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Introduction

Figure 1: Graphene-Mother of all allotropic forms of
carbon.[Source: ’The electronic properties of graphene’ by A.H.Castro Neto, F.Guinea,
N.M.R.Peres, K.S.Novoselov and A.K.Geim.(Rev. Mod. Phys. 81, 109 (2009))]
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Introduction

Graphene is the first example of a truly two dimensional
crystal.

It was experimentally discovered in 2004 when a group
of physicists from Manchester University, led by Geim
and Novoselov, extracted a single sheet (a monolayer
of atoms) of graphene from graphite by the
micromechanical cleavage technique.
[Ref: K. S. Novoselov, A. K. Geim, S. V. Morozov, D.
Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A.
A. Firsov, Science 306, 666 (2004).]
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Introduction

Figure 2: (a)Lattice structure of graphene and
(b)Corresponding Brillouin zone
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Introduction

Graphene has a planer hexagonal honeycomb lattice
structure as shown in the figure.

The hexagonal lattice is made of two triangular
sublattices. The lattice sites are denoted by type A and
type B.

The reciprocal lattice is also hexagonal. Among its six
vertices only two are inequivalent corresponding to the
two sublattices A and B. These two points are known as
Dirac points and denoted by K+ and K−.
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Introduction

Assuming tight binding approximation in graphene we
obtain the Hamiltonian as

H =

Z

B

d2k

(2π)2

“

U†(~k) V †(~k)
”
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@

β γ
P

i ei~k· ~ui

γ
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i e−i~k· ~ui −β

1

A

0

@

U(~k)

V (~k)

1

A .

Here U † and U (V † and V ) are the creation and
destruction operators for electrons localized on sites A
(B) respectively.

The hopping parameter γ is related to the probability
amplitude for electron transfer between neighbouring
sites.

The energy difference between the sublattices A and B
are parameterized by β. Semenoff, PRL 53,2449(1984)
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Introduction

The energy eigenvalues can be determined by diagonalizing the matrix given in the
expression of tight binding Hamiltonian.

The separation between the positive and negative energy eigenvalues depends on the
parameter β. It is minimum at the Dirac points of the Brillouin zone.

For gapless graphene β = 0 and there is no separation between the positive and
negative energy eigenvalues at the Dirac points i.e conduction and valence band of
graphene touch each other at the six vertices of the Brillouin zone of gapless
graphene.

If an external perturbation breaks the honeycomb lattice symmetry in graphene, a gap
can be generated in its electronic spectrum and then β 6= 0. Consequently the Dirac
fermions acquire an effective mass m in gapped graphene.
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Introduction

Figure 3: Energy spectrum of planar graphene(Ref:A.
H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 81,
109 (2009))
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Introduction

Low energy excitations of a two dimensional graphene
sample behave like Dirac Fermions with the Fermi
velocity vF ≈ 106m/s.

Due to a small external charge impurity Ze ∼ 1, effective
Coulomb interaction strength in the sample is given by
α = Ze2

~κvF
∼ 1, where the dielectric constant κ ∼ 5.

When the effective strength of the external charge
exceeds a certain critical value αc, quasi-bound states
appear in the spectrum.

Can nontrivial topology affect αc and the quantum
dynamics ?
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The Dirac Equation

The low energy properties of the quasiparticle states
near the Fermi points in graphene can be described by
the four component Dirac wave function

Ψ =

(

ΨA

ΨB

)

, where ΨA =

(

ΨA+

ΨA−

)

and ΨB =

(

ΨB+

ΨB−

)

The pseudospin indices A and B label the two
sublattices of the primitive cell of graphene and the
valley indices + and − label the two inequivalent Dirac
points K+ and K− respectively.
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Dirac equation

The Dirac equation for the excitations of planar
graphene in the presence of a Coulomb charge Ze
around the Dirac point K+ is given by

[

−i~vF (σ1∂x + σ2∂y) + σ0

(−α
r

)

+mσ3

]

Ψ = EΨ,

where r is the radial coordinate in the two dimensional
x− y plane. The Pauli matrices σ1,2,3 and the identity
matrix σ0 act on the pseudospin indices A,B and m is
the Dirac mass generated due to the sublattice
symmetry breaking.

