Analyzing Network Structure

3.1 Different real networks

Different networks have been constructed to study real systems. Here we shall give

some idea about the construction principles of these networks. As we discussed

before, to build a network from real system, one needs to decide what could be con-

sidered to be nodes (vertices) and what edges. According to the area and nature of

the system, networks could be categorized roughly into four sections: social, infor-

mation, technical and biological networks. Networks represented by movie actors,

company directors, scientific co-authorship, telephone calls, email, friendships, and

sexual contacts could be considered social networks; WWW, citation, and word co-

occurance could be considered information networks; internet, power grids, train

routes, electronic circuits, and software packages could be considered technological

networks; metabolic and biochemical reactions, protein-protein interactions, gene

regulation, food web, neural connectivity could be considered biological networks.

Here are a few examples of these networks.

• Movie actor collaboration network:

These networks have been constructed on the basis of information (movies

and their casts) provided by different internet movie databases. Here, actors

and actresses are considered as nodes, and two nodes are connected by an

edge if the corresponding actors or actresses acted in the same movie. The

type of the network is undirected.

• Scientific collaboration network:
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Scientists are considered as nodes in this network, and the criteria for having

an edge between two nodes is the joint publication of any article by the corre-

sponding scientists. Another way to construct this network is by considering

both scientists and articles as nodes and considering authorship between a

scientist and an article as an edge. In this network, there is no edge that

directly connects two scientists or two articles. This network (graph) is thus

bipartite. The type of these networks is undirected.

• Human sexual contacts network:

Here the nodes are men and women, and a sexual contact between two per-

sons (nodes) is considered as an edge. These networks are used to study the

transmission of infectious diseases. The nature of the network is undirected.

• Telephone call network:

In this network, different telephone numbers are nodes, and any call from a

caller number to receiver number is considered as a directed edge. So the

networks here are directed.

• World-Wide Web network:

The WWW has been represented as a large network. Here, the nodes are

webpages and a hyperlink (URL) that links one webpage to another is con-

sidered as an edge. The type of the network is directed.

• Citation network:

This network is usually constructed from a citation pattern of scientific pub-

lications. Here a published article is considered as a node and a directed

edge stands for a reference from one article to another. So the networks are

directed here.

• Word adjacency network:

These networks are generally constructed from any particular piece of writ-

ing (like a book, journal, website etc. ). Here, different words are considered

as nodes and there is a connection between two words if they appear next

to or one word apart from one another in a sentence. Another way to con-

struct these networks is where edges are considered as being between two

synonymous words. These networks can be either directed or undirected.

• Internet network:



3.1 Different real networks 25

Here, networks have been constructed based on the physical connections

between computers and other telecommunication devices. Generally these

networks have been considered with two different levels. At the router level,

routers are considered as nodes and physical connections between them are

considered as edges. At the inter-domain level (autonomous system), nodes

are domains, composed of routers and computers, and connections between

domains through routers are represented as edges. The type of these networks

is undirected.

• Metabolic network:

In a metabolic network, substrates or metabolites are considered as nodes

and predominantly directed reactions in which these substrates are taking

part are represented as edges. These networks are directed, but undirected

versions of these networks have also been studied extensively.

• Protein-protein interaction network:

Here proteins are considered as nodes and two proteins (nodes) are connected

by an edge if there is a direct physical interaction (binding) between them.

This network is undirected.

• Protein folding network:

There are different consecutive conformational changes of a protein during its

folding. In this network, the conformational states are represented by nodes,

and two states are connected by an edge if they can be obtained from each

other by an elementary change. There is also another type of protein folding

network, constructed when one protein is in its secondary or tertiary state.

Here, Cα carbons are considered as nodes, and two Cα are connected if their

spatial Euclidean distance is lower than some threshold. These networks are

undirected.

• Gene regulatory network:

Here, nodes are different genes, and there is a connection between two nodes

(genes) if one has a direct influence on the regulation of another. The network

type is directed.

• Food web network:

In these networks, nodes are different species and the predator-prey relation-

ships are represented as edges. The networks are directed.
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• Neural network:

Here, neurons are considered as nodes, and direct synaptic connections be-

tween them are represented by directed edges. Thus, these networks are

directed.

3.2 Complications in structural analysis

As we just discussed, many real data sets are, or can be, represented as networks,

that is, in terms of the formal structure of a graph, where the vertices of a graph

stand for the units in question, e. g. , in biological networks genes, proteins, cells,

and neurons, and an edge between vertices expresses some correlation or interac-

tion between the corresponding units. These edges can be directed to encode the

direction of interaction, for example via a synaptic connection between neurons,

and weighted to express the strength of interaction, like a synaptic weight. Here,

for simplicity of presentation, we only consider the simplest type of a graph, the

undirected and unweighted one, although our methods apply to and our considera-

tions remain valid in the general situation. Thus, an edge expresses the presence of

some interaction, connection or direct correlation between two vertices, regardless

of its direction or strength. Clearly, this abstraction may neglect many important

details, but we are concerned here with what it preserves.

When analyzing a network with graph theory, one has to remember that the

number of non-isomorphic graphs is bewilderingly high. Thus, it becomes imprac-

tical, if not impossible, to list all different graphs with a given number of vertices,

unless that number is rather small. Also, drawing a graph with a large number

of vertices is not helpful for visual analysis, because the graph will just look too

convoluted and complicated to make its structure transparent. So perceiving the

structural topology on the basis of visualizing the graph is rather difficult.

In graph theory, many concepts have been developed that capture various quan-

titative or qualitative aspects of a graph. Various parameters (degree distribution,

average path length, diameter, clustering coefficient, betweenness centrality, etc.)

are considered in order to analyze the graph’s structure. In recent years, many

empirical network studies have based investigations on these parameters. Such

studies managed to identify certain rather universal features valid for networks

across a wide range of disciplines, like scale-free degree distributions. Conversely,

on this basis, many algorithms have been developed that, perhaps after fitting cer-

tain free parameters, can construct networks with the same qualitative properties
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and values for such variables as real networks. But graphs can be qualitatively

quite different, and understanding this is obviously crucial for the analysis of the

structure of the real networks to be represented. For example, the maximal dis-

tance (number of edges) between two vertices in a graph of size N can vary between

1 and N −1, depending on the particular graph. When the graph is complete, any

two vertices have the distance 1, whereas for a chain, the first and the last vertex

have distance N − 1. For most graphs, of course, some intermediate value will

be realized, and one knows from the theory of random graphs that for a typical

graph this maximal distance is of the order logN . So this maximal distance is

one graph invariant, but still, rather different graphs can have the same value of

this invariant. Adjoining a long sidechain to a complete subgraph can produce the

same value as an everywhere loosely connected, but rather homogeneous graph.

The question then emerges as to whether one should look for other, more compre-

hensive, invariants, or whether one should adopt an entirely different strategy for

capturing the essential properties of some given graph. In fact, there are many

graph invariants that each capture certain important qualitative aspects and that

have been extensively studied in graph theory (see, e. g. , (Bollobás, 1998; Godsil

& Royle, 2001)). These range from rather simple and obvious ones, like maximal

or average degree of vertices or distance between them, to ones that reflect more

global aspects, like how difficult it is to separate the graph into disjoint components

(see, e. g. , (Chung, 1997)), commmunities (e. g. , (Newman, 2003)) or classes, or

how difficult it is to synchronize coupled dynamics operating at the individual

vertices (e. g. , (Jost & Joy, 2001)). For the sake of the subsequent discussion, we

will call these properties cohesion and coherence, resp.

Recently, the power law behavior of the degrees has become quite popular,

as it seems to be rather ubiquitous in biological and other data (see (Barabási

& Albert, 1999)). Thus, scale-freeness seems a more or less universal feature

among graphs coming from empirical data in a wide range of domains. Another

powerful invariant of the graph is its first eigenvalue, which provides estimates

for how difficult it is to cut the graph up into disjoint components (see (Chung,

1997), or for how easily dynamics at the vertices can be synchronized, (Atay,

Jost, & Wende, 2004; Jost & Joy, 2001; Pecora & Carroll, 1990; A.Pikovsky,

M.Rosenblum, & J.Kurths, 2001) and many other articles). These invariants are

useful for analyzing particular structural (or dynamical) properties of a graph, but

cannot capture all qualitative aspects of the graph. For example, graphs with the

same degree distribution can have completely different inheritance and dynamical

properties (like synchronizibility). Also, by their very nature, universal properties

like a power law degree distribution capture what is common to large classes of
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graphs, but fail to identify what is specific about graphs from a particular domain,

and what distinguishes such graphs qualitatively from those of other fields. Also,

depending on the details of the preferential attachment rule chosen, invariants like

the average or maximal distance can vary widely.

3.2.1 Central questions

More recently the increasing availability of large data sets produced from real

systems raises certain systematic questions, or, more precisely, brings new aspects

to some old scientific issues. These, or at least the ones we wish to address in this

chapter, are:

1. Given a particular structure, which features or qualities are universal, that

is, shared by other structures within a certain class, and what is unique and

specific to the structure at hand?

2. Given a large and complex structure, should we focus on particular aspects

and quantities in detail, or should we try to obtain, at least at some coarse

level, a simultaneous representation of all its qualitative features?

Some other questions also emerge:

• Do there exist systematic structural differences, e. g. , between protein-

protein interaction, gene regulation and neural networks?

• Can one identify the domain of a given empirical graph on the basis of certain

unique qualitative features?

In search of these answers, we are advocating a set of graph invariants that, on

the one hand, give a complete qualitative characterization of a graph, and on the

other hand, can be easily graphically represented and therefore visually analysed

and compared.

This set is the spectrum of the graph Laplacian.
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Spectrum of the Graph Laplacian

Before going on to investigate the strength of the spectrum of the graph Laplacian

for analyzing graph structure, we briefly look into the spectral analysis of a graph

to gain some knowledge about different approaches in spectral graph theory and

existing results.

4.1 Introduction to spectral analysis

The spectral analysis of graphs is not new. It has been one of the central attractions

in the field of chemistry, mathematics and physics (Biggs, Lloyd, & Wilson, 1976;

Cvetković, Doob, & Sachs, 1995). After the fundamental papers of Lihtenbaum

(1956) and of Collatz and Sinogowitz (Collatz & Sinogowitz, 1957) (1957), spectra

of graphs have been appearing in the mathematical literature very frequently. Even

before, spectral analysis of graphs had been used in theoretical chemistry after the

introduction of graph spectra in the thesis of Hückel (Hückel, 1931) (in 1931). One

of the important applications of the spectrum of a graph in quantum chemistry is

calculating the energy levels of electrons in hydrocarbons. Also, the stability of

such molecules is studied with the graph spectrum and corresponding eigenvectors.

Spectral graph theory plays an important role in theoretical physics and quantum

mechanics. It is used in minimizing the energies of Hamiltonian systems. For a

long time, the eigenvalues of a graph have been of deep interest for combinatorics

and graph theory. In computer science, spectral techniques are used intensively for

a wide range of problems. Graph spectra play a vital role in solving varies problems

in communication networks. In general, physicists and chemists are interested in

calculating the spectra from a graph for certain purpose, whereas graph theorists

and combinatorialists are interested about the graph structure of a given spectra.

Recently, dynamical properties like synchronization have been studied with the
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help of the graph spectrum (Atay & Biyikoglu, 2005; Atay, Biyikoglu, & Jost,

2006; Atay et al., 2004; Atay, T.Bıyıkoğlu, & J.Jost, ; Jost & Joy, 2001).

4.1.1 Spectral analysis of graphs in mathematics

As I mentioned above, spectral graph theory has a long history. In the past, linear

algebra and matrix theory have been used to analyze the adjacency matrix. (For

details on algebraic aspects of spectral graph theory, see (Biggs, 1993; Cvetković,

Doob, Gutman, & Torgas̈ev, 1988; Cvetković, Doob, & Sachs, 1980; Cvetković et

al., 1995; Seidel, 1989).). In the last twenty years, a new approach to analyzing

spectral graph theory has arisen from a more geometric perspective. For instance,

the isoperimetric property and eigenvalues of the graph play a major role in the

explicit construction of expander graphs (Lubotzky, Phillips, & Sarnak, 1988; Mar-

gulis, 1984). Random walks and rapidly mixing Markov chains have been studied

by rigorously applying the discrete analogue of the Cheeger inequality (Seidel,

1989). The interaction with differential geometry has been an important develop-

ment in spectral graph theory. The analogy between spectral Riemannian geom-

etry and spectral graph theory is very interesting for mathematicians. Spectral

graph theory has benefitted from the powerful tools and methodology developed

from the concepts and methods of spectral geometry. The importance of this

is that it is one of the main interest in graph theory to deduce the inheritance

structural properties of the graph from its spectra.

4.1.2 Spectral density of graphs

The study of the characteristics of the spectrum of a random matrix by Wigner

in 1955 (Wigner, 1955) has increased interest in the behavior of the spectral dis-

tributions of different matrices and graphs. Wigner introduced a law, known as

Wigner’s semicircle law (Wigner, 1955; Wigner, 1957; Wigner, 1958). According to

this, the distribution of eigenvalues of a large real symmetric matrix, with elements

taken from a probability distribution, follow a semicircle distribution. (See bellow

for the details of this law). In 1981, Füredi and Komlós (Füredi & Komlós, 1981)

showed that the spectral density functions of Erdős and Rényi’s random graphs

follow Wigner’s semicircle law. Afterwards Goh, Kahng and Kim (Goh, Kahng,

& Kim, 2001) studied the spectra and eigenvectors of the adjacency matrix of

Barabási and Albert’s scale-free graph. They have found that the distribution of

the spectra is quite far from a semicircle and the eigenvalues decay exponentially

around the center and have power-law long tails at both spectrum edges. Farkas

and others (Farkas, Derenyi, Barabási, & Vicsek, 2001) have also described that,
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instead of following a semicircle law, the spectral density of Barabási and Albert’s

scale-free graph looks like a triangle-shaped curve when plotted in log-log scale.

For Watts and Strogatz’s small-world graph, they have observed that the spectral

distribution consists of several sharp peaks (depending on the rewiring probabil-

ity) in the centre and is also different from a semicircle. Later Chung, Lu and

Vu (Chung, Lu, & Vu, 2003) showed that, depending on the matrix, one could

get different spectral plots for power-law graphs. Under a mild condition (that

the minimum expected degree is significantly larger than the square root of the

expected average degree), they have proved that the eigenvalues of the normalized

Laplacian of a random power-law graph with given expected degrees follow a semi-

circle law, whereas the spectrum of the adjacency matrix of the same graph obeys

a power-law (see, (Chung et al., 2003) for details). They have mentioned that

the spectrum of the normalized Laplacian matrix reflects global properties of the

graph, and the spectrum of the adjacency matrix contains information about local

properties of the graph. Also, it has been reported that the largest k eigenvalues of

the adjacency matrix of random power-law graphs have a power-law distribution

(provided that the largest k degrees are large in the terms of the second-order

average degree) (Chung et al., 2003; Farkas et al., 2001; Goh et al., 2001; Mihail &

Papadimitriou, 2002). So, for Erdős and Rényi’s random graph, the spectral dis-

tribution of the three matrices (adjacency, Laplacian and normalized Laplacian)

are very similar, but for any other (non-regular) graph they can be remarkably

different.

