[59] S. Chakraborty and S. Raj; Tunable nonlinear anisotropic Rashba splitting in monolayer transition metal dichalcogenide  MoS2(1-x)Se2x alloys, Phys. Rev. B 108, 165402 (2023).

[58] S. Chakraborty and S. Raj; Anisotropic Rashba effect in two-dimensional non-Janus transition-metal dichalcogenide,  MSSe (M=Mo, W)  alloysPhys. Rev. B 107, 035420 (2023).

[57] A. K. Sahu and S. Raj; Influence of Gold-Selenium Precursor Ratio on Synthesis and Structural Stability of α- and β- Gold Selenides, arXiv:2304.01586. (2023).

[56] A. K. Sahu, S. Chakraborty, and S. Raj; Electronic and Crystal Structures of α- and β- Gold Selenides, Solid. State Commun. 353, 114864 (2022).

[55] A. K. Sahu and S. Raj; Understanding Coupling Mechanism of Gold Nanostructures by Finite-Difference Time-Domain method, Int. J. Nanosci. 21, 2250007 (2022).

[54] A. K. Sahu and S. Raj; Effect of plasmonic coupling in different assembly of gold nanorods studied by FDTDGold Bulletin, xx, 1-11 (2022).

[53] A. K. Sahu, A. Das, A. Ghosh and S. Raj; Understanding blue shift of the longitudinal surface plasmon resonance during growth of gold nanorods, Nano Express. 2, 010009 (2021).

[52] A. K. Sahu and S. Raj; Tuning of longitudinal surface plasmon resonance peak of gold nanorods for sensor applicationsAIP Conf. Proc. 2220, 050007 (2020).

[51] S. Kumari, A. K. Sahu, S. Paul and S. Raj; Investigation of correlation effects on the electronic structure of 3d1 perovskitesJ. Phys. Chem. Solids 124, 157 (2019).

[50] S. Kumari and S. Raj; Electronic structure of strongly correlated AVO3 systemsAIP Conf. Proc. 2005, 040007 (2018).

[49] T. Bar, S. K. Choudhary, Md. A. Ashraf, K. S. Sujith, S. Puri, S. Raj, and B. Bansal; Kinetic spinodal instabilities in the Mott transition in V2O3: Evidence from hysteresis scaling and dissipative phase ordering, Phys. Rev. Lett. 121, 045701 (2018).

[48] S. Kumari, S. Paul, and S. Raj; Electronic structure of RVO3 (R= La and Y): Effect of electron (U) and exchange (J) correlationsSolid State Commun. 268, 20 (2017).

[47] S. Paul, S. Kumari, and S. Raj; Vacancy-induced in-gap states in sodium tungsten bronzes: Density functional investigations, Eurphys. Lett 114, 37011 (2016).

[46] A Ghosh, S Paul, and S Raj; Magnetic properties of zinc-blende Cd1-xFexS nanoparticles : Temperature and Fe-content dependence studies, J. Mag.Mag. Mat 405, 238 (2016)

[45] S. Chandel, J. Soni, S. Kumar Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh; Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system, Sci Rep. 6, 26466 (2016).

[44] S Paul, S Kumari, and S Raj; High-resolution angle-resolved photoemission investigation of potassium and phosphate tungsten bronzes, J. Electron. Spectrosc. Relat. Phenom. 208, 67 (2016).

[43] S. Paul and S. Raj; Understanding metal–insulator transition in sodium tungsten bronze, PRAMANA 84, 957 (2015).

[42] A Ghosh, S Paul, RK Gopal, and S Raj; High‐temperature ferromagnetism in Fe‐doped wurtzite and zincblende CdS nanoparticles, Phys. Status Solidi B 252, 1355 (2015).

[41] A Ghosh, S Paul, and S Raj; Understanding bifurcations in FC–ZFC magnetization of dilutely Fe3+ doped CdS nanoparticles, Solid State Commun. 208, 1 (2015).