For gapless graphene m=0.

– p. 12



Short Distance Behaviour of Dirac spinor

The Dirac equation can be separated by assuming the
solution of the form

Ψ(r, θ) =

(

ΨA(r)

iΨB(r) eiθ

)

1√
2π
ei(j−

1
2
)θe−ηrrγ−

1
2 ,

where θ denotes the corresponding polar angle,
η =

√

(m2 − E2) and j is the half integral azimuthal
quantum number.

The leading short distance behaviour of the
wavefunction is given by

Ψ
(j)
A,B(r) ∼ rγ−

1
2 where γ =

√

j2 − α2.
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Critical Charge in planer graphene

From the expression of γ it follows that when |α|
exceeds |j|, γ becomes imaginary and as a result the
nature of the wave function becomes oscillatory at the
position of the charge impurity.

The critical value of the coupling is denoted by αc and it
is given by the minimum allowed value of |j| i.e 1

2 .

For a plane graphene sheet, αc = 0.5.
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Formation of Cone from Planar Graphene

A cone is formed from a two dimensional plane by
introducing a topological defect which modifies the
angular boundary condition.

Here we assume that the graphene cone is formed by
removing a sector AOB from the plane sheet of
graphene and then identifying the edges OA and OB of
the sector.

Due to this identification the frame {êx, êy} becomes
discontinuous across the joining line. So we choose a
new set of frames rotated with respect to the old frame
by an angle φ = θ + π

2 in the counter clockwise direction
Lammert and Crespi, PRL 85, 5190 (2000)

– p. 15



Formation of Cone from Planar Graphene

Figure 4: (a)Formation of a cone from plane graphene sheet by cut and paste proce-
dure and (b)Rotation of the coordinate frame due to its new orientation.
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Holonomy Modelled Through a Magnetic Flux Tube

When a cone is formed from a plane graphene sheet by
removing n number of sectors, the angular boundary
condition obeyed by the Dirac spinor is given by

Ψ(r, θ = 2π) = −ei2π[±n
4
+(1−n

6
)

σ3
2

]Ψ(r, θ = 0).

The effect of the angular boundary condition on the
wave function can be equivalently described by
introducing a magnetic flux tube passing through the
apex of the cone. The presence of a magnetic vector
potential modifies the boundary condition on a Dirac
spinor as

Ψ(r, θ = 2π) = −eie2πr(1−n
6
)AθΨ(r, θ = 0).

– p. 17



Dirac equation for a graphene cone with a Coulomb charge

Comparing the two expressions for Ψ(r, θ = 2π) we get

Aθ =
1

er
[±

n
4

(1 − n
6 )

+
σ3

2
].

Thus the Dirac equation can be written as
0

@

m − α
r

∂r − i
r(1− n

6
)
∂θ ±

n
4

r(1− n
6

)
+ 1

2r

−∂r − i
r(1− n

6
)
∂θ ±

n
4

r(1− n
6

)
− 1

2r
−m − α

r

1

A Ψ = EΨ

For gapless graphene m=0.
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Gapless Graphene Cone:Short Distance Behaviour

We use an ansatz for the wavefunction given by

Ψ(r, θ) =
∑

j

(

Ψ
(j)
A (r)

iΨ
(j)
B (r)

)

e−iErrγ−
1
2 eijθ,

where the total angular momentum j takes all half
integer values.

Substituting this ansatz in the Dirac equation with
m = 0, we note that the leading short distance
behaviour of the wavefunction is given by

Ψ
(j)
A,B(r) ∼ rγ−

1
2 where γ =

√

ν2 − α2 and ν =
(j ± n

4 )

(1 − n
6 )
.
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Critical Charge in graphene cone

From the expression of γ it follows that when |α|
exceeds |ν|, γ becomes imaginary.

