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NCQM

DOPLICHER, FRENHAGEN AND ROBERTS

[X̂µ, X̂ν] = iΘµν

ALSO FROM STRING THEORY.
LANDAU PROBLEM

[PX̂P, P Ŷ P ] =
1

iB

ALSO THROUGH BERRY-CURVATURE IN
CERTAIN CONDENSED MATTER SYSTEMS

[X, Y ] ∼ iΩ
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Continued

{Θµν} ⇒ CONSTANT, NON-TENSOR.
⇒ LORENTZ SYMMETRY BROKEN IN QFT
USUAL METHODS → BORROWED FROM PH.SP.Q.M
1.DEMOTE X̂µ → Xµ

2. USE STAR PRODUCT i.e. DEFORMED
PRODUCT (MOYAL)

(f ⋆ g)(x) = f(x)e
i
2θµν

←−
∂µ

−→
∂νg(x)

= e
i
2θµν∂x

µ∂y
ν f(x)g(y)|x=y
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Continued

A DIFFERENT NOTATION

mF (f(x) ⊗ g(x)) = m(F−1(f(x) ⊗ g(x)))

Twist ⇒ F = e
i
2θµνPµ⊗Pν ∈ U(P ) ⊗ U(P )

ALONG WITH MULTIPLICATION, THE
CO-PRODUCT i.e. THE LEIBNITZ RULE TOO
GETS DEFORMED

△ → △F = F△F−1

△(Mµν) = Mµν ⊗ 1 + 1 ⊗ Mµν
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Continued

AGAIN THE STAR PRODUCT IS NOT UNIQUE.
FOR EXAMPLE, IN 2+1 DIM.(WITH θ0i = 0)

Θµν
M =







0 0 0

−0 0 θ

0 −θ 0






; Θµν

V =







0 0 0

0 −iθ θ

0 −θ −iθ







M→ WEYL ORDERED; V→ NORMAL
ORDERED
IT WAS BELIEVED THAT FIELD THEORIES
CONSTRUCTED ON M/V ⋆-PRODUCT ARE
EQUIVALENT AS

T (f ⋆M g)(x) = (T (F ) ⋆V T (g))(x)
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Continued

WHERE

T = e
θ
4∇2

RECENT CONTROVERSIES
PERSISTANCE OF EQIVALENCE AT THE
LEVEL OF INTERACTING QFT
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WE ADDRESS THE ISSUE AT THE LEVEL OF
NCQM. 2D REPRESENTATION OF NC
HEISENBERG ALGEBRA
X̂i : ψ(x̂i) → x̂iψ(x̂i)

P̂i : ψ(x̂i) → ~

θ
ǫij[x̂j, ψ(x̂i)] = P̂iψ

b̂ = X̂1+iX̂2√
2θ

s.t. [b̂, b̂†] = 1

CLASS. HILBERT SPACE

Hc = Spanc{|n〉}∞n=0;|n〉 = (b̂†)n

√
n!
|0〉
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QUANTUM HILBERT SPACE
HQ = SPACE OF HILBERT-SCHMIDT OP. i.e.
THE TRACE CLASS BOUNDED SET OF
OPERATORS IN Hc.
INNER PRODUCT
(ψ|φ) = trHc

(ψ†φ)
VOROS BASIS AND VOROS WAVE FUNCTION
ψ(z, z̄) = 〈z|ψ(x̂, ŷ)|z〉 = tr(|z)ψ)

|~x)V ≡ |z) = |z〉〈z|; |z〉 = e−z̄b+zb†|0〉 ∈ Hc

z = X1+iX2√
2θ

|z〉 → COHERENT STATE
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Continued

PROPERTIES OF |z)

(z|z′) = e−|z−z′|2;
∫

d2z
π
|z) ⋆V (z| = 1Q

|~p) =
√

θ
2π

ei~p.~̂x;P̂i|~p) = pi|~p)

s.t.
∫

d2p|~p)(~p| = 1 ; (~p|~p′) = δ2(~p − ~p′)
THEN

|~x)V =

√

θ

2π

∫

d2pe−
θ
4~p2

e−i~p.~x|~p)
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Continued

MOYAL BASIS
|~x) =

∫

d2p
2π

e−i~p.~x|~p) =
√

θ
2π

∫

d2p
2π

ei~p.(~̂x−~x)

