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BEC-BCS cross-over: The Unitarity

e When cooled sufficienly, strongly interacting fermions become superfluid (Experimen-
tally).

e The exact form of the interaction, and hence that of the system, depends crucially on
the scattering length ‘a’.

e For negative a, corresponding attraction results into composite bosons: Cooper pairs.
e For positive a, repulsion allows loosely bound molecular states in vacuum: BEC.
e Through Feshbach resonance, ‘a’ can be smoothly varied.

e At the singular point, quasi-bound states appear: Unitarity.
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Fig.1: Controlling scattering length through Feshbach resonance.

e Resonance occurs when ‘open’ and ‘closed’ channel energies are close.

e Dilute : Interatomic potential range is far less than interparticle distance.

e Strongly interacting : Scattering length far greater than interparticle distance.



BECs with solitonic solutions

e Systems with four-Fermi self interaction are well-captured by mean-field approach at
low energies.

e Macroscopic nature of the BECs allow the Gross-Pitaevskii equation to be applicable.
e \When non-linearity balances the dispersion: Solitons.
e Solitons are familiar solutions of non-linear equations of varying orders.

e Close analogy with with ‘classical solutions’ of ‘phi-four’ field theory.



Unitary Fermi gas: Conformal Non-relativistic symmetries

At Unitarity: Low energy admits non-relativistic behavior.
Conformal symmetry prevails: Schroedinger algebra.

A Heisenberg sub-algebra maps to oscillators with ‘2-Omega’ modes in scaling param-
eter [1].

Earlier observed as SU(1,1) ‘2-Omega’ modes by Pitaevskii et al..

Scale-invariance: Universal nature of interaction: Effimov states and dimer formation.



Strongly coupled BEC with velocity restricted solutions

e The mean field behavior:

— The N-particle Lagrangian with two-body interaction:
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— For a very large N, the equation of motion (GP Equation) is:
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depicting the Born-approximated mean field ground state behavior.



Strongly coupled BEC with velocity restricted solutions

e Cigar-shapped BEC:
— The ‘effective’ external potential is:

1
V= EMwi(xz + 9?).

— This allows a wave-function of the type:
W (r,t) = f(2,1)G(x,y,0),
where [2],
e~ (@°+y?) /207
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— This yields the non-polynomial equation,

,ﬁaf h? 02 Uo IfI2 n hw 1
th—J = | —
6t 2M(922 27‘(’&%_ \/1—|-2aN|f|2 2 \/1—|—2aN|f\2

(3)

(4)

+4/1 +2aNf|2>] f.
(5)

10



Strongly coupled BEC with velocity restricted solutions

e Strong and weak coupling limits:
— In the strong-coupling limit,
2aN|f|?>> 1, Nl|y|?a< 1, (6)
to satisfy the diluteness of BEC.

— This reduces the non-polynomial equation to:

zﬁgf = _h_Qa_Q + 27w, al/? <|f\ — 001/2) f. (7)
ot 2M 0z2
— In the weak-coupling limit:
2aN|f|? < 1, (8)
yielding,
0 h? 02 5

which is the NLSE.
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Strongly coupled BEC with velocity restricted solutions

e The ansatz and consistency:

— The proposed ansatz is,

f(z,t) = k=D p(e). (10)
— This leads to:
o”p" + gp® +ep =0, (11)
where,
g = —4Mw,a‘?/n,

= 2Mw/h 4+ 4Mw, (c0a)*/?/h — k2.

— Next ansatz:
p(€) = A+ Ben®(€,m), (12)
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Strongly coupled BEC with velocity restricted solutions

e The ansatz and consistency (contd.):

— The consistency conditions yield (1),

1
A = —
2g

[4a20.—2n0-—4, B

e = 16a4(m2—m—|— 1).

e Stability and existance conditions:

= —a“m,

— For m=1, for the positive root of the effective chemical potential, we obtain a

W-soliton as:

p(6) = =5 1 Ssedi2(©)

— The corresponding Vakhitov-Kolokolov criterion reads:

Thus, the solution is stable.

— The restriction condition is:

dN(e)  6e

de g2’
M

k2> 272 .
h

(13)

(14)

(15)
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Strongly coupled BEC with velocity restricted solutions

e Stability and existance conditions:
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Fig.2:Numerical evolution of W-soliton depicting temporal stability.
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— For the negative root (m=1) one obtains,

3e dN (¢) €
= h2 = 6—
&) = —Soseat(©), D =65,
M
K> Je + 2=,

depicting a velocity restricted soliton for positive frequency.
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Strongly coupled BEC with velocity restricted solutions

e T he Pade’-type ansatz:

— A more generic Pade’-type ansatz:

A+ B f()
yields localized solutions (m=1):
_ e (1-— 2sech(2€)
/=5 (T etz ) an

which is the W-soliton obtained earlier.

— Separatrix in the phase-space of the solutions.
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Strongly coupled BEC with velocity restricted solutions

e Coherent control:

— The re-casted GP-equation for strong coupling:

00 = — 262 + v (DIhe + M) + XDy (18)

— Ansatz:

(2, t) = B(t)F(€£)eli®EOH60] (5 t) = a(t) + b(t)z — %c(t}zQ. (19)

— This yields a Riccati equation, which can be re-casted into a Scroedinger-like equ-
uation:
dc(t)

dt
—¢'(t) - M()p(t) = O, c(t):_al”a“i(t).