Here, my study is based on the normalized Laplacian matrix. So from now

onwards, all the terminology of spectral graph theory will refer to the normalized

Laplacian matrix (e. g. ,”spectrum of a graph” will mean the spectrum of the nor-

malized Laplacian matrix of the graph). Now, before explaining the development

of new results and application of this tool, I would like to give a short review of

the properties of the eigenvalues of the normalized Laplacian matrix. So in the

next section, I shall discuss previous results on the normalized Laplacian matrix,

considered as the graph Laplacian operator.

Wigner’s Semicircle Law

Let V be a real symmetric matrix of large order N having random elements vij
that for i ≤ j are independently distributed with equal densities, equal second

moments m2, and nth moments bounded by constants Bn independent of i, j, and

N . Further, let S = Sα,β(v,N) be the number of eigenvalues of V that lie in the
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Figure 4.1: Plots of spectra–histograms (sum over 100 realizations) of generic net-

works. Random network by Erdős–Rényi model with p = 0.05 of (a) adjacency ma-

trix, (b) Laplacian matrix, (c) normalized Laplacian matrix. Small-world network by

Watts–Stogatz model (rewiring a regular ring lattice of average degree 4 with rewiring

probability 0.3) of (d) adjacency matrix, (e) Laplacian matrix, (f) normalized Laplacian

matrix. Number of bins within the interval [λmin, λmax] is 317. Size of all networks is

1000.

interval (αN1/2, βN1/2) for real α < β. Let E(S) be the expected value of S. Then

lim
N→0

E(S)

N
=

1

2πm2

∫ β

α

√
4m2 − x2

This law is known as Wigner’s semicircle law. This law was first observed by

Wigner (1955) for certain special classes of random matrices arising in quantum

mechanical investigations.
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4.2 Eigenvalues of the normalized graph Lapla-

cian

First, we will present some basic ideas about this operator (the normalized graph

Laplacian), as well as some basic properties of its eigenvalues, known from the

previous works (Chen et al., 2005; Chung, 1997; Jost & Joy, 2001).

Let Γ be a connected graph with vertex set V = {i : i = 1, . . . N}. Two vertices

i, j ∈ Γ are called neighbors, written i ∼ j, if they are connected by an edge of Γ.

For a vertex i ∈ Γ, let ni be its degree, that is, the number of its neighbors.

Let u be a real-valued function on Γ, that is,

u : V → R

Now consider the space L2(Γ) of such functions, with the product

(u, v) :=
∑
i

niu(i)v(i) (4.1)

So the corresponding norm in L2(Γ) is

‖u‖ = (u, u)1/2 =
(∑

i

niu(i)2
)1/2

(4.2)

Now we can get a Hilbert space L2(Γ) with this norm. In general, to find an

orthogonal basis, consider an operator (graph Laplacian) (Banerjee & J.Jost, c;

Jost, 2007; Jost, to appear; Jost & Joy, 2001)

∆ : L2(Γ)→ L2(Γ)

∆u(i) := u(i)− 1

ni

∑
j,j∼i

u(j). (4.3)

Remark. This operator has the same spectrum as the operator investigated in

(Chung, 1997),

Lu(i) := u(i)− 1

ni

∑
j,j∼i

1
√
ninj

u(j).

However, the spectrum is not the same as the operator usually studied in the

graph theoretical literature, the (algebraic) graph Laplacian (see, e. g. , (Bollobás,
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1998; Godsil & Royle, 2001; Merris, 1994; Mohar, 1997; T.Bıyıkoğlu, J.Leydold,

& P.Stadler, 2007)):

Lu(i) := niu(i)−
∑
j,j∼i

u(j).

The normalized Laplacian is the operator underlying random walks on graphs, and

it naturally incorporates a conversion law.

4.2.1 Important properties of this operator

1. ∆ is self-adjoint with respect to (., .):

(u,∆v) = (∆u, v)

for all u, v ∈ L2(Γ).

2. ∆ is nonnegative :

(∆u, u) ≥ 0

3.

∆u = 0 when u is constant

4.2.2 Eigenvalues of this operator

• The property (1) of Section 4.2.1 implies all eigenvalues of ∆ are real.

• The property (2) of Section 4.2.1 implies all eigenvalues of ∆ are nonnegative.

Now the eigenvalue equation becomes

∆u− λu = 0 (4.4)

A non-zero solution u is called an eigenfunction for the eigenvalue λ. Since

Γ has N vertices, the function space on which ∆ operates is N -dimensional.

Therefore, it has N eigenvalues; some of them might occur with multiplic-

ity > 1. The eigenfunctions corresponding to the eigenvalue λ constitute a

vector space whose dimension is the multiplicity of the eigenvalue λ. So any

suitable element of this vector space is an eigenfunction for the eigenvalue λ.

Since all eigenfunctions are orthogonal to each other and the eigenfunction u0

corrosponding to the eigenvalue zero, for any other eigenfunction u, (u0, u) =

0. this implies ∑
i

niu(i) = 0 (4.5)
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• Property (3) of Section 4.2.1 implies that the smallest eigenvalue is λ0 = 0.

Since we assumed that Γ is connected, the other eigenvalues are greater than

zero1 i. e. ,

λk > 0 for k > 0. (4.6)

Let us order the eigenvalues in nondecreasing order like

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1

The highest eigenvalue is bounded above.

λN−1 ≤ 2, (4.7)

and equality holds iff the graph is bipartite. And the difference between 2 and

the largest eigenvalue estimates how different the graph is from a bipartite graph.

Another property of the spectrum of a bipartite graph is that if λ is an eigenvalue,

then 2− λ is also an eigenvalue of the graph.

Now, if the graph is complete, then

λ1 = λ2 = · · · = λN−1 =
N

N − 1
, (4.8)

so

0 ≤ λ1 ≤
N

N − 1
≤ λN−1 ≤ 2 (4.9)

holds2. But if the graph is not complete, then λ1 is always ≤ 13.

The precise value of

λ1 = min

{∑
i,j;j∼i

(
u(i)− u(j)

)2∑
i niu(i)2

:
∑
i

niu(i) = 0

}
, provided u is not identically zero.

(4.10)

and

λN−1 = max

{∑
i,j;j∼i

(
u(i)− u(j)

)2∑
i niu(i)2

:
∑
i

niu(i) = 0

}
, provided u is not identically zero.

(4.11)

1In general, the multiplicity of the eigenvalue 0 equals the number of connected components
of Γ, with the corrosponding eigenfunctions being ≡ 1 on one and ≡ 0 on all other components.

2λ1 and λN−1 are important for studying the synchronization of a graph (Jost & Joy, 2001).
3This means λ1 /∈ (1, N

N−1 ) for any graph.
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4.2.3 λ1 and the Cheeger constant

λ1 is a powerful invariant of a graph. It carries an estimate of how difficult it is to

cut up the graph into two disjoint components.

One of the method for breaking a graph Γ into two components Γ1 and Γ2 is

governed by the Cheeger constant. This constant was introduced by Cheeger in

the context of Riemannian geometry, and that is given by

h(Γ) := inf

{
|E0|

min(
∑

i∈Γ1
ni,
∑

j∈Γ2
nj)

}
(4.12)

where the infimum is taken over subsets E0 of edges, such that removing E0 dis-

connects Γ into components Γ1 and Γ2, and |E0| is the cardinality of the set E0.

The relation between λ1 and h(Γ) for a connected graph is

1

2
h(Γ)2 ≤ λ1 ≤ 2h(Γ). (4.13)

4.2.4 Some more properties of the eigenvalues

1.
∑

i λi ≤ N , and equality holds iff the graph is connected.

2. The spectrum of (disconnected) graph is the union of the spectra of its

connected components.

3. For a connected graph,

λ1 ≥
1

D vol Γ
,

where D is the diameter of the graph Γ and vol Γ =
∑

i ni. But, if D ≥ 4

λ1 ≤ 1− 2
nimax − 1

nimax
(1− 2

D
) +

2

D

where nimax is the maximum degree of the graph.

4. If 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 and 0 = λ′0 ≤ λ′1 ≤ · · · ≤ λ′N−1 are the

eigenvalues of the graphs Γ and Γ′ respectively, where Γ′ = Γ− e (e an edge

of Γ), then

λi−1 ≤ λ′i ≤ λi+1 for i = 0, . . . , N − 1,

where λ−1 = 0 and λN = 2.
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5. If 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 and 0 = λ′0 ≤ λ′1 ≤ · · · ≤ λ′N−1 are the

eigenvalues of the graphs Γ and Γ′, respectively, where Γ′ is obtained from Γ

by identifying two verties p1 and p2 which have no common neighbor, then

λi−1 ≤ λ′i ≤ λi+1 for i = 0, . . . , N − 1,

where λ−1 = 0 and λN = 2.

6. If a graph Γ of N vertices is t edges away from KN , then N/(N − 1) will be

an eigenvalue of Γ with multiplicity at least N − 2t− 1.4

7. If Γ is a graph of m + n vertices and is obtained from Km,n by deleteing

at most t edges, then 1 will be an eigenvalue of Γ with multiplicity at least

m+ n− 2(t+ 1).5

4.2.5 Eigenvalues of some elementary graphs

1. For the simple path PN of N vertices, the eigenvalues are 1− cos πk
N−1

, where

k = 0, 1, . . . , N − 1.

2. For the simple cycle CN of N vertices, the eigenvalues are 1− cos 2πk
N

, where

k = 0, 1, . . . , N − 1.

3. For the complete bipartite graph Km,n of m+n vertices, the eigenvalues are

0, 1 (with multiplicity m+ n− 2) and 2. A special case of this graph is star

SN , which is a complete bipartite graph, K1,N−1 and have eigenvalues 0, 1

(with multiplicity N − 2) and 2.

4. For the complete graph KN of N vertices, the eigenvalues are 0 and N
N−1

(with multiplicity N − 1).

5. For the n-cube Qn of 2n vertices, the eigenvalues are 2k
n

(with multiplicity(
n
k

)
), where k = 0, . . . , n.

4This result is only useful for graphs having more than N2

2 −N + 1
2 edges.

5Some (real) networks are almost bipartite graphs, but far from being complete bipertite
graphs. For these graphs, this result is not useful at all.
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Figure 4.2: Plots of spectra–histograms (sum over 100 realizations) of generic net-

works. Scale-free network by Barabási–Albert model (m0 = 5 and m = 3) of (a)

adjacency matrix, (b) Laplacian matrix, (c) normalized Laplacian matrix. Scale-free

network by Barabási–Albert model (m0 = 5 and m = 4) of (d) adjacency matrix, (e)

Laplacian matrix, (f) normalized Laplacian matrix. Scale-free network by Barabási–

Albert model (m0 = 5 and m = 5) of (g) adjacency matrix, (h) Laplacian matrix, (i)

normalized Laplacian matrix. Number of bins with in the interval [λmin, λmax] is 317.

Sizes of all networks is 1000.



Chapter 5

Spectral Plots of Real Networks

5.1 Discussion of spectral plotting

We have seen that spectrum differs with the different graphs. Now, we will explore

the diversity of the spectral plots in this chapter with some examples. But before

going on to investigate the relationships between graph structure and the spectral

plot, it is important to find better plotting methods. Though the eigenvalues are

bounded within [0, 2], the number of eigenvalues varies among networks of differ-

ent sizes. So one particular way cannot be perfect for all kind of networks. A

simple way to plot is with a histogram or relative frequency plot with the desired

number of bins. A very rough pattern of the spectrum could be realized by tak-

ing the square root of the size of the network as the number of bins within the

interval [0, 2]. Sometimes a nice plot can be produced with 100 bins between the

interval [λmin, λmax] or [0, 2] (see Fig. 5.1). Also, one could think about overlap-

ping bins such as [0, N2

N1
], [ 1

N1
, N2+1

N1
], . . . , [2N1−N2

N1
, 2N1

N1
], where the number of bins

(= 1 + 2N1 − N2) and the width of each bin (= N2

N1
) are controlled by the two

parameters N1 and N2 (as an example, see Fig. 5.2).

Now, another possibility for looking into the pattern of the spectral density

plot is to convolve the Dirac delta function
∑

k δ(λ, λk) (as a spectral density)

with a smooth kernel g(x, λ) and plot the density function

f(x) =

∫
g(x, λ)

∑
k

δ(λ, λk) dλ =
∑
k

g(x, λk).

We could choose many different kernels, like the Cauchy–Lorentz distribution
1
π

γ
(x−m)2+γ2 or the Gaussian distribution 1√

2πσ
exp(− (x−mx)2

2σ2 ) (see Fig. 5.3, Fig. 5.4,
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Figure 5.1: Rrelative frequency spectrum plots of protein-protein interaction network

of E. coli. Size: N = 230. (a) With 100 bins. (b) With
√

(N) ≈ 15 bins.

Fig. 5.5, and Fig. 5.6.).

Tuning the parameter of the kernel, we might see sharp fractuation of the

spectral density. But the problem for many networks is the high spectral density

around 1. Thus, the relative height of the peaks differ greatly, and if a plot captures

the high peak at 1, other peaks and patterns are often not prominent.

5.2 Visualization of a graph through its spectral

plot

What is more, the spectral plot of a graph is much better amenable to visual

inspection than a direct plot of the graph or any other method of representation

that we know of. In other words, with a little experience in graph theory, one can

quickly detect many important features of a graph through a simple look at its

spectral plot. We now exhibit some examples.1

1All networks are taken to be undirected and unweighted. Thus, we suppress some potentially
important aspects of the underlying data, but as our plots will show, we can still detect distinctive
qualitative patterns. In fact, one can also compute the spectrum of directed and weighted
networks, and doing so on our data will reveal further structures, but this is not explored in the
present work.
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First of all, the properties of the visualization will obviously depend on the

display style, and this will be described first (see Fig. 5.7). That figure is based

on the metabolic network of C. elegans. The first diagram displays the binned

eigenvalues, that is, the range [0, 2] is divided here into 35 disjoint bins, and the

number of eigenvalues that fall within each such bin is displayed, normalized by

the total number of eigenvalues (relative frequency plot). The next figure smoothes

this out by using overlapping bins–see the figure legend for parameter values. The

subsequent subfigures instead convolve the eigenvalues with a Gaussian kernel,

that is, we plot the function

f(x) =
∑
λj

1√
2πσ2

exp(−|x− λj|
2

2σ2
)

where the λj are the eigenvalues. Smaller values of the variance σ2 emphasize the

finer details whereas larger values bring out the global pattern more conspicuously.