THEY SATISFY
(i)

∫

d2x|~x)M ⋆M M(~x| =
∫

d2x|~x)MM(~x| = 1

(ii)(~p|~x)M = 1
2π

e−i~p.~x

(iii)M(~x′|~x)M = δ2(~x − ~x′) → ORTHOGONAL
UNLIKE VOROS
(iv)V (~x′|~x)M =

√

2
πθ

e−
1
θ
(~x−~x′)2
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Continued

INTRODUCE
X̂c

i ψ = 1
2(x̂iψ + ψx̂i) ⇒ [X̂c

i , X̂
c
j ] = 0

EQUIVALENTLY:
X̂c

i = x̂i + θ
2ǫijP̂j

THEY ADMIT COMMON EIGENSTATE. INDEED
X̂c

i |~x)M = xi|~x)M

IMPOSE THE ADDITIONAL STRUCTURE OF
AN ALGEBRA ON HQ

µ(|ψ) ⊗ |φ)) = |ψφ)
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QUESTIONS
WHAT IS THE FORM OF THE
REPRESENTATION OF THIS PRODUCT STATE
IN MOYAL OR VOROS BASIS AND,IN
PARTICULAR, IS THERE A COMPOSITION
RULE IN TERMS OF THE REPRESENTATIONS
OF THE INDIVIDUAL STATES IN THESE
BASES?
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Continued

TAKE |ψ) =
√

θ
2π

∫

d2p
2π

ψ(~p)ei~p.~x

NOTE: NORMALIZABILITY
⇒ (ψ|ψ) = trc(ψ

†ψ) < ∞
⇒ ψ(~p) IS SQUARE INTEGRABLE.
THEN
M(~x|ψφ) =

√
2πθM(~x|ψ) ⋆M M(~x|φ)

V (~x|ψφ) = 4π2
V (~x|ψ) ⋆V V (~x|φ)

WHERE M(~x|ψ) =
∫

d2p
(2π)2ψ(~p)ei~p.~x

V (~x|ψ) =
√

θ
2π

∫

d2p
(2π)2ψ(~p)e−

θ
4~p2

ei~p.~x

=
√

θ
2π

e
θ
4∇2

M(~x|ψ)
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Continued

OBSERVATIONS
(i) M/V COMPOSITIONS ARE RELATED TO M/V
BASES RESPECTIVELY.
(ii) ASSOCIATIVITY IS OBVIOUS.
(iii) T = e

θ
4∇2

OPERATOR RELATING M/V WAVE
FUNCTIONS IS NON-UNITARY AND
NON-INVERTIBLE.
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Continued

INDEED VOROS WAVE-FUNCTIONS BELONG
TO A SMALLER SUBSPACE (⊂ SCHWARTZ
CLASS) UNLIKE THE MOYAL WAVE
FUNCTIONS; HERE WE ALSO REQUIRE
SMOOTHNESS∼

√
θ, AS MODES WITH HIGH

MOMENTA ARE AUTOMATICALLY
SUPPRESSED.
IT MAY HAVE EFFECTS AT THE
PATH-INTEGRAL LEVEL.
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(i) X̂c
i CAN NOT BE A PHYSICAL

OBSERVABLE, AS IT VIOLATE SPACE-SPACE
UNCERTAINTY.
THUS A SYSTEM CAN NOT BE PREPARED IN
MOYAL BASIS.
CORRESPONDINGLY, ~x IN |~x)M CANNOT
REFER TO POSITION ~x.
(ii) VOROS BASIS IS IN CONFORMITY WITH
UNCERTAINTY RELATION.
MUST WEAKEN VON-NEUMANN’S PVM→
POVM.
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Continued