The critical value of the coupling is denoted by αc and it
is given by the minimum allowed value of |ν|.
The parameter ν depends on j and the number of
sectors n removed from a plane to form the graphene
cone. Hence we see that the critical coupling αc

explicitly depends on the angle of the graphene cone.
Thus a conical topology affects the critical charge of the
system.
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Dependence of Critical Charge on Conical Topology

Table 1: The values of critical charge αc i.e the min-

imum values of |ν| for different values of opening

angle of the graphene cone i.e for different values of

n.
value of n Critical charge (αc) Corresponding (j)

0 0.5 ±1
2

1 0.3 ±1
2

2 0 ±1
2

3 0.5 ±1
2

4 1.5 ±1
2

5 1.5 ±3
2

– p. 21



Gapless Graphene Cone:Scattering Matrix

Using the zigzag edge boundary condition Ψ
(j)
B (a0) = 0,

where a0 is a distance from the apex, of the order of the
lattice scale in graphene we obtain the scattering matrix
S as

S = e2iδν(k) =

[

fα,λ + e2iζ(k)e−πλµfα,−λ

eπλµf∗α,−λ + e2iζ(k)f∗α,λ

]

e−2iαln(2kr)

where

k = −E, λ =
√
α2 − ν2 and µ =

√

α+λ
α−λ .

fα,λ = Γ(1+2iλ)
Γ(1+iλ−iα) and e2iζ(k) = i(1+iµ)

(1−iµ) e
2iλln(2ka0).
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Gapless Graphene Cone:Scattering Phase Shift

The scattering phase shift is given by

δν(k) = arg[e−iζ(k) + beiζ(k)] − αln(2kr) + arg(fα,λ)

where b = e−πλµfα,−λ

fα,λ
.

We plot the scattering phase shift ignoring the Coulomb
tail term −αln(2kr).

The plot shows that the phase shift depends on the
topology through its dependence on n via ν. When the
coupling α is deeper in the supercritical region, the
phase shift is observed to have more number of kinks,
which indicate the bound states.
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Plot of Scattering Phase Shift

Figure 5: Dependence of scattering phase shift δ on wavenumber ka0 for ν =

0.3, 0.5, 0.9, 1.5 and α = 1.8, ignoring the Coulomb tail term −αln(2kr). As the value of
ν increases, the kinks in the phase shift become sharper, which indicates the dependence of
the phase shift on the angle of the graphene cone.
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Gapless Graphene Cone:Quasi-bound state Energy

In gapless graphene we do not expect bound states
due to Klein tunneling.

In the supercritical regime, the system admits
quasi-bound states whose spectrum is obtained from
the zeroes of the S matrix.

The quasi-bound state energies are given by

Ep = − 1

2a0
exp

[

−pπ
λ

+ i

(

1

2α
− π

2

)]

,

where p is a positive integer.
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Plot of Quasi-bound state Energy

Figure 6: Dependence of ground state energy on the Coulomb potential strength for

different angles of the graphene cone. We have considered ν =
j+ n

4

1− n
6

and j = 1
2

.
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Gapless Graphene Cone:LDOS

Another interesting observable in this context is the LDOS.
We have plotted the standing wave oscillations in LDOS
ρ(k, r) using

ρ(k, r) =
4

π~vF

∑

j

|Ψ(j)(k, r)|2,

where Ψ(j)(k, r) is the radial part of the Dirac spinor, for a
given angular momentum channel j.
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Plot of Standing Wave Oscillation in LDOS

Figure 7: Energy dependence of LDOS in presence of a Coulomb potential for n = 0

and a particular value of r and with j = 1
2

and α = 0.6.
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Spectrum in graphene cone with a supercritical charge

Figure 8: Energy dependence of LDOS in presence of a Coulomb potential for n = 1

and a particular value of r and with j = 1
2

and α = 0.6.
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RG Flow of Charge Impurity Strength

The real part of Ep diverges as the cutoff a0 → 0.

To study the RG flow, we now promote the coupling
constant α as a function of a0 and demand that as
a0 → 0, the energy for any fixed level p (say p = 1)
remains independent of the cutoff.