We present spectral plots of different artificial networks. First, we start with

two different classes of regular networks: 1d regular ring lattice and 2d square

grids. Spectral plots of circular regular ring, with different number of connectivity,

have been shown in Fig. 5.4. Fig. 5.8 shows the plots of different dimensional

square grid. Next we present plots for another 2d squar grid, but with one of

the possible two diagonals (always the same) in each square (see, Fig. 5.9). We

exhibit spectral plots of networks constructed by some formal schemes that have

been suggested to capture important features of biological and other networks,

namely an Erdős-Rényi random network, a Watts-Strogatz small-world network

and a Barabási-Albert scale-free network (see Fig. 5.6). All graphs are with 1000

nodes. We first have an Erdős-Rényi random graph;2 here, a single realization

and the average of 100 such graphs will not exhibit substantially different spectral

plots, that is, each realization already shows the typical spectral properties. This

is an indication of the robustness of our scheme against random fluctuations –

which, of course, are at the heart of the idea of a random graph. Next, we have a

scale-free graph constructed by the algorithm of Barabási-Albert; here, averaging

over 100 realizations smoothes the spectral plot out a bit. This is even more evi-

dent for a small-world graph á la Strogatz-Watts. We construct them by rewiring

a regular graph, either of the square grid or the circle type, both with rewiring

probability 0.3 (Fig. 5.10). The spectral plot becomes characteristically different

from the regular one.

2Because we have normalized our Laplacian, we do not get Wigner’s semicircle law for the
spectrum of a random graph here.
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It is obvious from a quick glance that these spectral plots are very different from

those of the metabolic network. This suggests to us that such generic network con-

structions miss important features and properties of real biological networks. It

is also true for networks from other domains. This will now be made more evi-

dent by considering further examples of different networks. In Fig. 5.11, we show

some more metabolic networks. Fig. 5.12 and Fig. 5.13 display transcription and

protein-protein interaction networks. Neurobiological networks and the food-webs

network have been shown in Fig. 5.14 and Fig. 5.15 resp. Spectral plots of word-

adjacency and Internet graph (see, Fig. 5.16 and Fig. 5.17) are similar with many

biological networks. Fig. 5.18, Fig. 5.19 and Fig. 5.20 show network of hyperlinks

between weblogs on US politics, protein folding network and e-mail interchange

networks resp. Plots of power-grid network (Fig. 5.21), scientific collaboration

networks (Fig. 5.22) and electronic circuite networks (Fig. 5.23) are very different

from the plots of other networks. Fig. 5.24 and Fig. 5.25 shows the plots of co-

purchasing of US political books networks and American football game networks

resp. Spectral plots of networks from different domains as weel as from different

classes are different.

We shall also see that biological networks from one given class typically have

quite similarl-looking spectral plots, which, however, are easily distinguishable

from those of networks from a different biological class. Transcription and protein-

protein interaction networks ( Fig. 5.12 and Fig. 5.13) look somewhat similar to

the metabolic networks (Fig. 5.11), and this may reflect a common underlying

principle. By way of contrast, the neurobiological networks of Fig. 5.14 and the

food-webs in Fig. 5.15 are entirely different – which is not at all surprising, as they

come from different biological scales.
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Figure 5.2: Relative frequency spectrum plots of protein-protein interaction network of

E. coli with overlapping bins. Size of the network is 230. (a) N1 = 50, N2 = 2. (b)

N1 = 100, N2 = 5. (c) N1 = 150, N2 = 10. (d) N1 = 50, N2 = 10.
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Figure 5.3: Rrelative frequency spectral plots of regular ring lattices with degree of

each node (a) 2, (b) 4, (c) 10, (d) 20, (e) 100, (f) Plot of a complete graph. (A), (B),

(C), (D), (E), (F) are respective spectral densities as a sum of Lorentz distributions,

ρ(λ) =
∑N−1

k=1
γ

(λk−λ)2+γ2 , with width γ = .08. Size of all networks is 1000.
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Figure 5.4: 1-dimensional regular ring lattice of size 1000 with degree of each vertex

(a) 2 (b) 4 (c) 6 (d) 10 (e) 20 (f) 50. All plots are with Gaussian kernel, σ = 0.025.
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Figure 5.5: Spectral plots of (a) random network from Erdős and Rényi’s model (Erdős

& Réanyi, 1959) with p = 0.05, (b) small-world network from Watts and Stogatz’s

model (Watts & Strogatz, 1998) (rewiring a regular ring lattice of average degree 4

with rewiring probability 0.3), (c) scale-free network from Albert and Barabási’s model

(Barabási & Albert, 1999) (m0 = 5 and m = 3). (A), (B), (C) are respective spectral

densities as a sum of Lorentz distributions, ρ(λ) =
∑N−1

k=1
γ

(λk−λ)2+γ2 , with width

γ = .08. Size of all networks is 1000. All figures are ploted with 100 realizations.
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Figure 5.6: Specral plots of generic networks. (a) Random network from the Erdős-

Rényi’s model (Erdős & Réanyi, 1959) with p = 0.05. (b) Small-world network from

the Watts-Strogatz’s model (Watts & Strogatz, 1998) (rewiring a regular ring lattice of

average degree 4 with rewiring probability 0.3). (d) Scale-free network from the Albert-

Barabási’s model (Barabási & Albert, 1999) (m0 = 5 and m = 3). Figures (a-c)

obtained from a single realization, (A-C) represent the averages of 100 realizations.

Size of all networks is 1000. . All plots are with Gaussian kernel, σ = 0.025.
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Figure 5.7: Spectral plots of the metabolic network of Caenorhabditis ele-

gans. Size of the network is 1173. Nodes are substrates, enzymes and inter-

mediate complexes. Data obtained from (Jeong et al., 2000). Data Source:

http://www.nd.edu/∼networks/resources.htm. [Download date: 22 Nov. 2004]. (a)

Relative frequency plot with 35 bins. (b) Relative frequency polygon with overlapping

bins, bin width 0.04, and 99 bins; bins used are [0, .04], [.02, .06], [.04, .08], . . . , [1.96, 2].

(c) with Gaussian kernel, σ = 0.01. (d) with Gaussian kernel, σ = 0.02. (e) with Gaus-

sian kernel, σ = 0.03. (f) with Gaussian kernel, σ = 0.05.
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Figure 5.8: 2-dimensional grid with dimension M by N. (a) M= 100, N= 100. (b) M=

25, N= 400. (c) M= 10, N= 1000. (d) M= 5, N= 2000. All plots are with Gaussian

kernel with σ = 0.025
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Figure 5.9: 2-dimensional grid with one of the two possible diagonal (always the same)

in each square with dimension M by N. (a) M= 100, N= 100. (b) M= 25, N= 400. (c)

M= 10, N= 1000. (d) M= 5, N= 2000. All plots are with Gaussian kernel, σ = 0.025.
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Figure 5.10: Specral plot (with Gaussian kernel, σ = 0.025) of a small-world net-

work created by rewiring a 2-dimensional grid of dimension 100 by 100 with rewiring

probability 0.3. Plot with single realization.
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Figure 5.11: Metabolic networks; nodes represent substrates, enzymes and inter-

mediate complexes. Data obtained from (Jeong et al., 2000). Data Source:

http://www.nd.edu/∼networks/resources.htm/. [Download date: 22 Nov. 2004] (a)

Archaeoglobus fulgidus. Network size: 1268. (b) Escherichia coli. Network size:

2268. (c) Saccharomyces cerevisiae. Network size: 1511. All plots are with Gaussian

kernel, σ = 0.025.
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Figure 5.12: Transcription networks. Data source: Data published by Uri Alon

(http://www.weizmann.ac.il/mcb/UriAlon). [Download date: 13 Oct. 2004]. Data

used in (Milo et al., 2002; Shen-Orr et al., 2002). (a) Escherichia coli. Network size:

328. (b) Saccharomyces cerevisiae. Network size: 662. All plots are with Gaussian

kernel, σ = 0.025.
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Figure 5.13: Protein-protein interaction networks. (a) Saccharomyces cerevisiae. Net-

work size 1458. Data downloaded from http://www.nd.edu/∼networks and data ob-

tained from (Jeong et al., 2001) [download date: 17 September, 2004]. (b) Helicobac-

ter pylori. Network size: 710. (c) Caenorhabditis elegans.Network size: 314. For

(b) and (c), data collected from http://www.cosin.org [download date: 25 September,

2005]. All plots are with Gaussian kernel, σ = 0.025.
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Figure 5.14: Neuronal connectivity. (a) Caenorhabditis elegans. Network size:

297. Data obtained from (Watts & Strogatz, 1998; White et al., 1986). Data

Source: http://cdg.columbia.edu/cdg/datasets [Download date: 18 Dec. 2006]. (b)

Caenorhabditis elegans (animal JSH, L4 male) in the nerve ring and RVG regions.

Network size: 190. Data source: Data assembled by J. G. White, E. Southgate, J.

N. Thomson, S. Brenner (White et al., 1986) and revisited by R. M. Durbin (Ref.

http://elegans.swmed.edu/parts). [Download date: 27 Sep. 2005]. (c) Caenorhab-

ditis elegans (animal N2U, adult hermaphrodite) in the nerve ring and RVG regions.

Network size: 199. Data source: Data assembled by J. G. White, E. Southgate, J.

N. Thomson, S. Brenner (White et al., 1986) and revisited by R. M. Durbin (Ref.

http://elegans.swmed.edu/parts). [Download date: 27 Sep. 2005]. All plots are with

Gaussian kernel, σ = 0.025.
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Figure 5.15: Food-web. (a) From ”Ythan estuary”. Data downloaded from

http://www.cosin.org. [Download Date 21st December, 2006]. Network size: 135.

(b) From ”Florida bay in wet season”. Data downloaded from http://vlado.fmf.uni-

lj.si/pub/networks/data (main data resource: Chesapeake Biological Laboratory. Web

link: http://www.cbl.umces.edu). [Download Date 21 December, 2006]. Network

size: 128. (c) From ”Little rock lake”. Data downloaded from http://www.cosin.org.

[Download Date 21 December, 2006]. Size of the network is 183. All plots are with

Gaussian kernel, σ = 0.025.
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Figure 5.16: Word-adjacency networks of a text in (a) French. Network size: 8308. (b)

Japanese. Network size: 2698. (c) English. SNetwork size: 7377. Data downloaded

from http://www.weizmann.ac.il/mcb/UriAlon [Download date 3 Feb. 2005]. Data

obtained (Milo et al., 2004). All plots are with Gaussian kernel, σ = 0.025.
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Figure 5.17: Autonomous Systems topology of the Internet. Every vertex represents

an autonomous system, and two vertices are connected, if there is at least one phys-

ical link between the two corresponding Autonomous Systems. (a) AS graph of 8

Nov. 1997. Network size: 3015. (b) AS graph of 2 July 1999. Network size:

5357. (c) AS graph of 16 March 2001. Network size: 10515. Data collected

from http://151.100.123.37/extra/data/internet/nlanr.html and data obtained from

(Faloutsos et al., 1999) [download date: 23 September, 2005]. Main source: BGP

routing data collected by University of Oregon Route Views Project, then processed

and made available in various formats at the Global ISP interconnectivity by AS num-

ber page of NLANR (National Laboratory of Applied Network Research). All plots are

with Gaussian kernel, σ = 0.025.



5.2 Visualization of a graph through its spectral plot 59

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Figure 5.18: Network of hyperlinks between weblogs on US politics, recorded in

2005 by Adamic and Glance (Adamic & Glance, 2005). Network size: 1222. Data

downloaded from http://www-personal.umich.edu/∼mejn/netdata [Download date:

23 April 2007]. Plot is with Gaussian kernel, σ = 0.025.
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Figure 5.19: Network of conformation space (only conformations that are visited at

least 20 times during the simulation are considered in the building of the network) of a

20 residue antiparallel beta-sheet peptide sampled by molecular dynamics simulations

(Rao & Caflsich, 2004). Snapshots saved along the trajectory are grouped according

to secondary structure into nodes of the network and the transitions between them

are links. Network size: 1199. Downloaded from Caflisch group, University of Zurich,

http://www.biochem-caflisch.unizh.ch [Download date: 18th Dec. 2006]. Plot is with

Gaussian kernel, σ = 0.025.
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Figure 5.20: E-mail interchanges between members of the Univeristy Rovira i Virgili

(Tarragona) (Guimera et al., 2003). Network size: 1133. Data downloaded from

http://www.etse.urv.es/∼aarenas/data/welcome.htm [Download date: 21 March,

2007]. Plot is with Gaussian kernel, σ = 0.025.

5.3 Conclusion

Here we have presented a simple technique for visualizing the important qualitative

aspects of biological and other networks and for distinguishing networks of differ-

ent origins. This technique can be used for qualitative classification of different

networks. Now, we will explore how and why inheritance structure of a network

is reflected by its spectrum and so, reflected by the spectral plot.

Remark. Plots are usefull for discerning patterns. Different spectral plots from

various networks have different patterns. Since the spectral plots of many biological

networks have a high peak at 1 (because of the high multiplicity of the eigenvalue

1), one must always tune the parameter of the kernel to get the unique pattern

from the plot. One must, however, remember that the plot does not give precise

information or even an estimate about the multiplicity of an eigenvalue. E.g., in

Fig. 5.7, the eigenvalue 0.3 seems to have a higher multiplicity than the eigenvalue

0.5. However, the precise data shows that the multiplicity of eigenvalue 0.5 is 3

and there is no eigenvalue 0.3, but there are many eigenvalues close to 0.3. So for

the multiplicity, it is better to directly check the data on the eigenvalues.
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Figure 5.21: Topology of the Western States Power Grid of the United States

(Watts & Strogatz, 1998). Network size: 4941. Data downloaded from

http://cdg.columbia.edu/uploads/datasets [Download date: 1 March, 2007.]. Plot

is with Gaussian kernel, σ = 0.025.
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Figure 5.22: Network of (a) coauthorships between scientists posting preprints on the

High-Energy Theory E-Print Archive, http://arxiv.org/archive/hep-th between 1 Jan,

1995 and 31 December 1999 (Newman, 2001c). Network size: 5835. (b) coauthorships

of scientists working on network theory and experiment (Newman, 2001b). Network

size: 379. Data downloaded from http://www-personal.umich.edu/∼mejn/netdata

[Download date: 23 April, 2007]. All plots are with Gaussian kernel, σ = 0.025.
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Figure 5.23: Electronic circuits. (a) With size 122. (b) With size 252. (c) With

size 512. Data downloaded from http://www.weizmann.ac.il/mcb/UriAlon [Download

date: 15 March, 2005]. Data obtained from (Milo et al., 2002). All plots are with

Gaussian kernel, σ = 0.025.
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Figure 5.24: Network of copurchasing of books about recent US politics sold by the

online bookseller Amazon.com. Edges between books represent frequent copurchasing

of books by the same buyers. Network compiled by V. Krebs (unpublished). Network

size: 105. Data downloaded from http://www-personal.umich.edu/∼mejn/netdata

[original source http://www.orgnet.com. Download date: 23 April, 2007]. Plot is with

Gaussian kernel, σ = 0.025.
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Figure 5.25: Networks of American football games between division IA colleges

during regular season fall 2000, as compiled by M. Girvan and M. Newman (Gir-

van & Newman, 2002). Network size: 115. Data downloaded from http://www-

personal.umich.edu/∼mejn/netdata [Download date: 23 April, 2007]. Plot is with

Gaussian kernel, σ = 0.025.
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Chapter 6

Eigenfunctions and Graph

Structure

We are interested in the spectrum of the normalized graph Laplacian as yielding

important invariants of the underlying graph Γ and incorporating its qualitative

properties. As in the case of the algebraic Laplacian, one can essentially recover

the graph from its spectrum, up to isospectral graphs. The latter are known to

exist, but are relatively rare and qualitatively quite uniform in most respects (see

e.g. (Zhu & Wilson, 2005) for a systematic discussion). For a heuristic algorithm

for the algebraic Laplacian, which can be easily modified for the normalized Lapla-

cian, see (Ipsen & Mikhailov, 2002).

