
Two simple cases of interacting fermi gases

FTRTA2011

IISER-Kolkata

25th August, 2011

Kumar Abhinav,

DPS, IISER-Kolkata,

Mohanpur, Nadia - 741252

kumarabhinav@iiserkol.ac.in

1



Based on:
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U. Roy, B. Shah, K. Abhinav and P. K. Panigrahi, J. Phys. B: At. Mol.
Opt. Phys. 44 (2011) 035302.

• (2) ‘Unitary Fermi Gas: Scaling Symmetries and Exact Map’,
B. Chandrasekhar, K. Abhinav, V. M. Vyas and P. K. Panigrahi [Submit-
ted to Euro. Phys. Lett.].
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Outline of the talk

• BEC-BCS cross-over: The Unitarity

• BECs with solitonic solutions.

• Unitary Fermi gas: Conformal Non-relativistic symmetries

• Strongly coupled BEC with velocity restricted solutions

• Unitary fermi gas: Scaling symmetry

• Concluding remarks
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BEC-BCS cross-over: The Unitarity

• When cooled sufficienly, strongly interacting fermions become superfluid (Experimen-
tally).

• The exact form of the interaction, and hence that of the system, depends crucially on
the scattering length ‘a’.

• For negative a, corresponding attraction results into composite bosons: Cooper pairs.

• For positive a, repulsion allows loosely bound molecular states in vacuum: BEC.

• Through Feshbach resonance, ‘a’ can be smoothly varied.

• At the singular point, quasi-bound states appear: Unitarity.
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Fig.1: Controlling scattering length through Feshbach resonance.

• Resonance occurs when ‘open’ and ‘closed’ channel energies are close.

• Dilute : Interatomic potential range is far less than interparticle distance.

• Strongly interacting : Scattering length far greater than interparticle distance.
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BECs with solitonic solutions

• Systems with four-Fermi self interaction are well-captured by mean-field approach at
low energies.

• Macroscopic nature of the BECs allow the Gross-Pitaevskii equation to be applicable.

• When non-linearity balances the dispersion: Solitons.

• Solitons are familiar solutions of non-linear equations of varying orders.

• Close analogy with with ‘classical solutions’ of ‘phi-four’ field theory.
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Unitary Fermi gas: Conformal Non-relativistic symmetries

• At Unitarity: Low energy admits non-relativistic behavior.

• Conformal symmetry prevails: Schroedinger algebra.

• A Heisenberg sub-algebra maps to oscillators with ‘2-Omega’ modes in scaling param-
eter [1].

• Earlier observed as SU(1,1) ‘2-Omega’ modes by Pitaevskii et al..

• Scale-invariance: Universal nature of interaction: Effimov states and dimer formation.
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Strongly coupled BEC with velocity restricted solutions

• The mean field behavior:

– The N-particle Lagrangian with two-body interaction:

h̄2

2m

N∑
σ=1

∇Ψ†σ.∇Ψσ +

N∑
σ=1

VσΨ†σΨσ +

N∑
α,β

Ψ†αΨ†βUα,βΨβΨα. (1)

– For a very large N, the equation of motion (GP Equation) is:

ih̄
∂

∂t
Ψ0 =

(
−
h̄2

2m
∇2 + V + U |Ψ0|2

)
Ψ0, (2)

depicting the Born-approximated mean field ground state behavior.
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Strongly coupled BEC with velocity restricted solutions

• Cigar-shapped BEC:

– The ‘effective’ external potential is:

V =
1

2
Mω2

⊥(x2 + y2). (3)

– This allows a wave-function of the type:

Ψ(r, t) = f(z, t)G(x, y, σ), (4)

where [2],

G(x, y;σ) =
e−(x2+y2)/2σ2

π1/2σ
,

σ(z) =

∫
dxdy|Ψ(x, y, z)|2 = |f(z, t)|2.

– This yields the non-polynomial equation,

ih̄
∂

∂t
f =

[
−
h̄2

2M

∂2

∂z2
+

U0

2πa2
⊥

|f |2√
1 + 2aN |f |2

+
h̄ω⊥

2

(
1√

1 + 2aN |f |2
+
√

1 + 2aN |f |2
)]

f.

(5)
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Strongly coupled BEC with velocity restricted solutions

• Strong and weak coupling limits:

– In the strong-coupling limit,

2aN |f |2 � 1, N |ψ|2a� 1, (6)

to satisfy the diluteness of BEC.