INDEED, Πx = 1
π
|~x)v ⋆v v(~x| FORM POVM i.e

THEY ARE POSITIVE AND INTEGRATE TO
IDENTITY.
PROBABILITY P (~x) = trQ(Πxρ)
FOR ρ = |ψ)(ψ|,
P (~x) = (ψ|~x)v ⋆v v(~x|ψ)
THIS POVM FAILS IN THE MOYAL CASE;
POSITIVITY IS NOT SATISFIED.
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Continued

TRANSITION AMPLITUDE IN VOROS BASIS

v(~xf , T |~xi, 0)v =
m

mθ + iT
e−

m(~xf−~xi)
2

2(mθ+iT )

IN MOYAL BASIS, THE θ-DEPENDENCE DOES
NOT OCCUR.
1. ALTHOUGH ∃ A FORMAL MATHEMATICAL
EQUIVALENCE, IT IS THE VOROS BASIS,
WHICH CAN BE CONSIDERED PHYSICAL
2. THIS SUGGESTS THAT AN ABSTRACT,
BASIS INDEPENDENT FORMALISM SHOULD
BE DEVELOPED IN D = 3.
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3D GENERALIZATION
Start With

[x̂i, x̂j] = iθij = iǫijkθk

Θ = θij is degenerate
⇒ it is possible to orient ~θ along 3rd axis by an
SO(3) rotation
i.e. x̂i → ˆ̄xi = R̄ijx̂j

s.t [ˆ̄x1, ˆ̄x2] = iθ, [ˆ̄x1, ˆ̄x3] = [ˆ̄x2, ˆ̄x3] = 0
with ˆ̄x3 being commutative
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A Non-unique form of R̄:

R̄ =







cos α cos β sin β cos α − sin α

− sin β cos β 0

sin α cos β sin α sin β cos α






;

~θ = θ







sin α cos β

sin α sin β

cos α







Θ̄ = R̄ΘR̄T =







0 θ 0

−θ 0 0

0 0 0
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CLASSICAL HILBERT SPACE
H(3)

c = span{|n, x̄3〉} = span{|z, x̄3〉}
Action of x̂i

x̂i|n, x̄3〉 = (R̄−1)ij ˆ̄xj|n, x̄3〉 =

(R̄−1)iα ˆ̄xα|n, x̄3〉 + (R̄−1)i3x̄3|n, x̄3〉
α = 1, 2
QUANTUM HILBERT SPACE

H(3)
q = {ψ(ˆ̄xi) : trcψ

†ψ < ∞}

= {ψ(ˆ̄xi) :

∫

dx̄3√
θ
tr′cψ

†ψ < ∞}
– p. 23/45



Continued

Here, tr′c → restricted trace over the
noncommutative 2D plane.
H(3)

q is therefore simply a one-parameter family of

H(2)
q .

Since the elements of H(3)
q leaves the subspace

span{|n, x̄3〉} ⊂ H(3)
c (for fixed x̄3) invariant, one

can also write
H(3)

q = {ψ : [x̄3, ψ] = 0; trcψ
†ψ < ∞}
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ACTION OF MOMENTUM
Introduce ˆ̄x4, such that [ˆ̄xj, ˆ̄x4] = iθδj3; j = 1, 2, 3

Formally ˆ̄x4 = −iθ ∂
∂x̄3

Then
ˆ̄Pαψ = 1

θ
Γαβ[ˆ̄xβ, ψ]; α, β = 1, 2, 3, 4

Γ =











0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0











Note
1. ˆ̄P4ψ = 0
Thus∃ only three non-trivial momenta
2. Action of P̂ can obtained by linearity.
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Continued

POSITION OPERATOR
X̂i : |ψ) → X̂i|ψ) = |x̂iψ)
Then NQ Heisenberg algebra is
[X̂i, X̂i] = iθij; [X̂i, P̂j] = iδij; [P̂i, P̂j] = 0
NORMALIZED MOMENTUM EIGENSTATES

|~p) = θ
3
4

2π
eipix̂i

Satisfies
(i) ~̂P |~p) = ~p|~p)