Now we shall see how eigenfunctions vary according to the structure and sub-

structure, how this leads to specific eigenvalues (see (Banerjee & J.Jost, c)). On

the spectral plots of real networks, we observerd that a peak at 1 is very common.

Also, in some cases it is very sharp. So here we shall give special attention to the

graph evolutionary processes that produce high multiplicity of the eigenvalue 1 or

eigenvalues that are very close to 1. Other frequently observed eigenvalues are 1/2

and 3/2. Here we explore some situations that create these eigenvalues.

Let us think of a graph Γ representing real data as a structure that has evolved

from some simpler precursors, for example by joining smaller graphs into a larger

one, or by duplicating certain sets of vertices in a precursor graph. It is important

to find some indications of this process in the spectrum of Γ.

Two notions are important for understanding how the structure or substruc-

tures of a graph influence the occurrence of an eigenfunction that produces a
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specific eigenvalue.

In some cases, a solution uk of the eigenvalue equation

∆uk − λkuk = 0

can be localized, that is, be 0 outside a small set of vertices. In other cases, it has

to be global, that is, be 0 only at relatively few vertices. These notions provide

some insight into the behavior of graphs under certain operations as we shall now

explore.

We recall some elementary properties of the eigenvalues of the normalized

Laplacian operator given in the previous section (see also (Chung, 1997; Jost &

Joy, 2002)).

The eigenvalue equation of the normalized Laplacian, (henceforth simply called

the Laplacian)

∆u− λu = 0.

becomes

1

ni

∑
j∼i

u(j) = (1− λ)u(i) for all i. (6.1)

In particular, when the eigenfunction u vanishes at i, then also∑
j∼i

u(j) = 0 (6.2)

and conversely (except when λ = 1). This observation will be useful for us below.

6.1 The eigenvalue 1

For the eigenvalue λ = 1, (6.1) becomes simply∑
j∼i

u(j) = 0 for all i, (6.3)

that is, the average of the neighboring values vanishes for each i. We call a solution

u of (6.3) balanced. The multiplicity m1 of the eigenvalue 1 then equals the number

of linearly independent balanced functions on Γ.
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There is an equivalent algebraic formulation: Let A = (aij) be the adjacency

matrix of Γ. Then (6.3) simply means

Au =
∑
j

aiju(j) = 0, (6.4)

that is, the vector u(j)j∈Γ lies in the kernel of the adjacency matrix. Thus,

m1 = dim kerA. (6.5)

We are interested in the question of estimating the multiplicity of the eigenvalue

1 of a graph. An obvious method for this is to determine restrictions on the corre-

sponding eigenfunctions f1. We shall do this by graph theoretical considerations,

and in this sense, this constitutes a geometric approach to the algebraic question

of determining or estimating the kernel of a symmetric 0-1 matrix with vanish-

ing diagonal. In (Bevis, Blount, Davis, Domke, & Miller, 1997) the effect of the

addition of a single vertex to m1 was systematically investigated. Here, we are

also interested in the effect of more global graph operations. We start with the

following simple observation

Lemma 6.1.1. Let q be a vertex of degree 1 in Γ (such a q is called a pending

vertex). Then any eigenfunction f1 for the eigenvalue 1 vanishes at the unique

neighbor of q.

Definition 6.1.1. A motif Σ is a connected small subgraph of Γ (whereas the

graph Γ is supposed to be large), containing all edges of Γ between vertices of Σ.

6.2 Motif doubling, graph splitting and joining

6.2.1 Motif doubling

Let Σ be a motif of a graph Γ with vertices p1, . . . , pm. The situation we have in

mind is where N , the number of vertices of Γ, is large, while m, the number of

vertices of Σ, is small. Let 1 be an eigenvalue of Σ with eigenfunction fΣ
1 . Now, if

we extend fΣ
1 , to all of Γ by setting it equal to 0 outside Σ, (i. e. we construct a

new function f such that f(pα) = fΣ
1 (pα) for α = 1, . . . ,m and f = 0 for all other

vertices of Γ) then f need not be an eigenfunction of Γ, and 1 need not even be an

eigenvalue of Γ. But we can, however, enlarge Γ by doubling the motif Σ so that

the enlarged graph also possesses the eigenvalue 1, with a localized eigenfunction:
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Theorem 6.2.1. Let ΓΣ be obtained from Γ by adding a copy of the motif Σ con-

sisting of the vertices q1, . . . , qm and the corresponding connections between them,

and connecting each qα with all p /∈ Σ that are neighbors of pα. Then ΓΣ possesses

the eigenvalue 1, with a localized eigenfunction that is nonzero only at the pα and

the qα.

Proof. We define a function

fΓΣ

1 (p) =


fΣ

1 (pα) if p = pα ∈ Σ

−fΣ
1 (pα) if p = qα

0 else.

(6.6)

Now, our claim is that fΓΣ

1 is an eigenfunction of the graph ΓΣ corresponding to

the eigenvalue 1.

Let Σ′ be the copy of Σ and pβ /∈ Σ be a neighbor of pα. So pβ will also be a

neighbor of qα. By the construction (6.6) of the the function fΓΣ

1 , fΓΣ

1 (pβ) = 0.

Now, ∑
p∼pα

fΓΣ

1 (p) =
∑
pβ∼pα

fΓΣ

1 (pβ) +
∑

p∈Σ;p∼pα

fΓΣ

1 (p)

= 0 +
∑

p∈Σ;p∼pα

fΣ
1 (p), by (6.6)

= 0.

(6.7)

since, being an eigenfunction corresponding to the eigenvalue 1 of Σ, fΣ
1 stisfies

the equation (6.3) on Σ, i. e. , fΣ
1 is balanced on Σ.

Equation (6.7) is true for all pα, and similarly for all qα. Now, for all pβ∑
p∼pβ

fΓΣ

1 (p) =
∑

p/∈Σ;p/∈Σ′;p∼pβ

fΓΣ

1 (p) +
∑

pα∈Σ;pα∼pβ

fΓΣ

1 (pα) +
∑

qα∈Σ′;qα∼pβ

fΓΣ

1 (qα)

= 0 +
∑

pα∈Σ;pα∼pβ

fΣ
1 (pα) +

∑
qα∈Σ′;qα∼pβ

fΣ
1 (qα)

= 0 +
∑

pα∈Σ;pα∼pβ

fΣ
1 (pα) +

∑
pα∈Σ;qα∼pβ

−fΣ
1 (pα), using (6.6)

= 0.

(6.8)

For any other vertices p ∈ Γ, the function fΓΣ

1 (p) will satisfy equation (6.3),

since fΓΣ

1 (p) = 0 for all p /∈ Σ ∪ Σ′. Thus fΓΣ

1 is balanced in ΓΣ and is an

eigenfunction of ΓΣ.
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The theorem also holds for the case where Σ is a single vertex p1 (even though

such a motif does not possess the eigenvalue 1 itself). Thus, we can always pro-

duce the eigenvalue by vertex doubling. This is a reformulation of a result of

(Ellingham, 1993).

Corollary 6.2.1. Let ΓΣ be obtained from Γ by adding Σ′, a copy of the motif

Σ consisting of the vertices q1, . . . , qm and the corresponding connections between

them, and connecting each qα with all p that are neighbors of pα. Then ΓΣ possesses

m more eigenvalues 1 than Γ, with localized eigenfunctions fα1 (α = 1, . . . ,m) that

are 1 at pα, −1 at qα and zero elsewhere.

Proof. We can obtain ΓΣ from Γ by m sequential duplications of vertices pα (α =

1, . . . ,m). So there will be an increment of the multiplicity of the eigenvalue 1 by

m in ΓΣ.

Thus, if we wish to produce a high multiplicity for the eigenvalue 1, we can

perform many vertex doublings. We could either duplicate different vertices, or

we could duplicate one vertex repeatedly. In fact, the repeated doubling of one

vertex leaves a characteristic trace in the number of certain small motifs in the

graph. Let p1 be a vertex and q1 its double. We consider any motif Σ consisting of

a certain collection p, p′, p′′, . . . of neighbors of p1 together with their connections

to both p1 and q1 and possibly some connections among them.

Theorem 6.2.2. Let the graph Γ̄ be obtained from Γ by n successive doublings of

the vertex p1, and let Σ be any motif of the type just described. Then Γ̄ contains

at least
(
n
2

)
instances of the motif Σ.

Proof. An instance of the motif Σ is obtained by taking any two copies of p1 and

the vertices p, p′, p′′, . . . together with the connections defining Σ. There exist
(
n
2

)
such pairs of copies of p1 in Γ̄.

Theorem 6.2.1, however, does not apply to eigenvalues other than 1 because

for λ 6= 1, the vertex degrees ni in (6.1) are important, and this is affected by

embedding the motif Σ into another graph Γ. However, we have the following

variant in the general case.

Theorem 6.2.3. Let Σ be a motif in Γ. Suppose f satisfies

1

ni

∑
j∈Σ,j∼i

f(j) = (1− λ)f(i) for all i ∈ Σ and some λ. (6.9)
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Then the motif doubling of Theorem 6.2.1 produces a graph ΓΣ with eigenvalue λ

and an eigenfunction fΓΣ
agreeing with f on Σ, with −f on the double of Σ, and

which is identically 0 on the rest of ΓΣ.

Proof. Let Σ′ be the copy of Σ; let p1, . . . , pm be the vertices of Σ and qα ∈ Σ′ be

the corresponding copy of pα ∈ Σ.

Let pβ(/∈ Σ,Σ′) be the neighbors of pα and qα.

According to the construction of fΓΣ
,

fΓΣ

(p) =


f(pα) if p = pα ∈ Σ

−f(pα) if p = qα ∈ Σ′

0 else.

(6.10)

So for any pα ∈ Σ

1

npα

∑
s∼pα

fΓΣ

(s) =
1

npα

∑
pβ∼pα

fΓΣ

(pβ) +
1

npα

∑
pγ∈Σ;pγ∼pα

fΓΣ

(pγ)

= 0 +
1

npα

∑
pγ∈Σ;pγ∼pα

fΓΣ

(pγ), by (6.10)

= (1− λ)f(pα), using (6.9) and (6.10)

= (1− λ)fΓΣ

(pα), by (6.10).

(6.11)

Similarly, for any qα ∈ Σ′

1

nqα

∑
s∼qα

fΓΣ

(s) = (1− λ)fΓΣ

(qα). (6.12)

Now, according to equation (6.10), fΓΣ
(pβ) = 0 and

1

npβ

∑
s∼pβ

fΓΣ

(s) =
1

npβ

∑
p/∈Σ,Σ′;p∼pβ

fΓΣ

(p) +
1

npβ

∑
pα∈Σ;pα∼pβ

fΓΣ

(pα) +
1

npβ

∑
qα∈Σ′;qα∼pβ

fΓΣ

(qα)

= 0 +
1

npβ

∑
pα∈Σ;pα∼pβ

f(pα) +
1

npβ

∑
qα∈Σ′;qα∼pβ

−f(pα) by (6.10)

= 0.

(6.13)

So
1

npβ

∑
s∼pβ

fΓΣ

(s) = (1− λ)fΓΣ

(pβ). (6.14)
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Any other vertices s /∈ Σ,Σ′ only have neighbors that do not lies in Σ or Σ′, so for

those vertices, fΓΣ
(s) will be 0 and fΓΣ

will satisfy the eigenvalue equation (6.1).

Thus fΓΣ
will be an eigenfunction correspoding to the eigenvalue λ of the graph

ΓΣ.

So here we can construct a localized eigenfunction fΓΣ

λ for the eigenvalue λ after

motif duplication. The simplest motif is an edge connecting two vertices p1, p2.

The corresponding relations (6.9) are then

1

np1

f(p2) = (1− λ)f(p1),
1

np2

f(p1) = (1− λ)f(p2) (6.15)

which admit the solutions

λ = 1± 1
√
np1np2

. (6.16)

Thus, edge doubling leads to eigenvalues which approach 1 as the degree of p1 or

p2 gets larger. In any case, the two values are symmetric about 1.

We can also double the entire graph:

Theorem 6.2.4. Let Γ1 and Γ2 be isomorphic graphs with vertices p1, . . . , pn and

q1, . . . , qn, respectively, where pi corresponds to qi for i = 1, . . . , n. We then con-

struct a graph Γ0 by connecting pi with qj whenever pj ∼ pi. If λ1, . . . , λn are

the eigenvalues of Γ1 and Γ2, then Γ0 has the same eigenvalues, as well as the

eigenvalue 1 with multiplicity n.

Proof. The degree of every vertex p in Γ0 is 2np, where np is its original degree in

Γ1. Let fλ be an eigenfunction of Γ1 (which is therefore also an eigenfunction of

Γ2). So fλ will satisfy the eigenvalue equation (6.1) on Γ1 (and on Γ2). Hence

1

np

∑
s1∈Γ1;s1∼p

fλ(s1) = (1− λ)fλ(p), for all p ∈ Γ1. (6.17)

According to the construction of Γ0,

fλ(pα) = fλ(qα) for all pα ∈ Γ1, qα ∈ Γ2. (6.18)

Now our claim is that fλ is an eigenfunction of Γ0 for the eigenvalue λ.
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Now, for any vertex p ∈ Γ0,

1

2np

∑
s∈Γ0;s∼p

fλ(s) =
1

2

[
1

np

∑
s1∈Γ1;s1∼p

fλ(s1) +
1

np

∑
s2∈Γ2;s2∼p

fλ(s2)

]
=

1

2

[
2

1

np

∑
s1∈Γ1;s1∼p

fλ(s1)

]
, using (6.18)

= (1− λ)fλ(p), by (6.17).

(6.19)

Thus, by (6.1), it is an eigenfunction of Γ0.

Finally, similarly to the proof of Theorem 6.2.1, we obtain the eigenvalue 1 with

multiplicity n: for each pα ∈ Γ1, we construct an eigenfunction with value 1 at pα,

−1 at its double, qα ∈ Γ2, and 0 elsewhere.