– This reduces the non-polynomial equation to:

ih̄
∂

∂t
f =

[
−
h̄2

2M

∂2

∂z2
+ 2 h̄ω⊥a

1/2
(
|f | − σ0

1/2
)]

f. (7)

– In the weak-coupling limit:

2aN |f |2 � 1, (8)
yielding,

ih̄
∂

∂t
f =

[
−
h̄2

2M

∂2

∂z2
+ 2 h̄ω⊥a

(
|f |2 − σ0

)]
f. (9)

which is the NLSE.
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Strongly coupled BEC with velocity restricted solutions

• The ansatz and consistency:

– The proposed ansatz is,

f(z, t) = ei(kz−ωt)ρ(ξ). (10)

– This leads to:

α2ρ′′ + gρ2 + ερ = 0, (11)
where,

g = −4Mω⊥a
1/2/h̄,

ε = 2Mω/h̄+ 4Mω⊥(σ0a)1/2/h̄− k2.

– Next ansatz:

ρ(ξ) = A+Bcn2(ξ,m), (12)
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Strongly coupled BEC with velocity restricted solutions

• The ansatz and consistency (contd.):

– The consistency conditions yield (1),

A =
1

2g

[
4α2(1− 2m)− ε

]
, B =

6

g
α2m,

ε2 = 16α4
(
m2 −m+ 1

)
.

• Stability and existance conditions:

– For m=1, for the positive root of the effective chemical potential, we obtain a
W-soliton as:

ρ(ξ) = −
ε

g

[
1−

3

2
sech2(ξ)

]
, (13)

– The corresponding Vakhitov-Kolokolov criterion reads:
dN(ε)

dε
= −

6ε

g2
. (14)

Thus, the solution is stable.

– The restriction condition is:

k2 ≥ 2
Mω

h̄
− |ε|. (15)
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Strongly coupled BEC with velocity restricted solutions

• Stability and existance conditions:

Fig.2:Numerical evolution of W-soliton depicting temporal stability.

– For the negative root (m=1) one obtains,

ρ(ξ) = −
3ε

2g
sech2(ξ),

dN(ε)

dε
= 6

ε

g2
,

k2 ≥ |ε|+ 2
Mω

h̄
,

depicting a velocity restricted soliton for positive frequency.
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Strongly coupled BEC with velocity restricted solutions

• The Pade’-type ansatz:

– A more generic Pade’-type ansatz:

ρ(ξ) =
A+B f(ξ)

1 + C f(ξ)
, (16)

yields localized solutions (m=1):

ρ(ξ) = −
ε

g

(
1− 2sech(2ξ)

1 + sech(2ξ)

)
, (17)

which is the W-soliton obtained earlier.

– Separatrix in the phase-space of the solutions.
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Strongly coupled BEC with velocity restricted solutions

• Coherent control:

– The re-casted GP-equation for strong coupling:

i∂tψ = −
1

2
∂2
zzψ + γ(t)|ψ|ψ +

1

2
M(t)z2ψ +

iκ(t)

2
ψ. (18)

– Ansatz:

ψ(z, t) = B(t)F (ξ)e[iΦ(z,t)+ 1
2
G(t)], Φ(z, t) = a(t) + b(t)z −

1

2
c(t)z2. (19)

– This yields a Riccati equation, which can be re-casted into a Scroedinger-like equ-
uation:

dc(t)

dt
− c2(t) = M(t),

−φ′′(t)−M(t)φ(t) = 0, c(t) = −
∂lnφ(t)

∂t
.
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Strongly coupled BEC with velocity restricted solutions

• Coherent control (contd.):

– Finally, we obtain the solutions as:

ψ(z, t) = −
ε

g

√
A0sec(M0t)[1−

3

2
sech2(T/2)]eiΦ(z,t)+ 1

2
G(t), M(t) = M0

2,

ψ(z, t) = −
ε

g

√
A0sech(M0t)[1−

3

2
sech2(T/2)]eiΦ(z,t), M(t) = −M2

0 .

Fig.3: Temporal behavior of W-type soliton without gain/losss.
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Unitary fermi gas: Scaling symmetry

• Fermions at unitarity:

– Unitary fermi systems show scaling symmetry, enabling us to map it to free harmonic
oscillators.

N∑
i=1

~ri · ~∇iψ = γψ. (20)

– The Universality of the system allows inverse-square two-body interactions, also
supported by the existance of Efimov states [3].

r→ λr, Ψ(r)→ λd/2Ψ(λr),

H →
1

λ2

(
N∑
i=1

P 2
i

2m
+
∑
i<j

V (~ri − ~rj)

)

– In 2-D, Dirac delta interaction also have the same scaling property.

– In 4-D, inverse-square wave-functions yield logarithmic divergences.
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Unitary fermi gas: Scaling symmetry

• The Jastrow-type solution:

– A harmonic trap:

Htrap =
∑
i

1

2
mω2~r2

i , (21)

manifests a SO(2,1)/SU(1,1) symmetry, including the scaling operator.