) = M@,
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Strongly coupled BEC with velocity restricted solutions

e Coherent control (contd.):

— Finally, we obtain the solutions as:

b(at) = —g\/Aosec(Mot)[l - gsecfﬂ(T/z)]ei¢<2»t>+%G<t>, M(t) = M2,
U(z,t) = —S\/Aosech(Mot)[l — gsechQ(T/Q)]em)(z’t), M(t) = —MZ.
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Fig.3: Temporal behavior of W-type soliton without gain/losss.
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Unitary fermi gas: Scaling symmetry

e Fermions at unitarity:

— Unitary fermi systems show scaling symmetry, enabling us to map it to free harmonic
oscillators.

N
D R Vi =, (20)
1=1

— The Universality of the system allows inverse-square two-body interactions, also
supported by the existance of Efimov states [3].

r— Ar, W(r) = A72w(r),

N
mo 2 (S B S v

i=1 i<j

— In 2-D, Dirac delta interaction also have the same scaling property.

— In 4-D, inverse-square wave-functions yield logarithmic divergences.
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Unitary fermi gas: Scaling symmetry

e T he Jastrow-type solution:
— A harmonic trap:
1 —>,
Hirap = Z Emwzr?, (21)

1

manifests a SO(2,1)/SU(1,1) symmetry, including the scaling operator.
— Observed in 1-D Calogero-Sutherland model and in higher dimensions also.

— In hyperspherical coordinates, the wave function admits a non-singular Jastrow
factor:

v=]]m-#5 (22)
i<j
and a Gaussian factor ‘G’ representing the trap dynammics.

— The Jastrow factor generates a similarity transformation:

H = vy 1(H)y=-A4 e,

N N
A = %vajtZﬁi(lw)ﬁi.
=1 =1
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Unitary fermi gas: Scaling symmetry

e The SU(1,1) algebra:

— An interparticle potetial of the form:

V(7 — 7)) = g°|F — 7177, (23)
leads to,
- 1 o= T
=3 vioa) H Vi—e/2, a=(1+1+/14+4¢>)/2.  (24)
- ’I"z'—?“j

— There are two different ways to form the SU (1,1) algebra. The common two
Cartan basis generators are:

1 I 1 D
TO——E ZT’Z-vl_i—eo s T_:EZT’,L' (25)
and the choices of the third generator are:
N
1 - (7 —75) S
f - 2 VA 2 ? J/ . )
M= v R=5T +a2m_”,2 : (26)
=1 Zj
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Unitary fermi gas: Scaling symmetry

e The SU(1,1) algebra (Contd.):
— Thus we obtain the SU(1,1) algebra:
[T, T-] = —2To, [To, T%] = T (27)

— Two algebras: The system is SI with or without the inter-particle interaction.
— The algebra ensures the existace of an ‘omega’ breething mode.

— The first SU(1,1) transformation yields:

e*T* ﬁeT*

N

~ . 1 1

H:E 7 Vi— A, =N+ NN -1, (28)
=1

with a Universal scaling shift to the ground state energy.
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Unitary fermi gas: Scaling symmetry

e The SU(1,1) algebra (Contd.):

— Now, as:
[H,exp{—A4/2}] = Aexp{—A/2}, (29)
— The operator:
T = Woexp{—A/2}, (30)
diagonalizes the last Hamiltonian to:
Hp=> Vi e, (31)

1

with polynomial eigenfunctions and ground energy shift of N/2 by the scaling ex-
ponent.

— Successive transformations by ‘free’ raising operator and lowering operator yields:

1 1 p 1
Hdecoupled = — = g VZQ + = 7"1'2 + (‘50 - _N)- (32)
2 L 2 £ 2
with a shift to the ground state energy.
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Unitary fermi gas: Scaling symmetry

e The origin of the omega mode:

— In 1-D, the Jastrow-type symmetric polynomials can be formed without considering
hyperspherical coordinaes.

N
H(xi)m) Z nw, ny — 07 1) 27 ’ (33)
l

l

— In higher dimensions, hyperspherical coordinates are required for symmetric poly-

nomials.
N
[[eD™ EBE=2) n+E (34)
l l

resulting into the ‘2 omega’ modes.
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Unitary fermi gas: Scaling symmetry

e Dimerization v/s molecule formation:

The equivalent three-body wave-function with the ‘contact condition’:

Y(ri,ro,r3) = <i — %) A(Rij,ri) + O(rij). (35)

7"2]

Molecule formation needs non-zero ‘A’: Wave-function is singular at zero interpar-
ticle distance.

Dimerization requires A=0: Non-singular, symmetric Jastrow type wave function.

The scaling symmetry and the exact map is valid in the dimerization regime with
long-distance correlations.

The Jastrow-type wave functions: Fractional exclusion statistics, in accord with
the Monte Carlo simulations.
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Concluding remarks

e Strong coupling BECs admit stable classical solutions of different forms. This consider-
ably differs from the weak-coupling expectations. A complete quantum treatment can
shed light, instead of a mean-field approach.

e New modes observed indicates lower dimensional uniqueness of unitary fermions. Non-
perturbative treatment is on the cards.

e Mapping to simpler systems can mean an effective theory with observable quasi particles.

e 241 and 141 field-theoretic behavior is still to be studied, in face of present experi-
mental realizations.
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Thank you for your patience
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