[40] S. Paul, A. Ghosh, T. Sato, D. D. Sarma, T. Takahashi, E. Wang, M. Greenblatt and S. Raj; Electronic band structure and Fermi surfaces of the quasi–two-dimensional monophosphate tungsten bronze, P4W12O44, Eurphys. Lett. 105, 47003 (2014).

[39] S. Paul, A. Ghosh, and S. Raj; Metal-Insulator Transition in NaxWO3 : Photoemission Spectromicroscopy Study, AIP Conf. Proc. 1591, 1145 (2014).

[38] A. Ghosh, S. Paul, and S. Raj; Tuning Diamagnetic-Ferromagnetic Transition in Mn doped CdS nanocrystals by Crystal Structure Engineering, AIP Conf. Proc. 1591, 546 (2014).

[37] A. Ghosh, S. Paul, and S. Raj; Understanding of ferromagnetism in thiol capped Mn doped CdS nanocrystals, J. Appl. Phys. 114, 094304 (2013).

[36] S. Paul, A. Ghosh, and S. Raj; Signature of Polaron Formation in Na0.025WO3 : Photoemission and X-ray Diffraction Investigations, AIP Conf. Proc. 1536, 579 (2013).

[35] A. Ghosh, S. Paul, and S. Raj; Structural Stability of CdS Nanoparticles, AIP Conf. Proc. 1536, 61 (2013).

[34] S. Paul, A. Ghosh, P. Dudin, A. Barinov, A. Chakraborty, S. Ray, D. D. Sarma, S. Oishi, and S. Raj; Photoelectron spectromicroscopy study of metal–insulator transition in NaxWO3, Solid. State Commun. 166, 66 (2013).

[33] S. Paul, A. Ghosh, and S. Raj; Electronic band structure and Fermi surfaces of low-dimensional La2Mo2O7 , J. Phys. Chem. Solids 74, 579 (2013).

[32] A. Ghosh, S. Paul, and S. Raj; Structural phase transformation from wurtzite to zinc-blende in uncapped CdS nanoparticles, Solid. State Commun. 154, 25 (2013).

[31] S. Paul, A. Ghosh, A. Chakraborty, L. Petaccia, D. Topwal, D. D. Sarma, S. Oishi, and S. Raj; Temperature dependent photoemission spectroscopy on lightly-doped sodium tungsten bronze, Solid. State Commun. 152, 493 (2012).

[30] A. Basu, S. Paul, M. Polentarutti, G. Bais, S. Oishi, S. Raj, and G. D. Mukherjee; High-pressure investigations of Na0.025WO3 : x-ray diffraction and Raman spectroscopy studies, J. Phys. : Condens. Matter 23, 365401 (2011) .

[29] S. Paul, G. D. Mukherjee, A. Ghosh, S. Oishi, and S. Raj; Temperature dependent x-ray diffraction study of lightly doped NaxWO3, Appl. Phys. Lett. 98, 121910 (2011).

[28] S. Raj, T. Sato, S. Souma, T. Takahashi, D. D. Sarma, and P. Mahadevan; Metal - insulator transition in sodium tungsten bronzes, NaxWO3 studied by angle - resolved photoemission spectroscopy, Mod. Phys. Lett. B 23, 2819 (2009).

[27] S. Raj, T. Sato, T. Takahashi, D. D. Sarma, A. Chakraborty, D. Choudhury, Priya Mahadevan, J. Fujii, and I. Vobornik; Three-dimensional band structure of highly metallic Na0.8WO3 by angle-resolved photoemission spectroscopy,  Phys. Rev. B 79, 035119 (2009).

[26] S. Raj, T. Sato, S. Souma, T. Takahashi, D. D. Sarma, P. Mahadevan, J. C. Campuzano, M. Greenblatt, and W. H. McCarroll;  Direct evidence for hidden one-dimensional Fermi surface of hexagonal K0.25WO3 Phys. Rev. B 77, 245120 (2008).

