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Black hole spacetime : another view
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Special relativistic sptm (Minkowski)
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Spherical (static) spacetime (Schwarzschild)
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Black holes ... are the most perfect macroscopic objects there are in the
universe. The only elements in their construction are our notions of space
and time ... and because they appear as ... family of exact solutions of
Einstein’s equation, they are the simplest objects as well.- Subramanian
Chandrasekhar

Yet Black hole sptms have

• Singularities, where all known laws of physics break down

• Event horizon : boundary of sptm accessible to asympt. obs.

Laws of bh mechBardeen, Carter, Hawking 1972

δAhor ≥ 0
κhor = const
δM = κhor δAhor + ΦδQhor + · · ·
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Gen. Sec. Law of thermo.Bekenstein, 1973 :δ(Sout + Sbh) ≥ 0.

Sbh =
Ahor

4l2P
(kB = 1)

lP ≡ (G~/c3)1/2 ∼ 10−33cm→ quantum gravity

Need to go beyond classical GR - compulsion, not aesthetics

Sbh ∼ l−P 2 → nonperturbative QG

Physics at10−33 cm determines entropy of bh of size1011 cm – Extreme
Macro QM!

Two issues to be addressed:

• How is it that Sbh = Sbh(Ahor) while Sthermo = Sthermo(vol) ?

• What degrees of freedom contribute toSbh ?
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Vac EM in Minkowski sptm: ∇ · ~E = 0 everywhere inV ⇒ Q(V ) = 0

Can define total charge globally

Qtot ≡

∫

S∞

~E · n̂d2a

→ holographic

But,Hv = (1/8π)( ~E2 + ~B2) → photons

Vac GR : noT ab s.t.∇aT
ab = 0 in bulk

Hv =

∫

S
[NH + N · P]

≈ 0 when H ≈ 0, P ≈ 0

⇒ no analogue ofE2 + B
2 in vac GR! Excitations ‘polymeric’
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Grav energyglobally defined

HKomar =
1

8π

∫

S∞
d2σab∇aKb

Classically, bulk⇒ boundary entirely

Holography: 3 dim bulk info encoded on 2 dim bdy

Gravitons ?

Weak field approxgab = ḡab︸︷︷︸

bkgd

+ hab︸︷︷︸
graviton

Hv = (1/8π)[(3h)2 + (3π)2]

As |h| ր , bkreactn ր, approx. invalid nonperturbatively
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QGR:∃ indep qu fluct on bdy :H = Hv ⊗Hb

|Ψ〉 =
∑

v,b

cvb |ψv〉︸︷︷︸

blk

|χb〉︸︷︷︸

bdy

∈ Hv ⊗Hb

Ĥ = Ĥv︸︷︷︸
blk

⊗1 + 1 ⊗ Ĥb︸︷︷︸

bdy

Hamiltonian constraint (bulk)

Ĥv |ψv〉 = [Ĥg,v + Ĥm,v]|ψv〉 = 0

Q̂ = Q̂v ⊗ Îb + Îv ⊗ Q̂b

Q̂v|ψv〉 = 0
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New Hamiltonian constraint

Ĥ ′
v|ψv〉 = 0

Ĥ ′
v ≡ Ĥv − ΦQ̂v

Grand Partition FunctionMajhi, PM 2011

ZG = Tr exp−βĤT + βΦQ̂

=
∑

v,b

|cvb|
2〈χb| ⊗ 〈ψv| exp−βĤ ′|ψv〉 ⊗ |χb〉

Ĥ ′ = ĤT − ΦQ̂

Observe

Ĥ ′ = (Ĥ ′
v ⊗ Îb + Îv ⊗ Ĥ ′

b)

Ĥ ′
v|ψv〉 = 0
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ZG = ZGb
ZGb = Trb exp−β(Ĥb − ΦQ̂b)

Bulk states decouple! Boundary states determine bh thermodynamics
completely→ Thermal holography ! (PM 2001, 2007; Majhi, PM 2011)

Different from strong holography(’t Hooft 1992; Susskind 1993; Bousso 2002)

Holographic Hypothesis (HH)
... Given any closed surface, we can represent all that happens (gravita-
tionally) inside it by degrees of freedom on this surface itself. This ... sug-
gests that quantum gravity should be described by atopological quantum
field theory in which all (gravitational) degrees of freedomare projected
onto the boundary.
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What sort of boundary ? Not asymptotic bdy; notinner bdy of accessible
sptm→ EH (teleological, stationary, ...)