Here all eigenfunctions corresponding to the new n eigenvalue 1 are localized,

and the rest of the eigenfunctions have the same nature as before.

6.2.2 Graph splitting

We now turn to a different operation. Let Γ be a graph with an eigenfunction f1.

We arbitrarily divide Γ into subgraphs Σ0,Σ1 and Σ2 such that there is no edge

between an element of Σ1 and an element of Σ2. We then construct the graphs

Γ1 = Σ1 ∪ Σ0 and Γ2 = Σ2 ∪ Σ0 in such a manner that each edge between two

elements of Σ0 is contained in either Γ1 or Γ2, but not in both of them, and form

a connected graph Γ0 by taking an additional vertices w for each vertex q ∈ Σ0

and connect it with the two copies of q in Γ1 and Γ2. We call this process graph

splitting. Now, we are interested in investigating the change in m1 after graph

splitinig.

Theorem 6.2.5. Γ0 possesses the eigenvalue 1 with an eigenfunction that agrees

with f1 on Γ1.

Proof. Since f1 is an eigenfunction of the graph Γ, for each vertex q ∈ Σ0,∑
s∈Γ;s∼q

f1(s) =
∑

s∈Γ1;s∼q

f1(s) +
∑

s∈Γ2;s∼q

f1(s) = 0. (6.20)

Hence ∑
s∈Γ1;s∼q

f1(s) = −
∑

s∈Γ2;s∼q

f1(s). (6.21)
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Now, we construct a function

fΓ0
1 (p) =


f1(p) for p ∈ Γ1

−f1(p) for p ∈ Γ2

−
∑

s∈Γ1,s∼q f1(s) when p = w is one of the added vertices connected to q ∈ Γ1

(6.22)

Our claim is that fΓ0
1 is an eigenfunction of the graph Γ0. To prove it, we need to

check the balanced condition (6.3) for the vertices q that were in Γ1 and Γ2 before

splitting, as well as for the vertices w. It is clear that the balanced condition (6.3)

will be satisfied for all other vertices.

Now, for any q that was in Γ1,∑
s∈Γ;s∼q

fΓ0
1 (s) =

∑
s∈Γ1;s∼q

f1(s) + fΓ0
1 (w) = 0, by using (6.22). (6.23)

For any q that was in Γ2,∑
s∈Γ;s∼

fΓ0
1 (s) =

∑
s∈Γ2;s∼q

fΓ0
1 (s) + fΓ0

1 (w)

= −
∑

s∈Γ2;s∼q

f1(s)−
∑

s∈Γ1;s∼q

f1(s), using (6.21) and (6.22)

= 0, using (6.22).

(6.24)

For any w,∑
s∼w

fΓ0
1 (s) =

∑
q∈Γ1;q∼w

fΓ0
1 (q) +

∑
q∈Γ2;q∼w

fΓ0
1 (q) = 0, using (6.22). (6.25)

Thus fΓ0
1 is an eigenfunction of the graph Γ0 corresponding to the eigenvalue 1.

So the unsigned value of any eigenfunction f1, localized or global, does not

change, and neither does the multiplicity of the eigenvalue 1. A simple and special

case consists of taking a node p and joining a chain of length 2 to it, that is,

connecting p with a new node p1, and that node in turn with another new node

p2, and setting the function equal to 0 at p1 and equal to −f1(p) at p2. This case

was obtained in (Bevis et al., 1997).

6.2.3 Motif joining

The next operation, graph or motif joining, works for any eigenvalue, not just 1:
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Theorem 6.2.6. Let Γ1 and Γ2 be graphs with common eigenvalue λ and corre-

sponding eigenfunctions f 1
λ , f

2
λ. Assume that f 1

λ(p1) = 0 and f 2
λ(p2) = 0 for some

p1 ∈ Γ1 and p2 ∈ Γ2. Then the graph Γ obtained by joining Γ1 and Γ2 via identi-

fying p1 with p2 also has the eigenvalue λ with an eigenfunction given by f 1
λ on Γ1

and f 2
λ on Γ2.

Proof. Define a function fΓ
λ by

fΓ
λ (p) =

{
f 1
λ(p) p ∈ Γ1

f 2
λ(p) p ∈ Γ2

(6.26)

Now our claim is that fΓ
λ is an eigenfunction of the graph Γ.

We need to check the eigenvalue equation (6.1) for the new vertex p obtained

by identifying p1 and p2. It is clear that for all other vertices, equation (6.1) will be

satisfied. We observe from (6.1) that for an eigenfunction fλ, whenever fλ(q) = 0

at some q, then
∑

s∼q fλ(s) = 0 also. This applies to p1 and p2, i. e. ,∑
s1∈Γ1;s1∼p1

fΓ
λ (s1) =

∑
s2∈Γ2;s2∼p2

fΓ
λ (s2) = 0. (6.27)

Now, fΓ
λ (p) = 0 (since f 1

λ(p) = f 2
λ(p) = 0) and

1

np

∑
s∼p

fΓ
λ (s) =

1

np

∑
s1∈Γ1;s1∼p1

fΓ
λ (s1) +

1

np

∑
s2∈Γ2;s2∼p2

fΓ
λ (s2)

= 0 + 0, by (6.27).

(6.28)

This proves the claim.

This includes the case where either f 1
λ or f 2

λ is identically 0. That is, we join a

graph Γ0, with vertex j0 ∈ Γ0, to an arbitrary vertex i of Γ. If Γ0 has an eigenfunc-

tion uλ corresponding to the eigenvalue λ of Γ0, vanishing at j0 (i.e., uλ(j0) = 0),

then the new graph Γ̄ will also have the eigenvalue λ, with an eigenfunction that

agrees with uλ on Γ0 and vanishes at all other vertices.

Thus, a motif Γ0 can be joined to an existing graph in a manner that preserves

an eigenvalue and a localized eigenfunction, provided the joining occurs at one (or

several) vertices where that eigenfunction vanishes.

Also, when the condition of Theorem 6.2.6 is satisfied at several pairs of ver-

tices, we can form more bonds by vertex identifications between the two graphs.
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For the eigenvalue 1, the situation is even better: We need not require that

f 1
λ(p1) = 0 and f 2

λ(p2) = 0, but only that f 1
λ(p1) = f 2

λ(p2) to make the joining

construction work.

6.2.4 Examples

By the lemma and node doubling, a chain of m vertices (that is, where we have

an edge between pj and pj+1 for j = 1, . . . ,m− 1) possesses the eigenvalue 1 (with

multiplicity 1) iff m is odd, with eigenfunction f1(p1) = 1, f1(p2) = 0, f1(p3) =

−1, f1(p4) = 0, . . . . Similarly, a closed chain (that is, where we add an edge be-

tween pm and p1) possesses the eigenvalue 1 (with multiplicity 2) iff m is a multiple

of 4.

Local operations like adding an edge may increase or decrease m1, or leave it

invariant. Adding a pending vertex to a chain of length 2 increases m1 from 0 to

1, adding a pending vertex to a closed chain of length 3, a triangle, leaves m1 = 0,

adding a pending vertex to a closed chain of length 4, a quadrangle, reduces m1

from 2 to 1 (see (Bevis et al., 1997) for general results in this direction). Similarly,

closing a chain by adding an edge between the first and last vertex may increase,

decrease or leave m1 the same.

In any case, the question of the eigenvalue 1 is not a local one. Take closed

chains of lengths 4k − 1 and 4` + 1. Neither of them supports the eigenvalue 1,

but if we join them at a single point (that is, if we take a point p0 in the first

and a point q0 in the second graph, then form a new graph by identifying p0 and

q0), the resulting graph has 1 as an eigenvalue. An example of an eigenfunction

has the value 1 at the joined node, and the values ±1 alternate along neighboring

pairs in the rest of the chains, where the two neighbors of p0 in the first chain both

get the value −1, while the ones in the second chain get the value 1. Here the

eigenfunction f1 has to be global. As another simple example of a global eigen-

function, we can take any two connected graphs Γ1,Γ2. Their disjoint union then

has two components, and therefore, the multiplicity of the eigenvalue 0 is 2. One

eigenfunction u0 is ≡ 1 on Γ1 and ≡ 0 on Γ2, and for the other one, v0, the roles

of the components are reversed. If we now form a graph Γ by connecting some

vertex i0 ∈ Γ1 to some vertex j0 ∈ Γ2 by an edge, the multiplicity of the eigenvalue

λ0 = 0 becomes 1 because Γ is connected; the corresponding eigenfunction u is
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≡ 1. However, when both Γ1 and Γ2 are large, the next smallest1 eigenvalue λ1 of

Γ is very small, and a corresponding eigenfunction is well approximated by one,

v, that equals a positive constant on Γ1 and a negative constant on Γ2 (satisfying∑
i∈Γ niv(i) = 0). Thus, u is a symmetric linear combination and v an antisym-

metric one of the original eigenfunctions u0, v0, and the eigenvalues are also close.

6.3 Construction of graphs with eigenvalue 1 from

given data

Let f be an integer-valued function on the vertices of the graph Γ. We define the

excess of p ∈ Γ as

e(p) :=
∑
q∼p

f(q). (6.29)

Thus, f is an eigenfunction for the eigenvalue 1 iff e(p) = 0 for all p.

We will show that we can construct graphs Γ and functions f with the property

that e(p) = 0, except for a single vertex p0 where the pair (f(p), e(p)) assumes

any prescribed integer values (n,m). These will be assembled from elementary

building blocks.

1. A triangle with a function f that takes the value −1 at two vertices and the

value 1 at the third vertex, our p0, realizes the pair (1,−2).

2. The same triangle, with a pending vertex, our new p0, connected to the

vertex with value 1, and given the value 2, realizes (2, 1).

3. Joining instead ` triangles at a single vertex, our p0, with value 1, and as-

signing the value −1 to all the other vertices as before, yields (1,−2`).

4. A pentagon, i.e., a closed chain of 5 vertices, with value −1 at two adjacent

vertices and 1 at the remaining three, the middle one of which is our p0,

realizes (1, 2).

5. Similarly, adding a pending vertex, again our new p0, connected to the former

p0 in the pentagon, and assigning it the value −2, realizes (−2, 1).

6. Likewise, joining instead ` such pentagons at p0 yields (1, 2`).

1Assuming, for simplicity, that Γ1,Γ2 do not have small nonzero eigenvalues themselves.
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7. In general, connecting a pending vertex as the new p0 to the former p0 changes

(n,m) to (−m,n).

8. In general, joining the p0s from graphs with values (n,m1), . . . (n,mk) yields

(n,
∑k

1 mj).

Thus, from the triangle and the pentagon, by adding pending vertices and graph

joining, we can indeed realize all integer pairs (n,m).

Theorem 6.3.1. Let Σ be a graph and f be an integer valued function on its

vertices. We can then construct a graph Γ containing the motif Σ with eigenvalue

1 and an eigenfunction coinciding with f on Σ.

Proof. At each p ∈ Σ, we attach a graph realizing the pair (f(p),−e(p)). This

ensures (6.1) at p.

6.4 Graph operations and changes of m1

The preceding constructions also tell us how m1, the multiplicity of the eigenvalue

1, behaves when we modify a graph Γ′, consisting possibly of two disjoint com-

ponents Γ1 and Γ2, by either identifying vertices or by joining vertices with new

edges. The graph resulting from these operations will be called Γ. We consider

two cases:

1. We identify the vertex pj with qj for j = 1, . . . ,m, assuming that they do

not have common neighbors. Then

(a) We can generate an eigenfunction on Γ whenever we find a function g

on Γ′ with vanishing excess, except possibly at the joined points, where

we require

g(pj) = g(qj) and eg(pj) = −eg(qj) for j = 1, . . . ,m. (6.30)

(b) As a special case of (6.30), an eigenfunction fΓ′
1 produces an eigenfunc-

tion fΓ
1 whenever

fΓ′

1 (pj) = fΓ′

1 (qj) for j = 1, . . . ,m. (6.31)

In the case where Γ′ consists of two disjoint components Γ1 and Γ2, this

includes the case where both side of 6.31 are 0 for all j and fΓ′
1 vanishes

identically on one of the components. In other words, we can extend an
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eigenfunction from Γ1, say, to the rest of the graph by 0 whenever the

function vanishes at all joining points.

Since, in general, (6.31) cannot be satisfied for a basis of eigenfunctions,

we can not generate all mΓ′
1 linearly independent eigenfunctions on Γ

by this process.

Whether mΓ
1 is larger or smaller than mΓ′

1 then depends on the balance

between these two processes, that is, how many eigenfunctions satisfy (6.31)

vs. how many new eigenfunctions can be produced by functions satisfying

(6.30) with nonvanishing excess at some of the joined vertices.

2. We connect the vertices pj and qj by an edge for j = 1, . . . ,m. Then

(a) We can generate eigenfunctions on Γ whenever we can find a function

g on Γ′ with vanishing excess, except possibly at the connected points,

where we require

g(pj) = −eg(qj) and g(qj) = −eg(pj) for j = 1, . . . ,m. (6.32)

(b) Again, as a special case of (6.32), an eigenfunction fΓ′
1 produces an

eigenfunction fΓ
1 whenever

fΓ′

1 (pj) = 0 = fΓ′

1 (qj) for j = 1, . . . ,m. (6.33)

This imposes a stronger constraint than in (6.31) on eigenfunctions to

yield an eigenfunction on Γ.

6.4.1 Changes of m1 by vertex deletion: Observations

Here we will see how the deletion operation on a vertex affects mΓ
1 . It is easy to

determine from the rank of the adjacency matrix whether deletion or insertion of a

vertex will increase or decrease mΓ
1 by 1 or leave it fixed (Bevis et al., 1997). Now,

it is clear that if we delete a vertex which is a duplicate of some other vertex, then

mΓ
1 decreases by 1. And if the deletion (of one vertex that is not a duplicate of some

other vertex) makes two other vertices into a duplicate pair, then mΓ
1 increases by 1.

Now we can make another observation related to vertex deletion. It is known

from the rank of the adjacency matrix that deletion of an edge changes mΓ
1 to

m
Γ\e
1 ∈

[
mΓ

1 − 2,mΓ
1 + 2

]
(Bevis et al., 1997). In a graph Γ, let i and j be two such

(non-adjacent) vertices. Connecting them with an edge increases (decreases) m1
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by 2. If now instead of joining them by an edge, we delete one of them, m1 will

be increased (decreased) by 1. The reason is as follows:

Denote the graph obtained by deletion of one (vertex i or j) of the vertices by

Γ′, and the graph obtained by connecting i and j by an edge by Γ′′. Now, it is

easy to see that we can always obtain Γ′′ from Γ′ by adding one extra vertex. So

mΓ′′
1 −mΓ′

1 ≤ 1. But mΓ′′
1 = mΓ

1 + 2. Hence mΓ′
1 = mΓ

1 + 1. In the same way, we

can prove the other case.