[25] S. Souma, S. Raj, J. C. Campuzano, T. Sato, T. Takahashi, S. Ohara, and S. Sakamoto; Band structure and Fermi surface of heavy Fermion compounds Ce2TIn8 (T = Co, Rh, In) studied by angle-resolved photoemission spectroscopyPhysica B, 403, 752 (2008).

[24] T. Sato, S. Souma, K. Sugawara, K. Nakayama, S. Raj, H. Hiraka, and T. Takahashi;  Xenon-plasma-light low-energy ultrahigh-resolution photoemission study of Co(S1-xSex)2 (x = 0.075)Phys. Rev. B 76, 113102 (2007).

[23] S. Raj, H. Matsui, S. Souma, T. Sato, T. Takahashi, A. Chakraborty, D. D. Sarma, P. Mahadevan, S. Oishi, W. H. McCarroll, and M. Greenblatt; Electronic structure of sodium tungsten bronzes NaxWO3  by high-resolution angle resolved photoemission spectroscopy, Phys. Rev. B 75, 155116 (2007).

[22] S. Raj, D. Hashimoto, H. Matsui, S. Souma, T. Sato, T. Takahashi, S. Ray, A. Chakraborty, D. D. Sarma, P. Mahadevan, S. Oishi, W. H. McCarroll, and M. Greenblatt; Metal - insulator transition in sodium tungsten bronzes, NaxWO3   studied by angle-resolved photoemission spectroscopy, J. Magn. Magn. Mater. 310, e231 (2007).

[21] S. Raj, D. Hashimoto, H. Matsui, S. Souma, T. Sato, T. Takahashi, D. D. Sarma, Priya Mahadevan, and S. Oishi; Angle-resolved photoemission spectroscopy of the insulating NaxWO3: Anderson localization, polaron formation, and remnant Fermi surface, Phys. Rev. Lett. 96, 147603 (2006).

[20] D. Topwal, U. Manju, Sugata Ray, S. Raj, D. D. Sarma, S. R. Krishnakumar, M. Bertolo, S. La Rosa, and G. Cautero; A microspectroscopic study of the electronic homogeneity of ordered and disordered Sr2FeMoO6, J. Chem. Sci. 118, 87 (2006).

[19] S. Raj, D. Hashimoto, H. Matsui, S. Souma, T. Sato, T. Takahashi, Sugata Ray, A. Chakraborty, D. D. Sarma, Priya Mahadevan, W. H. McCarroll, and M. Greenblatt; Angle-resolved photoemission spectroscopy on metallic sodium tungsten bronzes NaxWO3, Phys. Rev. B 72, 125125 (2005).

[18] S. Raj, Y. Iida, S. Souma, T. Sato, T. Takahashi, H. Ding, S. Ohara, T. Hayakawa, G. F. Chen, I. Sakamoto, and H. Harima; Angle-resolved and resonant photoemission spectroscopy on heavy-fermion superconductors Ce2CoIn8 and Ce2RhIn8, Phys. Rev. B 71, 224516 (2005).

[17] S. Raj and D. D. Sarma; Optimization of a low energy, high brightness electron gun for inverse photoemission spectrometers, Rev. Sci. Instrum. 75, 1020 (2004).

[16] Manju. U, S. R. Krishnakumar, Sugata Ray, S. Raj, M. Onoda, C. Carbone and D. D. Sarma; Electron spectroscopic investigation of metal-insulator transition in Ce(1-x)SrxTiO3. J. Chem. Sci. 115, 491 (2003).

[15] D. K. Basa, S. Raj, H.C. Padhi, M. Polasik and F. Pawlowski; Studies in the valence electronic structure of Fe and Ni in FexNi(1-x) alloys, PRAMAN 58, 783 (2002).