In the leading order, where α is only slightly above the
critical coupling, this prescription gives the β-function as

β(λ) ∼ −λ2 + ..

Thus we have an ultraviolet stable fixed point at λ = 0 or
at α = ν. Hence, for any given value of n and j, the
coupling α in the supercritical regime is driven to its
critical value.
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Gapped Graphene Cone:Short Distance Behaviour

The Dirac equation for a gapped graphene cone can be
separated by assuming the solution of the form

Ψ(r, θ) =
X

j

0

@

Ψ
(j)
A (r)

Ψ
(j)
B (r)

1

A eijθ =
X

j

0

@

Ψ̃
(j)
A (r)

Ψ̃
(j)
B (r)

1

A e−ηrrγ− 1
2 eijθ.

where

θ denotes the corresponding polar angle,η =
√
m2 − E2

and j is the half integral azimuthal quantum number.

Substituting this ansatz in the Dirac equation, we note
that the leading short distance behaviour of the
wavefunction is given by

Ψ
(j)
A,B(r) ∼ rγ−

1
2 where γ =

√

ν2 − α2, ν =
j ± n

4

1 − n
6

.
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Regularized Boundary Condition

The critical charge αc is determined by the minimum
allowed value of ν.

To observe the effect of external supercritical Coulomb
charge on the gapped graphene cone we shall first
consider a regularization of the Coulomb potential given
by

V (r) =

{

−α/r, r > a

−α/a, r ≤ a
, (1)

where the Coulomb charge is placed at the apex of the
gapped graphene cone.

a is the distance of the Dirac electron from the apex and
it is of the order of the lattice parameter.
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Quasibound state energy spectrum

The Dirac equation for gapped graphene cone is solved
for the two different regions r > a and r ≤ a differently
and their solution are matched at r = a.

The continuity condition at a −→ 0 will be satisfied when
f(E) ≡

Arg[Γ(1+iλ− Eα
η

)]+Arg[ν− α
η

(m−E)+iλ]+λln(2ηa)+Arg[ν−α
J
|ν+ 1

2
|
(α)

J
|ν− 1

2
|
(α)

−iλ]+pπ

= Arg[Γ(1 + 2iλ)] where p is a positive integer.

This condition gives the quasibound state energy
spectrum of gapped graphene cone in presence of a
regularized Coulomb potential.
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Quasibound state energy spectrum

Figure 9: (a)Quasibounstate energy spectrum with regularized potential is shown.
(b)Dependence of |Ψ(r)|2 on the distance r from the charge impurity placed at the apex of
the gapped graphene cone is shown for a particular energy E = 0.96m obtained from the
plot of the quasiboundstate energy spectrum.
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Regularized potential : Critical charge

The mass affects the critical charge of the system.

Here the critical charge refers to that value of Coulomb
potential strength for which E = −m.

For the region near critical potential we have
αc = ν + π2

2νlog2
[2mνCa]

where

C = exp
[

−2Ψ(1) −
J
|ν− 1

2 |
(ν)

ν(J
|ν− 1

2 |
(ν)−J

|ν+1
2 |

(ν))

]
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Plot : Critical charge vs ma

Figure 10: Dependence of critical charge on the nonzero mass and cutoff parameter
are shown for zigzag edge boundary condition for different opening angles of the gapped
graphene cone.
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Zigzag edge boundary condition

The zigzag edge boundary condition is given by
Ψj

B(a) = 0, where a is a distance from the apex, of the
order of the lattice scale in graphene.

The square integrability condition of the wave function
indicates that as r → ∞ the diverging part of the wave
function must vanish.

This gives the condition
f(E) ≡ Arg[Γ(iλ− Eα

η
)]+Arg[ν + α

η
(m+E)− iλ]+λln(2ηa)+pπ = Arg[Γ(1+2iλ)]

where p is a positive integer.