Work with Isolated Horizons (IH)as local, non-stationaryequilibriumgen-
eralization of EHs(Ashtekar et. al. 1997-2001)
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• Nonstationary

• Null (lightlike) inner boundary of sptm with topolR⊗ S2

• A(S2) = const→ isolation

• Zeroth law of IHMsurface gravκIH = const

•MIH ≡ MADM − E∞rad s.t. δMIH = κδAhor + ΦδQhor (Ist law of
IHM)

• IH microcanonical ensemble with fixedAhor, Qhor

• Hawking radiation requires IH→ Dynamical Hor
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Black hole radiance
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Grand Canonical Ensemble of IHs in rad bath: computeZb → Scan

• Assume equil. IH with fixedAIH , QIH andMIH = M (AIH , QIH).

• Keep Gaussian fluct.(Das, Bhaduri, PM 2001; Chatterjee, PM 2003)

• An ∼ nl2P , n >> 1 (justify later)

Scan(AIH) = SIH(AIH) +
1

2
log ∆(AIH)

︸ ︷︷ ︸

th fluc corr

Two issues arise :

• ExpectScan + ve real ⇒ C > 0 (th stab). How/when violated (e.g.
Schwarzschild, RN)?

• How to computeSIH ? Need microscopic QG theory of IH
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Condition for thermal stability (Majhi, PM 2011)

ZG =

∫
dA dQ

Ax Qy
g(A,Q) exp−β[E(A,Q) − ΦQ]

=

∫

dA dQ eS(A)−βE(A,Q)+βΦQ

S(A) is the microcanonical entropy

Thermal stability criterion

β ≡
SA(A)

EA(A,Q)
> 0

βMAA(A,Q) − SAA(A) > 0
{
βMAA(A,Q) − SAA(A)

}
βMQQ(A,Q) − β2M2

AQ(A,Q) > 0
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MAA

MA
−

M2
QA

MQQMA
>
SAA
SA

Partial differential inequality
Ansatz:

M (A,Q) = µ(A) · χ(Q) , χ(0) = 1

→

µ

µA

[
µAA
µA

−
SAA
SA

]

>
χQ
χ

χQ
χQQ

Solution :

χ(Q) = (1 + CQ)
1

κ−1

µ(A) > (αS + γ)
κ
κ−1
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κ > 1 , γ = 0 , (kBα)
κ
κ−1 = MP ⇒

M

MP
>

S

kB

[
S

kB(1 + CQ)

] 1
κ−1

=
S

kB

[

1 +
1

κ− 1
ln

(
S

kB(1 + CQ)

)

+ · · ·

]

• Checks out withQ = 0 casePM 2007

• Necessary and sufficient condition for black hole tobe stable : checks
out with classical RN and AdS-RN metrics

• No classical metric used in derivation
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Bulk dof gab → eIa → ωIJa → SL(2, C) gauge potential→ Self-dual
connection formulationSen 1982, Ashtekar 1985

IH null bdy⇒ 3gabdx
adxb = 0 = 3g

3 dim gravity :SIH =
∫

IH

√

−3g 3R impossible!