– Observed in 1-D Calogero-Sutherland model and in higher dimensions also.

– In hyperspherical coordinates, the wave function admits a non-singular Jastrow
factor:

ψ ≡
∏
i<j

|~ri − ~rj|β, (22)

and a Gaussian factor ‘G’ representing the trap dynammics.

– The Jastrow factor generates a similarity transformation:

H̃ = ψ−1 (H)ψ = −Â+ ε0,

Â =
1

2

N∑
i=1

∇2
i +

N∑
i=1

~∇i(lnψ).~∇i.
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Unitary fermi gas: Scaling symmetry

• The SU(1,1) algebra:

– An interparticle potetial of the form:

V (~ri − ~rj) = g2|~ri − ~rj|−2, (23)

leads to,

H̃ = −
1

2

∑
i

∇2
i − α

∑
i 6=j

(~ri − ~rj)
|~ri − ~rj|2

· ~∇i − ε0/2, α = (1 +
√

1 + 4g2)/2. (24)

– There are two different ways to form the SU (1,1) algebra. The common two
Cartan basis generators are:

T0 = −
1

2

(∑
i

~ri · ~∇i + ε0

)
, T− ≡

1

2

∑
i

~r2
i (25)

and the choices of the third generator are:

T f+ =
1

2

N∑
i=1

∇2
i , T i+ =

1

2

∑
i

∇2
i + α

∑
i,j=1
i6=j

(~ri − ~rj)
|ri − rj|2

· ~∇i. (26)
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Unitary fermi gas: Scaling symmetry

• The SU(1,1) algebra (Contd.):

– Thus we obtain the SU(1,1) algebra:

[T+, T−] = −2T0, [T0, T±] = ±T±. (27)

– Two algebras: The system is SI with or without the inter-particle interaction.

– The algebra ensures the existace of an ‘omega’ breething mode.

– The first SU(1,1) transformation yields:

e−T−H̃eT− ≡ ˜̃H =

N∑
i=1

~ri · ~∇i − Â, ε0 =
1

2
N +

1

2
N(N − 1)α, (28)

with a Universal scaling shift to the ground state energy.
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Unitary fermi gas: Scaling symmetry

• The SU(1,1) algebra (Contd.):

– Now, as:

[ ˜̃H, exp{−Â/2}] = Â exp{−Â/2}, (29)

– The operator:

T̂ ≡ Ψ0 exp{−Â/2}, (30)
diagonalizes the last Hamiltonian to:

HD =
∑
i

~ri · ~∇i + ε0, (31)

with polynomial eigenfunctions and ground energy shift of N/2 by the scaling ex-
ponent.

– Successive transformations by ‘free’ raising operator and lowering operator yields:

Hdecoupled = −
1

2

∑
i

∇2
i +

1

2

∑
i

~r2
i + (ε0 −

1

2
N). (32)

with a shift to the ground state energy.
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Unitary fermi gas: Scaling symmetry

• The origin of the omega mode:

– In 1-D, the Jastrow-type symmetric polynomials can be formed without considering
hyperspherical coordinaes.

N∏
l

(xi)
nl,

∑
l

nlω, nl = 0,1,2, · (33)

– In higher dimensions, hyperspherical coordinates are required for symmetric poly-
nomials.

N∏
l

(r2
i )nl, E = 2

∑
l

nl + E0. (34)

resulting into the ‘2 omega’ modes.
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Unitary fermi gas: Scaling symmetry

• Dimerization v/s molecule formation:

– The equivalent three-body wave-function with the ‘contact condition’:

ψ(r1, r2, r3) =

(
1

rij
−

1

a

)
A(Rij, rk) +O(rij). (35)

– Molecule formation needs non-zero ‘A’: Wave-function is singular at zero interpar-
ticle distance.

– Dimerization requires A=0: Non-singular, symmetric Jastrow type wave function.

– The scaling symmetry and the exact map is valid in the dimerization regime with
long-distance correlations.

– The Jastrow-type wave functions: Fractional exclusion statistics, in accord with
the Monte Carlo simulations.
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Concluding remarks

• Strong coupling BECs admit stable classical solutions of different forms. This consider-
ably differs from the weak-coupling expectations. A complete quantum treatment can
shed light, instead of a mean-field approach.

• New modes observed indicates lower dimensional uniqueness of unitary fermions. Non-
perturbative treatment is on the cards.

• Mapping to simpler systems can mean an effective theory with observable quasi particles.

• 2+1 and 1+1 field-theoretic behavior is still to be studied, in face of present experi-
mental realizations.
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Thank you for your patience
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