This condition gives the quasibound state energy
spectrum of gapped graphene cone with zigzag edge
boundary condition.
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Quasibound state energy spectrum

Figure 11: (a)Quasibounstate energy spectrum with zigzag edge boundary condition
is shown. Here the blue line represents Arg[Γ(1 + 2iλ)] and the dashed and the dark red
line represents RHS of f(E)). (b)Dependence of |Ψ(r)|2 on the distance r from the charge
impurity placed at the apex of the gapped graphene cone is shown for a particular energy
E = 0.94m obtained from the plot of the quasiboundstate energy spectrum.
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Comparison : Energy spectrum

Figure 12: (a)Quasibounstate energy spectrum with zigzag edge boundary condi-
tion and regularized Coulomb potential. Here the blue line represents Arg[Γ(1 + 2iλ)] and
the dashed and the solid line represents RHS of Equations giving f(E). (b)Dependence of
|Ψ(r)|2 on the distance r from the charge impurity placed at the apex of the gapped graphene
cone is shown at a particular energy. The values of energy are obtained from the quasibound-
state energy spectrum. From Fig.(a) we can see that for zigzag edge boundary condition a
possible bound state energy is E = 0.9895m and for regularized potential a possible energy
is E = 0.995m.

– p. 39



Comparison : Critical charge
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Figure 13: (a)Dependence of critical charge on the nonzero mass and cutoff param-
eter are shown for regularized Coulomb potential for different opening angles of the gapped
graphene cone. (b)Dependence of critical charge on the nonzero mass and cutoff parameter
are shown for both zigzag edge boundary condition and regularized Coulomb potential for dif-
ferent opening angles of the gapped graphene cone. The dotted lines show the dependence
for zigzag edge boundary condition and the solid lines show the dependence for regularized
Coulomb potential.

– p. 40



Gapped graphene cone : Subcritical region

In the subcritical region γ is always real.

Bound states occur when γ − αE
η = −p.where

p =

{

0, 1, 2, ..., when ν > 0,

1, 2, 3...., when ν < 0.

The corresponding bound state spectra is obtained as

Ep =
m sgn(α)
q

1+ α2

(p+γ)2

.

The energy should be of the same sign (positive or
negative) as α because otherwise the value of p will
become negative and in our range of interest, it is not
allowed
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Gapped graphene cone : Subcritical region

In the scattering sector the parameter η =
√
m2 − E2

becomes purely imaginary, i.e. η = iq, where the real
parameter q is defined as q =

√
E2 −m2.

Using the r → ∞ limit of the scattering states the
scattering matrix is obtained as

S(q) = (2iq)
2iαE

q

“

γ + i Eα
q

”

“

ν − i mα
q

”

Γ
“

1 + γ − i αE
q

”

Γ
“

1 + γ + i Eα
q

” e
iπ

“

γ+i αE
q

”

.

Now the self adjointness of the Dirac Hamiltonian is
checked for the subcritical region by using the
self-adjoint extension procedure prescribed by von
Neumann to consider the effect of topology and short
range or singular interactions.
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Introduction to Self-adjoint Extension

We know that in quantum mechanics the observables
must have real eigenvalues.

The operators corresponding to these observables are
conventionally called self-adjoint operators.

Whether an operator is self-adjoint or not depends on
its boundary conditions.

Those possible boundary conditions can be obtained
from the principles formulated by von Neumann on
self-adjoint extentions of operators.
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Introduction to Self-adjoint Extension

Let the inner product of two elements α, β ∈ H be
denoted by (α, β).

Here H denotes the Hilbert space.

An operator T with domain D(T ) is called a symmetric
operator if it obeys the relation

(φ, Tψ) = (Tφ, ψ), (2)

for all elements φ, ψ ∈ D(T ).

The symmetric operator T is self-adjoint if and only if

T = T ∗ and D(T ) = D(T ∗). (3)

where T ∗ denote the operator adjoint to T .
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Introduction to Self-adjoint Extension

To check whether T is self-adjoint or not we consider
the equations

T ∗φ+ = +iφ+ (4)

T ∗φ− = −iφ− (5)

Let n± denote the number of linearly independent
square integrable solutions of the above two equations
respectively.