6.5 The evolutionary hypothesis and the spec-

trum

What could be the evolutionary process behind the formation of similar structures?

There is an interplay between the dynamics of the network and inheritance struc-

ture. The evolutionary processes that are responsible for the construction of the

network could be studied via the spectrum of the connectivity matrix. Different

graph operations, like motif joining or duplication, produce specific eigenvalues.

Constructions with these operations describe certain processes of graph formation

that leave characteristic traces in the spectrum. So a useful and plausible hy-

pothesis about evolutionary process can be developed, and it is easy to find the

evolutionary assumption that is most relevance for the evolution of the system

by investigating the spectrum of a graph constructed from actual data. Let us

consider some examples.

• The simplest version of motif duplication is the doubling of a single vertex

j0 ∈ Γ. That is, we add a new vertex i0 and connect i0 with all neighbors of

j0. This generates an eigenvalue 1, with an eigenfunction u1 that is localized

at j0 and i0, specifically u1(j0) = 1 and u1(i0) = −1.

Thus, if the spectral plot of a graph has a high peak at the eigenvalue 1,

a natural hypothesis is that this graph evolved via a sequence of vertex

doubling.

• In a similar vein, doubling an edge that connects the vertices j1 and j2

produces the eigenvalues

λ = 1± 1
√
nj1nj2

,

which are symmetric about 1 and close to 1 when the degrees of j1 and/or

j2 are sufficiently large.
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Thus, when the spectral peak at 1 is high, but not too sharp, and symmetric

about 1, this is an indication that edge duplication has played some role in

the evolution of the structure.

As a secific case, doubling an edge that connects the vertices j1 and j2 with

nj1nj2 = 4 produces eigenvalues 3/2 and 1/2. Three different situations of

this kind of edge doubling are described in Fig.6.1.

Edge doubling

Doubling an edge that connects vertices

with

-- produce eigenvalues 3/2 and 1/2

Figure 6.1: Three different edge doubling that produce the eigenvalues 1/2 and 3/2.

• A triangle, that is, a complete graph of 3 vertices, possesses the eigenvalue

3/2 with multiplicity 2.

Next, we connect an edge between the vertices j1 and j2 to an existing graph

Γ by connecting both j1 and j2 via an edge to some vertex i0 ∈ Γ, or equiv-

alently, we join a triangle with vertices j0, j1 and j2 to Γ by identifying j0
with i0 ∈ Γ (Fig.6.2(a)). In that case, we produce the eigenvalue 3/2. An

eigenfunction u for the eigenvalue 3/2 satisfies u(j1) = 1, u(j2) = −1, and

vanishes elsewhere. Thus, again, it is localized.

The same result is obtained when we join the triangle by connecting j0 and

i0 by an edge instead of identifying them (Fig.6.2(b)).

A high multiplicity of the eigenvalue 3/2 may then generate the hypothesis

that such triangle-joining processes repeatedly occurred in the evolution of

the structure.
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Triangle joining
Triangle joining

(a) (b)

Figure 6.2: Triangle joining. (a) Joined via indentifying the vertices. (b) Joined by an

edge.

• Thus, when a triangle is joined at one vertex to another graph, the eigen-

value 3/2 is kept. For instance (see (Chung, 1997)), the petal graph, that is,

a graph where m triangles are joined at a single vertex, has the eigenvalue

3/2 with multiplicity m + 1 (here, m of these eigenvalues are obtained via

the described construction, and the remaining eigenfunction has the value

−2 at the central vertex where all the triangles are joined and 1 at all other

ones). The same result could also be obtained by applying our edge doubling

method in a triangle, and then we can deduce m3/2 = m+1 and m1/2 = m−1

from equation (6.16).

• The described operations can also be of a global nature.

For example, we can double the entire graph Γ; when Γ consists of the ver-

tices p1, . . . , pN , we take another copy Γ′ with vertices q1, . . . , qN and the

same connection pattern, and the connect each qα to all neighbors of pα.

From the graph doubling theorem (6.2.4), the new graph Γ̄ then has the

same eigenvalues as Γ, plus the eigenvalue 1 with multiplicity N .

This is biologically relevant, because there is some evidence for whole genome

duplication. However, protein-protein interaction networks do have a high

multiplicity, but not of the order of half the system size (Banerjee & J.Jost,
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b). This is readily explained by subsequent mutations after the genome

duplication that destroy the symmetry and thereby reduce the multiplicity

of the eigenvalue 12.

2Also, since graph duplication does not change λ1 and λN−1, the synchronization properties
are not affected.



Chapter 7

Reconstucton of Protein-Protein

Interaction Network from Graph

Spectrum

Using the spectral plot of the (normalized) graph Laplacian, the essential qualita-

tive properties of a network can be simultaneously deduced. In our study, instead

of looking at certain important parameters for empirical networks, we focus on

an essentially complete set of graph variables, given by the spectrum of the nor-

malized Laplacian (see, Chapter 4 and Chapter 6). On this basis, we can then

develop algorithms that construct networks with all the qualitative properties of

those in a given data set. These algorithms consist of reconstruction procedures

for a graph, using plausible hypotheses deduced from its spectrum (see Chap-

ter 6.5). For biological networks, we can thereby retrace the regularities in their

evolutionary history. Here, we demonstrate this principle and apply this method

for protein-protein interaction networks (PPIN for short). We detect indications

of evolutionary duplication and divergence, as argued in (Huynen & Bork, 1998;

Wagner, 2001).

This approach then also sheds light on a somewhat different issue, namely

that of which features and properties are distinctive for networks from particular

empirical classes, as opposed to universal features shared across classes.

7.1 Protein-protein interaction networks (PPINs)

Activation times and actions of proteins can vary within the cell (e.g., many pro-

teins act as enzymes, catalysts of metabolic reactions, signal-components for cell

signaling, ionchannels in the cellular membrane, etc.). Most of the, time proteins
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don’t act alone at the biochemical level, rather they interact with other proteins

as an assembly to perform particular cellular tasks. In protein-protein interaction

networks, we consider a single protein to be a node and a direct interaction of two

proteins to be an (undirected) edge between them. Fig. 7.1 gives an impression of

the topological structure of this kind of network. In general, these networks con-

sist of one giant component, many small components and many isoloated proteins.

Our analysis will always be performed on the giant components of these networks,

so as to work with connected graphs, and we will neglect all the small components

and isolated proteins.

Figure 7.1: General topological structure of protein-protein interaction networks.

7.2 Spectral plot and structural analysis of PPIN

In spite of their rather wide range of sizes, the spectral plots of different PPINs1

share a particular pattern (Fig. 7.2; the spectral density is given as a sum of

Lorentz distributions, ρ(λ) =
∑N−1

k=1
γ

(λk−λ)2+γ2 , with width γ = .08). The most

prominent feature is the sharp peak around the eigenvalue 1.2 In spite of possible

1See the data source for details.
2A high multiplicity of eigenvalue 1 has also been observed in other networks, like the Internet

(Vukadinovic, Huang, & Erlebach, 2002).
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Figure 7.2: Spectral plots of all protein-protein interaction networks. Spectral density is

given as a sum of Lorentz distributions, ρ(λ) =
∑N−1

k=1
γ

(λk−λ)2+γ2 , with width γ = .08.

statistical fluctuations affecting the acccuracy of the underlying data, we can also

determine the ranges of various structural parameters (Fig. 7.3) and motif num-

bers (Fig. 7.4): (N below is the size of the network)

Maximum Degree < N
10

1.56N < Number of edges < 1.97N

0.307N < m1 < 0.445N

0.015 < Transitivity < 0.028

0.017 < QF1 = 4M6

M3+4M6
< 0.067

0.0345 < QF2 = 4M6+6M7

M3+4M6+6M7
< 0.0837

In particular, the multiplicity m1 of the eigenvalue 1, the transitivity, QF1 and

QF2 are much larger than in random graphs of Erdős-Rényi type with a similar

number of vertices and edges. (Also, the numbers of 4-motif structures are higher,

but, for example, the many M4 motifs are readily explained by a power-law degree

distribution.)

The multiplicity of the eigenvalue 1, m1 of ∆ is particularly significant. Node

duplication increases m1 by 13 (see Chapter 6.2.1 for details). For this reason, it

constitutes an important invariant for our investigation of protein-protein interac-

tion networks. Also, if we duplicate a particular node m times, then the number of

specific motifs containing that node will grow like
(
m
2

)
(see, Theorem 6.2.2); again,

3One should note, however, that the determination of m1 is not a local question in general.
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Name 
Size 

Number 

of Edges 

Max. 

Degree 
m1 Transitivity QF1 QF2 

Escherichia coli 230 695 36 57 0.1552452 0.297609 0.4083 

Caenorhabditis 

elegans 
314 363 28 190 0.01808067 0.067327 0.0837 

Helicobacter 

pylori 
710 1396 55 316 0.01523657 0.042377 0.047 

Saccharomyces 

cerevisiae
1 1458 1948 56 564 0.05177614 0.017670 0.0529 

Saccharomyces 

cerevisiae
2 3930 7725 282 1206 0.02821804 0.0179 0.0345 

 

Figure 7.3: Parameter values

that is then something that can easily be detected in given network data.

More generally, the effects of a motif on the spectrum of the Laplacian have

been systematically investigated in Chapter 6.2 (see also (Banerjee & J.Jost, c)),

and conversely, the analysis of the spectrum then gives indications about the evo-

lution of a network via such processes as motif duplication, joining or splitting.

Also, the largest eigenvalue characterizes how different the graph is from a bipar-

tite graph (see Chapter 4.2.2).

A few comments on the motif structures of PPINs : Some observations could

be made from the number of motif structures of PPINs (Fig. 7.4), e.g., that the

number of motifs M1 is less than the number of motifs M3 for all PPINs. The

graph could contain some structures that would cause this phenomenon, e.g., sim-

ple cycles (possibly triangles) with higher degree nodes that have many neighbors

of degree 1. Another possibility could be that many triangles (motifs M2) share

only one common node. In the latter situation, there could be a higher multiplicity

of the eigenvalue 3/2 (m3/2), e.g., the spectra of Escherichia coli, Saccharomyces

cerevisiae1, and Saccharomyces cerevisiae2 contain the eigenvalue 3/2.

In a few PPINs (Escherichia coli, Helicobacter pylori, Saccharomyces cere-

visiae2), number of motifs M7 is higher than the number of motifs M2. Many

triangles sharing a common edge is one of the possible structural conformations

behind this phenomenon. In this case, though the graph contains many triangles,

but many eigenvalues 3/2 will be lost. For instance, in Saccharomyces cerevisiae2,

m3/2 = 4, in Escherichia coli, m3/2 = 6 (which is relatively low compared to the

high numer of triangles), and in Helicobacter pylori, there is no eigenvalue 3/2.
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        Names 
 

Motifs 

Escherichia 

coli 

Caenorhabditis 

elegans 

Helicobacter 

pylori 

Saccharomyces 

cerevisiae
1
 

Saccharomyces 

cerevisiae
2
 

M1 

7803 2118 14736 11318 161378 

M2 

478 13 76 260 1562 

M3 

54613 2826 93825 30908 1117123 

M4 

42464 10354 120585 71905 6459415 

M5 

12612 139 3328 2547 68576 

M6 

5785 51 1038 139 5089 

M7 

2425 9 79 195 3256 

M8 

230 0 0 39 590 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Number of 3-motif and 4-motif structures

7.3 Data sources

The protein-protein interaction data sets for Saccharomyces cerevisiae1 (yeast) are

from http://www.nd.edu/∼networks/, used in (Jeong et al., 2001) [download date:

17 September 2004]. The ones for Escherichia coli are as used in (Butland et al.,

2005), Caenorhabditis elegans, Helicobacter pylori and, as a check, a second data

set for Saccharomyces cerevisiae2 is taken from http://www.cosin.org [download

date: 25 September, 2005].

7.4 Previous models

First, our spectral analysis reveals that a PPIN is rather different from a generic

network model, like an Erdős-Rényi random graph, a small world Watts-Strogatz

graph, or a Barabasi-Albert scale-free graph, as a comparison with the correspond-

ing spectral plots directly shows (see Fig. 5.5). This implies that for understanding

the specific features of PPINs, more specific models also are needed. Two main

basic evolutionary processes are important for the growth and evolution of PPINs:

duplication of a protein (node) and mutation of the connections (edges). Protein

duplication, which is the outcome of gene duplication, plays a major role in in-

creasing the size of the network. PPIN evolution via gene duplication has been



88 Reconstucton of Protein-Protein Interaction Network

modelled previously, with different assumptions. Still, spectral analysis shows

that these models are able to recover some, but not all structural properties of real

PPINs.

In (Ispolatov, Krapivsky, & Yuryev, 2005), a randomly selected protein (node)

is duplicated and the connections (edges) of the new protein are subsequently

deleted with the same probability. In (Pastor-Satorras et al., 2003), after a dupli-

cation step, new connections to other proteins are made with equal probability. In

(Kim, Krapivsky, Kahng, & Redner, 2002), with similar assumptions, the emer-

gence of the giant component in a PPIN was investigated. All these models succeed

in constructing a network with a degree distribution similar to a real PPIN. But

these models did not aim at certain other structural parameters, and therefore

produce a very small transitivity or clustering coefficient, essentially because the

schemes do not readily produce triangles. More generally, the spectral plot for

a network produced by the method of (Pastor-Satorras et al., 2003) (Fig. 7.5) is

rather different from the real data (although definitely not as bad as the generic

models), and the same holds true for various structural parameters:

Maximum degree ≈ 56

Number of edges ≈ 1297

Multiplicity of eigenvalue 1 ≈ 141

Transitivity ≈ 0.0077

QF1 ≈ 0.1503

QF2 ≈ 0.1533

Here the network size is 500. Parameters: δ = 0.58 and α = (2δ − 1)/Nt, where

Nt is the size of the network at time step t.

Networks with different transitivity or clustering coefficients can, however, be con-

structed by tuning the probability p in the model of (Vázquez, Flammini, Maritan,

& Vespignani, 2003). That parameter incorporates the probability of cross inter-

actions4 between the old protein and its duplicated copy, for example, resulting

from self-interactions of the old one. A realistic value of p can then be determined

from the data in (Wagner, 2001; Wagner, 2003) and is smaller than 0.018. That

4 There are two biological reasons behind the cross interaction between the protein that is
duplicated and the protein that is produced from duplication. The first is simple mutation; a
new interaction could be formed due to mutation of either of those two proteins. The second
is the existence of self-interactions of the protein which is duplicated and in that case the two
proteins will have crossinteractions (in the second case, of course, the crossinteraction could be
deleted afterwards because of a mutation of the interaction).
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upper bound is the value employed in (Vázquez et al., 2003), but this turns out

to lead to too small a value for the transitivity of the giant cluster. Therefore, in

our model we assumed that, with some low probability, there is a preference for a

protein to make new connections with its 2nd neighbors.
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Figure 7.5: Spectral plot for a protein-protein interaction network (model) produced

by the method of (Pastor-Satorras et al., 2003). Spectral density is given as a sum of

Lorentz distributions, ρ(λ) =
∑N−1

k=1
γ

(λk−λ)2+γ2 , with width γ = .08.