[14] S. Raj, H. C. Padhi, P. Palit, D. K. Basa M. Polasik and F. Pawlowski; Relative K x-ray intensity studies of the valence electronic structure of 3d-transition metals, Phys. Rev. B 65, 193105 (2002).

[13] F. Pawlowski, M. Polasik, S. Raj, H. C. Padhi and D. K. Basa; Valence electronic structure of Ti, Cr, Fe and Co in some alloys from K - to - K x-ray intensity ratio studies, Nucl. Instrum. Methods Phys. Res. B 195, 367 (2002).

[12] S. Raj, H.C. Padhi, M. Polasik, F. Pawlowski and D. K. Basa; K - to - K x-ray intensity ratio studies of the valence electronic structure of Fe and Ni in FexNi(1-x) alloys, Phys. Rev. B 63, 73109 (2001).

[11] S. Raj, H. C. Padhi, P. Raychaudhuri, A. K. Nigam, R. Pinto, M. Polasik, F. Pawlowski and D. K. Basa; Valence electronic structure of Mn in undoped and doped lanthanum manganites from relative K x-ray intensity studies, Nucl. Instrum. Methods Phys. Res. B 174, 344  (2001).

[10] S. Raj, H. C. Padhi, M. Polasik, F. Pawloski and D. K. Basa; Valence electronic structureof Fe and Ni in FexNi(1-x) alloys from relative K x-ray intensity studies, Solid State Commun. 116, 563 (2000).

[9] F. Pawlowski, M. Polasik, S. Raj and H. C. Padhi; K - to - K x-ray intensity ratio studies on the valence electronic states of 3d-transition metals in some of their compounds, Acta Physica Polonica B 31, 495 (2000).

[8] S. Raj, H. C. Padhi and M. Polasik; Influence of chemical effect on the K - to - K x-ray intensity ratios of Cr, Mn and Co in CrSe, MnSe, MnS and CoS, Nucl. Instrum. Methods Phys. Res. B 160, 443 (2000).

[7] M. Polasik, S. Raj, B. B. Dhal, H. C. Padhi, A. K. Saha, M. B. Kurup, K. G. Prasad and P. N. Tandon; Simultaneous L- and M-shell ionization of a 80Se target deduced from the analysis of energy shifts and relative intensities of K x-ray lines induced by various projectiles, J. Phys. B: At. Mol. Phys. 32, 3711 (1999).

[6] S. Raj, H.C. Padhi and M. Polasik; Influence of alloying effect on K - to - K X-ray intensity ratios of V and Ni in VxNi(1-x) alloys, Nucl. Instrum. Methods Phys. Res. B 155, 143 (1999).

[5] S. Raj, H. C. Padhi, D. K. Basa, M. Polasik and F. Pawlowski; K - to - K x-ray intensity ratio studies on the changes of valence electronic structures of Ti, V, Cr, and Co in their disilicide compounds, Nucl. Instrum. Methods Phys. Res. B 152, 417 (1999).

[4] S. Raj, H. C. Padhi, M. Polasik and D. K. Basa; Charge transfer studies in V3Si, Cr3Si and FeSi, Solid State Commun. 110, 275 (1999).

[3] S. Raj, B. B. Dhal, H. C. Padhi, D. Behera and N. C. Mishra, Evidence in favor of no appreciable Cu(3d)-O(2p) hybridization in undoped and Zn doped YBCO super-conductors. Solid State Commun. 105, 767 (1998).

[2] S. Raj, H. C. Padhi and M. Polasik; Influence of chemical effect on the K - to - K intensity ratios of Ti, V, Cr, and Fe in TiC, VC, CrB, CrB2 and FeB, Nucl. Instrum. Methods Phys. Res. B 145, 485 (1998).

[1] S. Raj, B. B. Dhal, H. C. Padhi and M. Polasik; Influence of solid-state effects on the Kβ - to - Kα x-ray intensity ratios of Ni and Cu in various silicide compounds, Phys. Rev. B 58, 9025 (1998).