The pair (n+, n−) are called the deficiency indices for
the operator T .
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Domain of Self-adjointness

The operator T can be classified in terms of the
deficiency indices as follows:

T is essentially self-adjoint iff (n+, n−) = (0, 0).
T is not self-adjoint but has self-adjoint extensions iff
n+ = n− = n 6= 0.
If n+ 6= n−,then T has no self-adjoint extensions.

If T admits self-adjoint extension, von Neumann’s
prescription tells us that its domain of self adjointness is
given by

DU (T ) =

{

φ+ φ+ + Uφ−

∣

∣

∣

∣

φ ∈ D(T )

and U is a n× n unitary matrix
}

. (6)
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Application in Graphene

In case of gapped graphene cone it can be shown that for the range
0 < γ < 1

2
, n+ = n− = 1.

Hr admits a one parameter family of self-adjoint extensions.

According to von Neumann’s analysis domain in which Hr is self-adjoint is given by
Dz(Hr) = D(Hr) ⊕ {ei z

2 Ψ+ + e−i z
2 Ψ−}.

Here z ∈ R(mod 2π) is the self-adjoint extension parameter.

Physically, the domain Dz(Hr) provides the boundary conditions for which the radial
Dirac operator for graphene is self-adjoint and we see that the boundary conditions are
labelled by the parameter z.

We would now like to find the spectrum of the system in a range of ν and the effective

subcritical Coulomb strength α such that 0 < γ < 1
2

.
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Bound State Spectrum

In terms of the system parameters and the self-adjoint extension parameter z the
spectrum is determined by the equation

f(E) ≡

„

η2

1 + m2

«γ

“

1 − γ − αE
η

”

Γ
“

1 + γ − αE
η

”

Γ (1 − 2γ)
“

1 + γ − αE
η

”

Γ
“

1 − γ − αE
η

”

Γ (1 + 2γ)

=
χ1cos

`

φ1 + z
2

´

χ2cos
`

φ2 + z
2

´ .

Each choice of z corresponds to a different boundary condition described by the
domain Dz(Hρ) and leads to an inequivalent quantum theory. However the choice of z

for a particular system is determined empirically as the theory cannot predict its value.

Though the equation cannot be solved analytically, from a typical plot of f(E) it can be

obtained numerically.
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Plot : Bound state spectrum

Figure 14: (a)Plot of f(E) is shown for system parameters j = 3
2
, n = 1, α = 1.48

and m = 1. The three horizontal line corresponds to the three different values of the self
adjoint extension parameter z = 4, 0.1,−0.8. (b) Dependence of LDOS in the bound state
sector of the gapped graphene cone on the distance r from the external charge impurity is
shown for three different values of bound state energy corresponding to three different values
of self adjoint extension parameter.
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Plot : Bound state spectrum

Figure 15: (c) Plot of f(E) is shown for two different values of n = 1 (dotted) and

n = 3 (solid) with system parameters j = 1
2

, α = 0.29 and m = 1. The three horizontal
line corresponds to the three different values of the self adjoint extension parameter z =

4, 0.1,−0.8. (d) Dependence of LDOS on the distance r from the external charge impurity is
shown for two different values of bound state energy corresponding to two different values of
n with the self-adjoint extension parameter z = 0.1.
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Scattering Matrix

The S matrix for gapped graphene cone for the parameter range 0 < γ < 1
2

is given by

S(q) = (2iq)
2i αE

q
C1

C2

where

C1 = −
χ1 cos(φ1 + z

2
)

χ2 cos(φ2 + z
2
)
(2η1)2γ(2η)−2γ 1 + f2

1 + f1
f1

Γ(1 + 2γ)

Γ(1 + γ + i αE
q

)
+f2

Γ(1 − 2γ)

Γ(1 − γ + i αE
q

)

and

C2 = −
χ1 cos(φ1 + z

2
)

χ2 cos(φ2 + z
2
)
(2η1)2γ(2η)−2γ 1 + f2

1 + f1

Γ(1 + 2γ)

Γ(1 + γ − i αE
q

)
e
−iπ(γ+i αE

q
)

+
Γ(1 − 2γ)

Γ(1 − γ − i αE
q

)
e
−iπ(−γ+i αE

q
)
,

where

f1 ≡
γ − αE

η

ν + mα
η

, f2 ≡
−γ − αE

η

ν + mα
η

.