7.5 Biological processes in PPINs

All the above models are based on the duplication and mutations of the connections

of duplicated proteins. They all assume that mutation occurs right after the dupli-

cation. It is true that genome evolution analysis (Wagner, 2001; Huynen & Bork,

1998) supports the idea that the divergence of duplicated genes takes place shortly

after the duplication, but only indirect evidence is available for rapid functional

divergence after gene duplication (Wagner, 2001). So we cannot say that a diver-

gence process always occurs just before any new duplication takes place. There is

no prominent time scale separation for the processes of duplication and mutation.

Furthermore, these two processes take place simultaneously, but at different rates.

The overall rate of link dynamics, the mutation of interactions between existing

proteins, is at least an order of magnitude higher than the growth rate of the net-

work due to gene duplication (Berg, Lassig, & Wagner, 2004). In link dynamics,

attachment (creation of a new edge due to mutation) occurs preferentially towards

partners of high connectivity (Berg et al., 2004).
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7.6 New model and network reconstruction

Our constructive model for PPINs is inspired by general evolutionary considera-

tions. The basic evolutionary processes for the growth and evolution of PPINs are

duplication of a protein (node) and mutation of the connections (edges).

Instead of cross links between the old protein and its duplicated copy – which

would produce values for the transitivity that take too small – a low probability

preference for 2nd order neighbors as recipients of new connections is assumed.

New connections with other proteins then occur with a different probability. Since

in link dynamics, attachment occurs preferentially towards partners of high con-

nectivity (Berg et al., 2004), some preferential attachment to proteins with higher

connections is included. In contrast, deletion is random with a uniform probability.

Since on the one hand, genome evolution analysis (Wagner, 2001; Huynen &

Bork, 1998) supports the idea that the divergence of duplicated genes takes place

shortly after the duplication, but on the other hand, only indirect evidence is

available for rapid functional divergence after gene duplication (Wagner, 2001),

we have considered two different mutation processes:

1. A random deletion process that is independent of the duplication process

and occurs uniformly with probability δ, as well as two different kinds of

addition processes with preference towards a partner with high degree:

(a) Connection with protein i at distance 2 with probability diP
i di
α1 , where

di is the degree of protein i and α1 is a parameter.

(b) Connection with another protein i (which could even be in another

component) with probability diP
i di
α2, with a parameter α2.

2. A deletion with probability δ′ that occurs for 1
3

of the duplications and shortly

after such a duplication. This process operates by elimination of one of the

two interactions in each redundant interaction pair of two duplicate proteins

with equal probability. For simplicity, there is no edge addition for this

mutation process.

To make the duplication process independent of the first mutation process and

to make the duplication rate lower than the mutation rate, duplication occurs with

probability Pdup and with a preference that is the inverse of the square-root of

the degree of the protein.
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A component of the network can grow by duplication of proteins within that

component, or by attachment of other components or isolated proteins. Here, we

have neglected isolated proteins, but the model can be readily extended by attach-

ment of isolated proteins with some probability Padd . One might also include a

mechanism for cross link connections between duplicate protein pairs with some

probability PCLink , but the same effect can be achieved by tuning the other pa-

rameters.

The algorithm starts with a small seed network of two linked proteins. The

growth procedure is run until the giant component reaches the desired size of our

network. 100 repetitions are performed with parameter values

Pdup = 0.15

δ′ = 0.7

δ = 0.00025

α1 = 0.00008

α2 = 0.0002

Padd = 0.025

PCLink = 0.008

The structural properties of the resulting giant component (size ≈ 500) are:

Maximum degree ≈ 43.69

Number of edges ≈ 712.97

m1 ≈ 161.07

Transitivity ≈ 0.02793

QF1 ≈ 0.07199

QF2 ≈ 0.08016

Thus, the spectral plot (Fig. 7.6) and the structural properties of the giant

component of the simulated network match the real PPIN data closely.5

5The spectrum of the Laplacian is always confined between 0 and 2. This is not quite exhibited
by our spectral plots, due to the positive width of the kernel employed in our visualization.
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Figure 7.6: Spectral plot for a protein-protein interaction network (model) produced by

the method described above. Spectral density is given as a sum of Lorentz distributions,

ρ(λ) =
∑N−1

k=1
γ

(λk−λ)2+γ2 , with width γ = .08.



Chapter 8

Qualitative Classification of Real

Networks by Spectral Plot

Properties

8.1 Introduction

Real networks have very complicated and irregular structures. In Chapter 3.2, we

have discussed the difficulties to analyze and visualize the graph structure. To

capture the qualitative aspects and characteristics of a graph, we have therefore

introduced a spectral method that have been discussed in Chapter 5 and Chap-

ter 6. The spectrum of the normalized Laplacian captures the properties that

can characterize specific classes of networks, and the spectral plot, which can be

easily visualized (see, Chapter 5), reflects the characterization of a network (see

also (Banerjee & J.Jost, a; Banerjee & J.Jost, 2007)). Here, we are introducing a

tentative classification scheme1 for empirical networks based on global qualitative

properties detected through the spectrum of the Laplacian of the graph underly-

ing the network. This classification is not only robust towards fluctuations and

perturbations within a given class, but can also readily distinguish different types.

It can also be easily and directly visually inspected.

Even though empirical networks typically have directed and weighted edges, we

consider here only the underlying undirected and unweighted graphs. The methods

utilized, however, easily extend to the directed and weighted case, but it turns out

that the reduced graph already carries a lot of structural information about the

network. This, as well as space constraints, is our rationale for that simplification.

1It has been also discussed in (Banerjee & J.Jost, d).
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8.2 Network classes

In order to gain some orientation, we start with some spectral plots of artificial,

that is, simulated networks. Our first examples come from two classes of regular

networks. The first one consists of regular 2d square grids, with 10,000 nodes.

As we see in Fig. 5.8, when we make the grid narrower and longer, the spectrum

shows characteristic side peaks. The spectral plot is symmetric about 1, as all

these graphs are bipartite. When we add one of the two possible diagonals (always

choosing the same) in each square, we destroy bipartiteness and get a systematic

shift in the spectral plot (Fig. 5.9), again with the side peaks when the grid gets

narrower. The other regular graphs originate from a circular arrangement of 1,000

nodes, where we connect each node with the 2, 4, 6, 10, 20, or 50 closest nodes on

the circle (Fig. 5.4). When thus progressing to higher degrees, we see an eventual

merging at 1 of the two peaks that start out at 0 and 2 for small degrees.

We next turn to stochastically constructed graphs, an Erdős-Rényi random

network, a Watts-Strogatz small-world network and a Barabási-Albert scale-free

network (Fig. 5.6) (see Chapter 5.2 for discussions on these plots). Fig. 5.10 shows

a small-world graph constructed by rewiring a square grid, with rewiring probabil-

ity 0.3. The spectral plot becomes characteristically different from the regular one.

We now turn to empirical networks and compare their spectral plots both with

each other and with the model types presented above. Bellow, we shall have to keep

in mind below, however, that some of the empirical networks are quite small, on the

order of 100 nodes only, and so obviously random fluctuations may have stronger ef-

fects, suggesting some caution concerning the robustness of our classification. The

first type comprises several classes of biological networks at the molecular level,

including metabolic, transcription, signal transduction, and protein-protein inter-

action networks, as well as word adjacency and internet topology graphs (Fig. 5.11,

Fig. 5.12, Fig. 5.13, Fig. 5.16 and Fig. 5.17]). The characteristic features are the

very high peak at or near 1, the shallow rest with two secondary peaks, and the

high degree of symmetry about 1. As we recall from the mathematical discussion

in chapter 6, these graphs then come close, in spectral terms, to a complete bi-

partite graph which, as we discussed, arises through repeated node duplication.

Simulations that we present elsewhere (Banerjee & J.Jost, b) indicate that the

secondary peaks arise from the random deletion of edges after the node duplica-

tions. For each of these empirical classes, one can then try to find an explanation

of their evolution or construction through such processes, like gene duplication in

the biological case. Our second class contains weblog hyperlink graphs (in US pol-
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itics), conformation spaces of polypeptides, food webs, and, with less confidence,

email interchanges (Fig. 5.18, Fig. 5.19, Fig.5.15, Fig. 5.20]). Neuronal connectiv-

ity graphs of C. elegans constitute a borderline case (Fig. 5.14). This second class

is characterized by a concentration near 1, though not as sharply peaked of one as

in the first case, and, except for the neuronal network, again symmetry about 1.

This class is different from all the model types, but shows a little similarity with

the scale-free type. The third class contains power grids, coauthorships between

scientists, copurchasing of books, and US football games (Fig. 5.21, Fig. 5.22,

Fig. 5.24, Fig. 5.25). They all resemble the class of square grids with diagonals,

moving from the less narrow to the very narrow ones. Finally, the electronic circuit

graph spectra (Fig. 5.23) resemble those of a narrow square grid without diagonals.

8.3 Conclusion

In this chapter, we have presented a scheme for the rough classification of empirical

networks in terms of their qualitative spectral properties. Since we can also under-

stand from mathematical theory how some of those characteristic spectral prop-

erties are caused by topological properties of the underlying graph or can emerge

from processes like node duplication, random rewiring, random edge deletion etc.,

this scheme also offers the potential for systematic insights into the evolution or

the emergence of global properties of specific classes of empirical networks. As

usual with mathematical structures, structural similarities can be shared across

empirical domains.

Of course, this represents at best the first step towards a systematic theory

of complex networks. Perhaps the current state is somewhat similar to that of

cellular automata about 25 years ago, when classifications in terms of visually

representable global features were also proposed. Not all of what was proposed

then could be consolidated by subsequent research, but it nevertheless opened up

a fruitful perspective.
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Chapter 9

Graph Coarsening and Spectral

Plots

9.1 Introduction

With ever-increasing computational capacity and experimental technology, we can

capture larger networks in many systems. Due to limited computation power, it

sometimes becomes hard to calculate the whole spectrum of a large graph. Most

real networks are sparse, but there are some giant networks, and because of their

huge sizes, the number of edges (hence the number of nonzero elements in the

connectivity matrices) is large and the computation of the spectrum needs a lot

of time and space. For example, a WWW network of size 325729 has 2505945

nonzero elements, which is very large for computational purposes. So we need to

find some procedure for generating the spectral plot without spending much time

and space on the computation. If it is not possible to produce the plot for the

original graph, at least we can try to generate a similar one.

In our case, we can also exploit the eigenvalue equation of the normalized

Laplacian, λu(i) = u(i) − 1
ni

∑
j,j∼i u(j), with the constraint

∑
i niu(i) = 0 for

the eigenvector, as well as convolution with a kernel for plotting the spectrum,

e.g., f(x) =
∑

λj
1√

2πσ2
exp(− |x−λj |

2

2σ2 ) (here the example is with Gaussian kernel).

There are many ways to deal with the problem of space, but it is hard to reduce

the computational complexity. We can apply the spectral mapping theorem and

expand the convolution equation with Gaussian kernel in an exponential series, as
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f(x) =
1√

2πσ2

∑
λ∈σ(∆)

exp(−|λ− x|
2

2σ2
)

=
1√

2πσ2

∑
λ′∈σ
(

exp(− (∆−Ix)2

2σ2 )
)λ′

=
1√

2πσ2
Trace

[
exp(−(∆− Ix)2

2σ2
)
]

(9.1)

(here σ(∆) be the spectrum of the matrix ∆). Now, without expanding the ex-

ponential series, we can also calculate the value of exp(− (∆−Ix)2

2σ2 ) as a solution

of a first order linear differential equation: y′ = By, where B = − (∆−Ix)2

2σ2 . This

method gives an accurate spectral plot without calculating the eigenvalues of the

matrix1, but the computational complexity for getting a good result is very high.

To deal with this problem, we propose here a method for coarsening, or reducing

the size of a graph while keeping the pattern of structural connectivity similar and

therefore also the spectral plot.

9.2 Coarsening scheme

First we need to index all vertices, keeping in mind that any two vertices that are

at short distance2 from each other should also have close-together indices. We can

formalize the indexing scheme by introducing a good algorithm to minimize the

difference between indices of two vertices according to the distance between them.

But in real network data, available from various sources, it is already minimized to

a greater extent, because it is intuitive to index the vertices sequentially according

to their distance. For example, while indexing the vertices of a friendship net-

work, we usually give the next index to a vertex which is a friend of the previously

indexed vertex. So for the moment, for the sake of simplicity, we are not much

concerned about the indexing scheme for a real network, but of course things will

work better if we reindex the vertices of a graph with a good algorithm.

Scheme: Create a new graph by giving a single index, iα, to each pair of con-

secutive vertices of the old graph, iα ≡ (j2α−1, j2α), where jβ are vertices of the

old graph and iα are vertices of the new graph. Now, if there exists at least one

1This method is proposed by Ulrich Steinmetz
2Here we always mean Hamming distance between two vertices.
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edge between two vertices belonging to two different pairs, then we place an edge

between the vertices represent those two pairs in the new graph.

As an example, let iα ≡ (j2α−1, j2α) and iβ ≡ (j2β−1, j2β) be two vertices in the

new graph after coarsening. Now, if any element of the set {j2α−1, j2α}×{j2β−1, j2β}
belongs to the edge set of the old graph, then there will be an edge between iα
and iβ in the new graph.

One iteration of this process reduces the size of the graph by half. Instead of

grouping two old vertices into one vertex in the new graph, we can choose groups

with any fixed number d of old vertices, and then the size of the new graph will

be reduced by 1/d.

Also, we can make groups of vertices that are less than a fixed distance apart from

one another (Song, Havlin, & Makse, 2005). Here, the sizes of the groups can

be very different. This is an efficient method of renormalization, but to avoid the

computational complexity involve and to maintain simplicity of arguments, we will

not considering this process now.

We now explore the efficiency of our coarsening scheme with some examples

(Fig. [9.1 - 9.6]; All examples are with one iteration. All plots are with Gaussian

kernel, σ = 0.03. Blue line shows the original plot and the red line shows the plot

after one iteration.). Surprisingly, for many cases, this simple process works fine.

E.g., for a random graph (Fig. 9.1), neuronal network, power-grid network and

two of the food-web networks (see, Fig. 9.3, Fig. 9.6, Fig. 9.5(a) and Fig. 9.5(b) ),

it works very well, but this is not the case for all networks. Specially, for graphs

which have sharp peak at 1 in their spectral plot (See, Fig. 9.4(a) and 9.4(b)),

precisely the graphs belonging to the first category (see chapter 8), the scheme

fails. Also, for the scale-free network (Fig. 9.2(b)), small-world graph Fig. 9.2(a)

and one of the food-web networks (Fig. 9.5(c)) it doesn’t work well.