(ii) (~p′|~p) = δ3(~p′ − ~p)
(iii)

∫

d3p|~p)(~p| = 1q
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MOYAL AND VOROS BASIS IN 3D

X̂
(l)
i ψ ≡ x̂iψ

X̂
(r)
i ψ ≡ ψx̂i

X̂
(c)
i ψ ≡ 1

2(X̂
(l)
i + X̂

(r)
i )ψ

By splitting (x̂iψ) into symmetric and
anti-symmetric parts
X̂

(l)
i ψ = X̂

(c)
i ψ + 1

2 [x̂i, ψ]
Going back and forth between barred and
un-barred frame yields
X̂

(c)
i = X̂

(l)
i + 1

2θijPj

s.t. [X̂
(c)
i , X̂

(c)
j ] = 0 – p. 27/45



Continued

As in 2D, here too, one can introduce
Moyal/Voros basis
|~x)M =

∫

d3p

(2π)
3
2
e−i~p.~x|~p)

|~x)V = θ
3
4√
2π

∫

d3pe−
θ
4~p2

e−i~p.~x|~p)

Satisfying

M(~x|ψφ) = 2πθ
3
4

M(~x|ψ) ⋆M M(~x|φ)

V (~x|ψφ) = V (~x|ψ) ⋆V V (~x|φ)
With
|ψ) = θ

3
4

2π

∫

d3p

(2π)
3
2
ψ(~p)e−i~p.~̂x
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ANGULAR MOMENTUM AND DEFORMED COPRODUCT
Take |ψ) =

∫

d3pψ(~p)ei~p.~̂x = ψ(~̂x)
Scalar property
|ψR) = U(R)|ψ) = ψR(~̂x) = ψ(R−1~̂x)

=
∫

d3pψ(~p)ei~p.(R−1~̂x)

For R = 1 + i~φ.~L, |~φ| ≪ 1; (Li)jk =
−iǫijk; [Li, Lj] = iǫijkLk

ψR(x̂i) = ψ(x̂i) + iφiĴiψ(x̂i)

Ĵi = ǫijkX̂
c
j P̂k; [Ĵi, Ĵj] = iǫijkĴk

U(R) = ei~φ. ~J → The unitary representation of R
in Hq – p. 29/45
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ON DEFORMED LEIBNIZ RULE
Note Ĵi(φψ) = ǫijkX̂

c
i P̂k(φψ)

6= (ǫijkX̂
c
j (P̂kφ))ψ + φ(ǫijkX̂

c
j (P̂kψ))

Rather, Ĵi(φψ) = 1
2 [x̂jP̂k(φψ) + (P̂k(φψ))x̂j]

= (Ĵiφ)ψ+φ(Ĵiψ)+ 1
2 [(P̂iφ)((~θ. ~P )ψ−((~θ. ~P )φ)(P̂iψ)]

Thus the co-product is deformed:

∆θ(Ĵi) = ∆0(Ĵi) + 1
2 [P̂i ⊗ (~θ. ~̂P ) − (~θ. ~̂P ) ⊗ P̂j]

∆0(Ĵi) = Ĵi ⊗ 1 + 1 ⊗ Ĵi
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DEFORMED CO-PRODUCT AND AUTOMORPHISM
|ψ) → |ψR) =

∫

d3pψ(~p)ei~p.(R−1~̂x)

=
∫

d3pψ(~p)ei(R~p).~̂x

Like-wise for |φ)

Then |ψφ) =
∫

d3pd3p′ψ(~p)φ(~p′)ei(~p+~p′).~̂xe−
i
2θijpip

′
j

But now |(φφ)R) 6= |ψRφR) =
m[∆0(R)(|ψ) ⊗ |φ))]; ∆0(R) = R ⊗ R

Rather,|(ψφ)R) = U(R)[m(|ψ) ⊗ |φ)]
= m[∆θ(|ψ) ⊗ |φ))]
Where ∆θ(R) = F∆0(R)F−1 → Def. co-prod.
⇒ F = e

i
2 P̂i⊗P̂j
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Thus the automorphism symmetry can be
restored iff the deformed co-product is used.
Also, ∆θ(Ĵi) = F∆0(Ĵi)F