On IH ω(bulk) → A(IH) → SL(2, C) gauge pot of TGT

SIH [A] = tr

∫

IH
ǫabc

[(
k

2π

)

(Aa∂bAc + AaAbAc) + AaΣbc

]

≡ SCS+sources

SGR + SIH → variational principle OK, provided

(
k

2π
FCS + E × E

)

S2

= 0 , k ≡ (AIH/4πl
2
P ) >> 1
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Loop Quantum Gravity/Canonical QGR (bkgd-indep, nonpert)

SL(2, C) inv self-dual gravity→ complex config. space→ gauge fix to
Barbero-ImmirziSU(2) inv formlation

ForA, E canonical quantization⇒
[

ÂaI , Êb,J

]

= i δab ηIJ δ
(3)(...)

Global variables

holonomies hl ≡ P exp

∫

l
A , Fluxes Ef,S ≡

∫

S
faE

a

LQG : promote these to operatorsĥl(Â) , Êf,S

Wave functionals in ‘position’ basisΨ = Ψ[A] can be expressed as func-
tions of holonomiesψ(hl1, ...hln, ...).

Holonomies completely specified by spinjl associated with linkl
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Spin network : Quantum Space
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Area operator (also volume, length) have bded, discrete spectrum

sI

ÂS ≡
N∑

I=1

∫

SI

det1/2[2g(Ê)]

a(j1, . . . , jN ) =
1

4
γl2P

N∑

p=1

√

jp(jp + 1)

lim
N→∞

a(j1, ....jN ) ≤ Acl +O(l2P )

Equispaced∀jp = 1/2
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‘Quantum’ Isolated Horizon → effective description(Ashtekar, Baez, Corichi, Krasnov

1997)
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Need to computeSIH = log dimHCS+ptsources(j1,...jn)
for fixed AIH ±

O(l2P )

Witten (1986) :dimHCS = #conf blocks of SU(2)k WZW (CFT2) on
puncturedS2

4 dim gravity→ 2 dim CFT link

⇒ (Kaul, PM 1998)

dim HCS+(j1,...,jn)
=

n∏

p=1

jp
∑

mp=−jp

[δm1+···+mn,0

−
1

2
δm1+···+mn,−1

−
1

2
δm1+···+mn,1]
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If jp = 1
2 ∀ p = 1, . . . , n

Smc = SIH =
AIH
4l2P︸︷︷︸

(Ashtekar et. al. 1997)

−
3

2
log

(

AIH
4l2P

)

+ const. + O(A−1
IH)

︸ ︷︷ ︸

(Kaul,PM 2000)

Infinite series of corrections to semicl BHAL : characteristic signature
of LQG
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IT from BIT
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Plaquettes haveApl ∼ l2Pl : AIbh/Apl ≡ NIbh >> 1

Each Plaq has a binary BIT (e.g., spin 1/2 state)⇒ count total
dim{net spin = 0 states} ≡ N

N =
NIbh!

((NIbh/2)!)2
−

NIbh!

(NIbh/2 + 1)!(NIbh/2 − 1)!

Use Stirling approximation forNIbh >> 1 andSIbh ≡ logN with units
chosen such thatkB = 1

For macroscopic isolated black holes (NIbh >> 1) Das, Kaul, PM 2001

SIbh =
AIbh
4l2P

−
3

2
log

(

AIbh
4l2P

)

+ const. +O

(

4l2P
AIbh

)

︸ ︷︷ ︸
qu.sptm.corr.
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Summary

• Weaker version of holography derived from QGR, albeit heuristic

• Can bh entropy receives positive log (area) corrections dueto thermal
fluct

• Thermal stability: prelim non-semicl understanding why some black
holes decay and others may not

• Microcan bh entropy understood for macro bhs; BH area law receives
infinite series of finite corrections – signature of LQG

• Bekenstein entropy bound tightened due to LQG corrections
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Pending Issues

• IH → Dynamical Hor unclear: Hawking radiation ?

• Info Loss Puzzle: can lowest area quantum be a remnant ? Even so, how
do we get back lost info ?

• How does LQG resolve black hole singularities ?

• Gauge-gravity connection : relation between Chern Simons dynamics ?