What would happen if we pass to further iterations? Lets take the examples of

the neuronal conncetivity and power-grid networks (Fig. 9.7 and Fig. 9.9). Since

the sparsity pattern of the connectivity matrix has a great influence on the spec-

trum, we consider here the sparsity pattern of the connectivity matrices at each

iteration (see, Fig. 9.8 and Fig. 9.10). The qualitative characteristice of the spec-

tral plots of the neuronal connectivity graph does not change much with higher

iterations (Fig. 9.7). But for the power-grid graph, it becomes more symmetric

around 1 (see, Fig. 9.9). If, after one iteration, the number of nonzero elements

does not decrease by half, as the size of of the network does, the pattern of the plot

changes. Bad indexing is responsible for this situation. To get a similar pattern
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Figure 9.1: Spectral plots of random network from Erdős and Rényi’s model (Erdős &

Réanyi, 1959) with p = 0.05.

after many iterations, it is better to use an optimizing indexing strategy to keep

the rate of decrease of the number of nonzero elements same. Rather than ran-

domizing the graph, this scheme finds the pattern of the backbone of the graph.

Hence, with increasing iterations, a regular ring lattice with higher-degree vertices

converges to a simple cycle (Fig. 9.11).

9.3 Spectral plot of WWW network

As we discussed before, the problem of computing the entire spectrum of the

WWW network is the enormous size of this network3. But we are nevertheless

interested in knowing what the spectral plot of this network looks like? One can

also ask whether this graph belongs to the first category, whose evolutionary dy-

namics is more understandable than others.

We shall apply our coarsening scheme to find the answers to these questions.

We have iteratively applied our coarsening scheme 7 times (Fig. 9.12). In the first

iteration, the number of nonzero element decreases by more than one half, and in

the fourth to seventh iterations, it decreases by less than one half (see, Fig. 9.13

and Fig. 9.14). Hence, it is clear that the original spectral plot has changed to

some extent after many iterations. But the spectral plots in 5th to 7th iterations

3The particular network we are analyzing here has been downloaded from
http://www.nd.edu/∼networks/resources.htm.
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Figure 9.2: Spectral plots of (a) Small-world network from the Watts-Strogatz’s model

(Watts & Strogatz, 1998) (rewiring a regular ring lattice of average degree 4 with

rewiring probability 0.3). (b) Scale-free network from the Albert-Barabási’s model

(Barabási & Albert, 1999) (m0 = 5 and m = 3).

show that WWW network cannot belong to the first category, yet there is a high

possibility that it is in the second category (see Fig. 9.12).

9.4 Conclusion

Our coarsening scheme (without reindexing) does not always produce the same

spectral plot as the original graph, but it captures the basic pattern of the plot.

The scheme is very simple and easy to implement. It reduces the size of the graph,

hence also the computational complexity and the memory required to compute the

whole spectrum. The scheme itself has the computatonal complexity of O(N2),

where N is the number of vertices of the graph. To make the scheme more accurate

we can use a good indexing strategy, with computational complexity of order not

higher than N2 to keep the total complexity for the entire process same.
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Figure 9.3: Spectral plots of neuronal connectivity. (a) Caenorhabditis elegans. Net-

work size: 297. Data obtained from (Watts & Strogatz, 1998; White et al., 1986).

Data Source: http://cdg.columbia.edu/cdg/datasets [Download date: 18 Dec. 2006].

(b) Caenorhabditis elegans (animal JSH, L4 male) in the nerve ring and RVG regions.

Network size: 190. Data source: Data assembled by J. G. White, E. Southgate, J.

N. Thomson, S. Brenner (White et al., 1986) and revisited by R. M. Durbin (Ref.

http://elegans.swmed.edu/parts). [Download date: 27 Sep. 2005].
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Figure 9.4: Spectral plot of (a) A metabolic network of Caenorhabditis ele-

gans. Size of the network is 1173. Nodes are substrates, enzymes and inter-

mediate complexes. Data obtained from (Jeong et al., 2000). Data Source:

http://www.nd.edu/∼networks/resources.htm. [Download date: 22 Nov. 2004]. (b)

A protein-protein interaction network of Helicobacter pylori. Network size: 710. Data

downloaded from http://www.nd.edu/∼networks and data obtained from (Jeong et

al., 2001) [download date: 17 September, 2004].
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Figure 9.5: Spectral plots of Food-web. (a) From ”Florida bay in dry season”. Data

downloaded from http://vlado.fmf.uni-lj.si/pub/networks/data (main data resource:

Chesapeake Biological Laboratory. Web link: http://www.cbl.umces.edu). [Down-

load Date 21 December, 2006]. Network size: 128. (b) From ”Little rock lake”.

Data downloaded from http://www.cosin.org. [Download Date 21 December, 2006].

Size of the network is 183. (c) From ”Ythan estuary”. Data downloaded from

http://www.cosin.org. [Download Date 21st December, 2006]. Network size: 135.
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Figure 9.6: Power-Grid network of the Western States of the United States

(Watts & Strogatz, 1998). Network size: 4941. Data downloaded from

http://cdg.columbia.edu/uploads/datasets [Download date: 1 March, 2007.].
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Figure 9.7: Spectral plots of neuronal connectivity of Caenorhabditis elegans. Size of

the original network is 297. Data obtained from (Watts & Strogatz, 1998; White et

al., 1986). Data Source: http://cdg.columbia.edu/cdg/datasets [Download date: 18

Dec. 2006]. ’Original’ corresponds to the plot of original network. ’Ita’ shows plots

after a particular number of iterations. All plots are with Gaussian kernel, σ = 0.03.
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(a) (b)

(c) (d)

Figure 9.8: Sparsity patterns of the connectivity matrix of neural network in Fig. 9.7.

(a) Original network. (b) After one iteration. (c) After two iterations. (d) Afther three

iterations. ’nz’ is the number of nonzero elements in the matrix.
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Figure 9.9: Spectral plots of power-grid network of the Western States of the United

States (Watts & Strogatz, 1998). Size of the original network is 4941. Data down-

loaded from http://cdg.columbia.edu/uploads/datasets [Download date: 1 March,

2007.]. (a) Original network. (b) After one iteration. (c) After two iterations. (d)

Afther three iterations. All plots are with Gaussian kernel, σ = 0.03.
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(a) (b)

(c) (d)

Figure 9.10: Sparsity pattern of the connectivity matrix of power-grid network in

Fig. 9.9. (a) Original network. (b) After one iteration. (c) After two iterations.

(d) After three iterations. ’nz’ is the number of nonzero elements in the matrix.
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Figure 9.11: Spectral plots of 1D-regular ring lattice (a) with degree of each node =

4. (b) with degree of each node = 6. (c) with degree of each node = 8. (d) with

degree of each node = 10. ’Original’ corresponds to the plot of original network. ’Ita’

shows plots after a particular number of iterations. All plots are with Gaussian kernel,

σ = 0.03.
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Figure 9.12: Spectral plots WWW netork. Size of the original graph is 325729. Data

obtained from (Albert et al., 1999). Data Source: http://www.nd.edu/∼networks

[Download date: 17 Feb. 2004]. (a) Network after 5 iterations. (b) Network after 6

iterations. (c) Network after 7 iterations. All plots are with Gaussian kernel, σ = 0.03.
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(a) (b)

(c) (d)

Figure 9.13: Sparsity pattern of the connectivity matrix of WWW network in Fig. 9.12.

(a) Original network. (b) After one iteration. (c) After two iterations. (d) After three

iterations. ’nz’ is the number of nonzero elements in the matrix.
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(a) (b)

(c) (d)

Figure 9.14: Sparsity pattern of the connectivity matrix of WWW network in Fig. 9.12.

(a) After four iterations. (b) After five iterations. (c) After six iterations. (d) After

seven iterations. ’nz’ is the number of nonzero elements in the matrix.
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Chapter 10

Conclusions

In this final chapter, we summarize the results and applications presented in the

thesis and give an overview of some interesting open problems connected to the

discussions of the previous chapters, as well as possible directions for future re-

search.

10.1 Summary

In this thesis, we have proposed the spectrum of the normalized graph Laplacian,

as an excellent tool for analyzing network structure. We have explored the infor-

mation about different topological properties of a graph carried by the complete

spectrum. We have investigated how and why structural properties are reflected

by the spectra and how spectra change under different graph operations. We have

develop a theoretical scheme and applied a general method, based on the spec-

tral plot, that is easily visually analyzed and serves as an excellent diagnostic to

categorize networks from different sources. We have presented a scheme for the

rough classification of empirical networks based on qualitative global properties

detected through the spectrum of the Laplacian of the graph underlying the net-

work. Constructions with different graph operations related to the evolution of a

network produce specific eigenvalues and describe certain processes of graph for-

mation that leave characteristic traces in the spectrum. We have shown how useful

and plausible hypotheses about evolutionary process can be made by investigating

the spectrum of a graph constructed from actual data. Based on this idea, we have

reconstructed protein-protein interaction networks based on their spectra. We in-

fered that the spectral distribution is a complete qualitative characterization of a

graph. At the end, we also proposed a tentative scheme for reducing the size of

large graph while keeping the basic pattern of the spectral plot the same. Now we
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briefly summarize our work chapter wise.

In Chapter 5, in order to get an impression about how the patterns of spectral

plots differ among different networks, we have presented spectral plots of different

networks.

• We have discussed the different ways to produce the spectral plot.

• With many examples, we have shown how this simple visualization method

is efficient in capturing the qualitative structural properties of a graph.

In Chapter 6, we have introduced new results which help to explain how the

spectrum changes with respect to different structures of graphs and under different

graph operations.

• Since the multiplicity of the eigenvalue 1 plays an important role (many

spectral plots of real networks have a very sharp peak around 1), we have

explained the situations that produce a eigenvalue 1 and proved how this

multiplicity changes according to different evolutionary graph operations,

like motif duplication, graph joining and splitting.

• We have explained edge duplication, which can produce high but not-too-

sharp peak around 1 in the spectral plot. Conformation helps in under-

standing the underlying structures (like triangle joining) that produce the

eigenvalues 3/2 and 1/2, which are also remarkable in the spectrum.

In Chapter 7, using the reconstruction scheme based on the spectrum, we have

reproduced protein-protein interaction networks.

• We have shown how one can identify the duplication and divergence processes

in their evolutionary history from the spectrum.

• We have also identified typical specific features that robustly distinguish

protein-protein interaction networks from other classes of networks, in spite

of possible statistical fluctuations in the underlying data.

• We have shown how protein duplication increases the number of a particular

type of motif structure.

In Chapter 8, we have introduced a qualitative classification scheme for real

networks which uses the properties of the spectral plot.
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• We have shown that networks constructed from three generic models – a

Erdős-Rényi random network, a Strogatz-Watts small-world network, and a

Barabási-Albert scale-free network – have spectral plots that are very differ-

ent from those of real networks.

• We have roughly divided different real networks into four classes.

In Chapter 9, we have introduced a graph coarsening scheme that reduces the

size of a graph, yielding a new reduced graph that produces a spectral plot similar

to that of the original graph.

• We have discussed the situations where this scheme fails and the reasons for

this.

• We have applied this method to the WWW network to find its rough category

class.

10.2 Future research

Finally we propose the following possible directions for future research on the

spectrum of the normalized Laplacian.

• In this work, we have mostly emphasized the processes that produce the

eigenvalues 1/2, 1, 3/2, which are most common in many real networks. We

are interested in exploring different graph operations or conformations that

produce other specific eigenvalues and the evolutionary significance behind

those processes.

• Spectral plots of many real networks have a small peak around a particular

value which does not correspond any eigenvalue of that graph. E.g., spectral

plots of different metabolic networks have their second highest peak around

.3 or 1.7, which are not eigenvalues of the network. Conformation created by

processes like edge duplication can produce the eigenvalues that are very close

to 1, but not exactly 1. One can also other seek particular conformations

that produce eigenvalues which are very close to .3 or 1.7.

• Our method of reconstruction of a graph based on the spectrum has been

successfully applied to protein-protein interaction networks. We can carried

out similar studies to explore the evolutionary processes in other networks.
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• Compared to Erdős-Rényi’s random graph, protein-protein interaction net-

works are closer to a bipartite graph, but have higher clustering coefficient

than these random graphs. It could be interesting to intensively study the

linking dynamics of the evolutionary processes of these networks.

• We can make our graph coarsening scheme more efficient by introducing

good indexing method. We can also find other appropriate renormalization

grouping procedures to get a more accurate result.

• All of our analysis has been carried out for unweighted and undirected graphs.

We are interested in extending our study to any generalized graph. But since

the in-degree or out-degree of a vertex in a directed sparse graph can be zero,

we need to carefully choose the normalization factor of the graph Laplacian.

• From the application of the nodal domain theorem on a graph, it seems that

there could be some relation between the multiplicity of a certain eigenvalue

and the number occurrences of a specific motif in the graph.
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Cvetković, D. M., Doob, M., & Sachs, H. (1980). Spectra of graphs, theory and

applications. Academic Press.
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gemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden,

und alle Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich

gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialien

oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, June 29, 2007

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(Anirban Banerjee)


	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	A very short history of network theory
	Necessity of new method and outline of my work
	Overview of the dissertation

	Preliminaries
	Basics of graph theory
	Connectivity matrices
	Eigenvalues of a graph

	Three generic models
	Erdos--Rényi's random graph
	Watts--Strogatz's small--world network
	Barabási--Albert's scale--free network


	Difficulties and Challenges in Analyzing Network Structure
	Different real networks
	Complications in structural analysis
	Central questions


	Spectrum of the Graph Laplacian
	Introduction to spectral analysis
	Spectral analysis of graphs in mathematics
	Spectral density of graphs

	Eigenvalues of the normalized graph Laplacian
	Important properties of this operator
	Eigenvalues of this operator
	1 and the Cheeger constant
	Some more properties of the eigenvalues
	Eigenvalues of some elementary graphs


	Spectral Plots of Real Networks
	Discussion of spectral plotting
	Visualization of a graph through its spectral plot
	Conclusion

	Eigenfunctions and Graph Structure
	The eigenvalue 1
	Motif doubling, graph splitting and joining
	Motif doubling
	Graph splitting
	Motif joining
	Examples

	Construction of graphs with eigenvalue 1 from given data
	Graph operations and changes of m1
	Changes of m1 by vertex deletion: Observations

	The evolutionary hypothesis and the spectrum

	Reconstucton of Protein-Protein Interaction Network
	Protein-protein interaction networks (PPINs)
	Spectral plot and structural analysis of PPIN
	Data sources
	Previous models
	Biological processes in PPINs
	New model and network reconstruction

	Qualitative Classification of Real Networks
	Introduction
	Network classes
	Conclusion

	Graph Coarsening and Spectral Plots
	Introduction
	Coarsening scheme
	Spectral plot of WWW network
	Conclusion

	Conclusions
	Summary
	Future research

	References