−1

In the multi-particle setting, the restoration of the
automorphism symmetry relevant at the level of
action.
Consider Schrodinger action
S =

∫

dtL
L = trcψ

†(i∂t − ~̂P 2

2m
− V (x̂i))ψ
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Continued

The SO(3) symmetry is manifest iff L transform
as a scalar,i.e.
ψ†ψ → (ψ†ψ)R; (ψ†V ψ) → (ψ†V ψ)R

Since, trc(A)R = trcA (We show it later)
For a Generic composite ′A′ of fields.
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ON THE CONSTANCY OF Θ
Rotated coordinate
x̂R

i ≡ (R~̂x)i = Rijx̂j

Then the commutator of the rotated coordinate
[x̂R

i , x̂R
j ] = x̂R

i x̂R
j − x̂R

j x̂R
i = i(RΘRT )ij = i(ΘR

UD)ij

Θ → ΘUD → 2nd rank antisymmetric tensor
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Continued

Note [x̂R
i , x̂R

j ] = m[∆0(R)(x̂i ⊗ x̂j − x̂j ⊗ x̂i)]

But rotated commutator is
([x̂i, x̂j])

R = (x̂ix̂j)
R − (x̂jx̂i)

R

= m[∆θ(R)(x̂i ⊗ x̂j − x̂j ⊗ x̂i)] = iθij = i(ΘD)ij

Here (x̂ix̂j)
R = m[∆θ(R)(x̂i ⊗ x̂j)]

= x̂R
i x̂R

j + i
2θij − i

2(Θ
R
UD)ij

⇒ No longer a second rank tensor.
Also Ĵiθjk = −iĴi[m(x̂j ⊗ x̂k − x̂k ⊗ x̂j)]

= −im[∆θ(Ĵi)(x̂j ⊗ x̂k − x̂k ⊗ x̂j)] = 0
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In a more general setting, the quantum position
op.
X̂

(l)
i |ψ(x̂i)) = |x̂iψ(x̂i)) = m(x̂i ⊗ ψ(x̂i))

And its rotated counterpart
X̂

(l)
i

R|ψ(x̂i)) = RijX̂
(l)
j |ψ(x̂i))

Now under rotation
m(x̂i ⊗ ψ(x̂i)) → U(R)[m(x̂i ⊗ ψ(x̂i))]

= m[∆θ(R)(x̂i ⊗ ψ(x̂i))] = ˆ̃X
(l)
i

R|ψR(x̂i))

Here ˆ̃X
(l)
i

R ≡ X̂
(l)
i

R + 1
2 [R, Θ]ijP̂j

is the effective rotated quantum position op.
transform non-covariantly
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But [ ˆ̃X
(l)
i

R, ˆ̃X
(l)
j

R] = iθij → again constant
OBSERVATIONS

The distinction between X̂
(l)
i

R and ˆ̃X
(l)
i

R

Disappear in D = 2, as [R, Θ] = 0
ˆ̃X

(r)
i

R = X̂
(r)
i

R − 1
2 [R, Θ]ijP̂j

X̂
(c)
i → X̂(c)R = RijX̂

(c)
j → Transforms covariantly
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SO(3) TRANSFORMATION PROPERTIES OF
H, SCHRODINGER ACTION

H =
~̂P 2

2m
+ V (X̂i); V (X̂R

i ) = V (X̂i) ⇒ ĴiV (X̂i) = 0

V (X̂i)/V (x̂i) → operator in H(3)
q /H(3)

c

[Ĵi, H] = [Ĵi,
~̂P 2

2m
+ V (X̂i)] = [Ĵi, V (x̂i)]

To compute ĴiV (X̂i)ψ(x̂i) = Ĵi(V (x̂i)ψ(x̂i))

= (ĴiV (x̂i))ψ(x̂i) + V (x̂i)(Ĵiψ(x̂i)) +

1
2 [(P̂iV )((~θ. ~̂P )ψ) − ((~θ. ~̂P )V )(P̂iψ)]
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Using ĴiV = 0