From this S matrix the scattering phase shift can be determined.
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Plot : Scattering phase shift

Figure 16: (a)Phase shifts in the gapped graphene cone is shown for three different
values of the self adjoint extension parameter z = 3,−0.5,−5 where the system parameters
are n = 1, j = 3

2
, α = 1.48, and m = 1. (b) Scattering phase shifts are shown for different an-

gles of the gapped graphene cone with the sae parameter z = −0.5 and system parameters
j = 1

2
, α = 0.29 and m = 1.
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LDOS
To determine the LDOS of the system we use the
following expression µ(E, r) = 4

π~vF

∑

j |Ψ(j)(k, r)|2.
We have observed that LDOS depend on the values of
self adjoint extension parameter z and also on the
topology of the system.

Measurement of LDOS using scanning tunneling
microscopy can give us information about the self
adjoint extension parameter and the topology of the
system.

– p. 53



Plot : LDOS

Figure 17: (a)Dependence of LDOS on the distance r from the Coulomb impurity is
shown for two different values of sae parameter z = −0.5, 0.7 and a particular value of E = 4

and with j = 1
2
, n = 3, α = 0.29 and m = 1. (b) Effect of topology on r dependence of

LDOS is shown for sae parameter z = −0.5, E = 4 and with sam system parameters.
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Plot : LDOS

Figure 18: (c)Energy dependence of LDOS is shown for two different values of
sae parameter z = 5, − 0.8 at a distance r = 1 from the external Coulomb impurity. The
system parameters used for the plot are α = 0.29 and m = 1 and contribution coming from
the angular momentum channel j = 1

2
is considered. (d) Effect of topology on the energy

dependence of LDOS is shown for sae parameter z = −0.8, angular momentum channel
j = 1

2
and system parameters α = −0.29, n = 1, 3 and m = 1.
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Conclusions

The system of a graphene cone with an external Coulomb charge at its apex has been
described by the combination of the Coulomb charge and a suitable magnetic flux tube
passing through the apex.

The quantities of physical interest such as the scattering phase shifts, the LDOS and
the quasi-bound state energies depend explicitly on the topology.

The existence of the quasi-bound states in gapless graphene cone indicates the
possibility of the localization of the wavefunctions in the presence of a supercritical
charge. Our analysis shows that the nature and extent of the localization depends on
the spatial topology of the gapless graphene sample.

We have given qualitative arguments which shows that under the RG flow and for
ν 6= 0, the supercritical charge in the gapless graphene cone tends to its critical value.
If this argument can be extended for ν = 0, for which the critical charge vanishes, that
would lead to complete shielding of the external charge. This issue and the related
electronic properties are currently under investigation.
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Conclusions

For gapped graphene cone the above analysis has been done in both the subcritical
and supercritical regime.

The critical value of the Coulomb charge has been observed to depend on the sample
topology and the Dirac mass.

In the supercritical region we obtained the condition for the appearance of bound
states with both the zigzag boundary condition and the regularized Coulomb potential.

In the subcritical region for a certain range of the parameter γ we have shown that the
corresponding Hamiltonians are not self-adjoint. However they can be made
self-adjoint by choosing suitable boundary conditions.

These boundary conditions introduce a self-adjoint extension parameter z. For each
value of z we obtained an inequivalent quantization and spectral data for the conical
system.

The physically interesting quantities in this system include the scattering phase shifts,
the S matrix, the LDOS and the bound state energies. We have shown that all these
quantities depend on the parameter z explicitly.
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Conclusions

From the nature of dependence of the LDOS plots on z, the parameter can be
determined empirically.

We have considered the effect of a conical topology and observed how the LDOS plots

for different angles of the cone, depends on the self-adjoint extension parameter.
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