[Ĵi, H] = 1
2 [(P̂iV )((~θ. ~̂P )ψ) − ((~θ. ~̂P )V )P̂i]

ANOTHER PERSPECTIVE
Note:(V ψ)R 6= V RψR = m[∆0(R)(V ⊗ ψ)]

Rather, (V ψ)R = m[∆θ(R)(V ⊗ ψ)] = V R
effψ

R

= U(R)V U(R)−1ψR

V R
eff → Effective potential in rotated frame.
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Continued

SYMMETRY OF SCHRODINGER ACTION

S =
∫

dttrc[ψ
†(i∂t − ~̂P 2

2m
− V (X̂i))ψ]

is invariant under the following transf.
ψ† → (ψ†)R = U(R)ψ†; ψ → ψR = U(R)ψ, (V ψ) →
(V ψ)R

Since
(Ĵiψ

†)† = 1
2ǫijk(x̂j(P̂kψ

†) + (P̂kψ
†)x̂j)

† = −(Ĵiψ)

⇒ (U(R)ψ†)† = (ei~φ. ~̂Jψ†)† = U(R)ψ

⇒ trc((ψ
†)RφR) = (U(R)ψ, U(R)φ) = (ψ, φ) =

trc(ψ
†φ); U(R)‡U(R) = 1
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Continued

Although ∆0(R) was used here implicitly, the
same holds even if ∆θ(R) is used, as the
additional terms are total commutators:
To summarise: S will be SO(3) invariant,
provided V also undergoes the transf.
V → V R

eff = U(R)V U(R)−1

Even for V R(X̂i) = V (R−1 ~̂Xi). Generically, V R
eff

will have a reduced symmetry and therefore S
will not be invariant.
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EXAMPLE

H = 1
2m

~̂P 2 + 1
2mω2 ~̂X2 = 1

2m
~̂̄P 2 + 1

2mω2 ~̂̄X2

= Hplane + Hline

[ ˆ̄X1,
ˆ̄X2] = iθ; [ ˆ̄X1,

ˆ̄X3] = [ ˆ̄X2,
ˆ̄X3] = 0

Ψ0(
ˆ̄Xi) = e

α
2θ

( ˆ̄X2
1+ ˆ̄X2

2 )e−
1
2mω2 ˆ̄X2

3 → Has only SO(2)
symm.
To see it more explicitly, write
Ψ0 = φψ; φ = e

α
2θ

x̂ix̂i, ψ = e
λ
2 x2

3

Then ˆ̄Pψ = ˆ̄Jiφ = ˆ̄J3ψ = 0

Also, ∆Θ̄( ˆ̄J3) = ∆0(
ˆ̄J3) = ˆ̄J3 ⊗ 1 + 1 ⊗ ˆ̄J3
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Continued

⇒ ˆ̄J3Ψ0 = m[∆Θ̄( ˆ̄J3)(φ ⊗ ψ)] =

m[∆0(
ˆ̄J3)(φ ⊗ ψ)] = 0

But ˆ̄JαΨ0 6= 0, As α = 1, 2
Finally, this manifested in the explicit form
V R

eff(X̂i) =

V (x̂i) + 1
2mω2[14((

~θ. ~̂P )2 − (~θ. ~̂PR)2)− θi(Rij − δij)Ĵj]
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Conclusions

We have discussed the generalization of non
commutative quantum mechanics to three spatial
dimensions.Particular attention was paid to the
identification of the quantum Hilbert space and
the representation of the rotation group on it. Not
unexpectedly it was found that this
representation undergoes deformation and that
the angular momentum operators no longer obey
the Leibnitz rule.
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Continued

This deformation implies that the action for the
Schroedinger equation, in which the potential
appears as a fixed background field, and
Hamiltonian are no longer invariant under
rotations, even for rotational invariant potentials.
This is in sharp contrast with the commutative
case where rotational symmetry is manifest for
rotational invariant potentials.

– p. 45/45
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