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Introduction

Dynamics in gauge theory is governed by the Yang-Mills Lagrangian
density by which we mean the action is given by
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Action is metric dependent.

trT2TP = —%6"1’, A=A, dx*

We apply the standard variational principle and apply usual procedure of
Noether's theorem to find out energy momentum tensor.

In a topological field theory the action does not depend on the particular
form of the space-time, it embraces all possible manifolds in a particular
class , the energy momentum tensor is identically zero ; so to say



Chern-Simons action : Q[A] = —g& [}, (AAdA+ 3ANANA)

A topological gauge theory can be taken as,

L= % trF*F,, — k tr(Aa0gA, + %AaAﬁAv)

This will describe a dynamical gauge theory affected by the topological
term . If we consider a pure topological gauge theory there will be no
dynamics, Hamiltonian is identically zero .

The above lagrangian is gauge invariant under small gauge
transformation and the amplitude density exp(iS) is invariant under all
gauge transformation (small and large).

For pure Chern-Simons theory no dynamics — could one construct a
general Hilbert space ? Here we need Geometric Quantization.
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Lagrangian with B-I like parameter

L = Li+1L,
L, = 1 /\<2dw/+e/ Wy AWk + = - ,JKeJAeK)
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~v is dimensionless. Internal metric = diag(-,+,+)
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» Choose SO(2,1) connection A’ := w! + ETI
then L = L~ [(1/v+ 1)L+ (1/y — 1) L]

» With

L=A'NdA, + ek Al AN AT N AK
» Two SO(2,1) Chern Simons Lagrangians.



Chern Simons

v

Choose SO(2,1) connection A’ := w! + ETI
then L = L~ [(1/v+ 1)L+ (1/y — 1) L]

» With

L=A'NdA, + ek Al AN AT N AK
Two SO(2,1) Chern Simons Lagrangians.
EOM: F = dA, + €UKAJ ANAK =0
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Phase Space Structures

» Presymplectic structure on covariant phase space: Q = Q) 4 Q)

Q(i) (61,52) = 87rG (1/’}/ + 1) fZ 5[1 /\ (52]/4
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» Presymplectic structure on covariant phase space: Q = Q) 4 Q)

Q) (61,02) = 87rG (1/y+1) fz 5[1 'A 62]’4
ie, {A% (x,1), A (y, 1)} = f;;i/ia,n'J52 (x.y)

> In terms of frame-connection variables:
{wilx.t),¢/(y. 1)} = 4G lélm”52 (x,y)
@il .0/, 0} = —4rG Z/ ’1sm'J62 (%)
{e,-’(x, t),ejj(y, )} = —47TG 5,ﬂ7”62 (x,¥)
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Physical Phase Space

» Consider space-time foliable as ¥ x R
Physical phase space : space of flat Chern Simons Connections
modulo gauge transformations

ie, [hom(mi () — SO(2,1))/~]%?
~ - ®2
» For ¥ = T2. Phase space is topologically: [T UPU 51}
T is a punctured torus. P = (R?\{0,0}) /Z2.

> Induced symplectic structure:
w=d0 = 'k‘(l%ﬂdzH) ANdZy + ’kff)ﬂdz )y Adz

T2
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Geometric Quantization of T

» Polarization: choice of (holomorphic) sections of line bundle over T
Vo.V(z,2) =0 where V=d—iO

» Physical state space should carry representations of:

) Helsenberg Weyl Group X ii) Fundamental group of T
p=— 7'3 + 7z o 2’8 aba=lb7l = A
alAa A"l =1bAbIATI =1

> bmaneikmﬁ/efikn&’w(z) _ ¢(Z)

> k=p/qeQ
» Hilbert space spanned by p states each g component.
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Analytic Continuation on P

» How to continue quantization on P?

> Prescription for continuation on P:
x(z) = z"¢(z)
> k = r/q chosen for x to have g branches.

» Uniquely fixes the analytic continuation of wave functions to P with
explicit asymptotic form.

(1/v+1
» Hence k(:t) = 7( /2G ) = %

» Dimension of the Hilbert space is p(;)p()-

I/GeQt ~eQt
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Studies on consistent 3D Quantum gravity on Lens Spaces.

This is mainly a study on non-perturbative quantization of 3D gravity
with positive cosmological constant (de Sitter space is the prototype
vacuum solution - asymptotically ds . Lens space is topologically a three
sphere modulo a discrete group . Eucleadianization of de Sitter is a three
sphere. We show that in the first order formulation of gravity one can
consistently carry out the calculation of the exact partition function by
suitably augmenting the conventional theory an addtional topological
term. The recent calculations by other authors show a severe divergence
( nonregularizable) which is overcome by the choce of our action . In fact
the introduce paramter helps us to tame the divergence .
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Z:/DAexp(i%/tr(A/\dAJr%A/\A/\A)) (2)
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5[6,0.)] = 2/6’ N (2dw/ + E/JKOJJwK) + 37(7261_/;(6, Ael AeK (3)

> A= % AF) = w +e/q,
>

S =q(I[AT] - 1[A7]), (4)
> [A] = [ (A" AdA + Seux Al A AT A AK)



dAW) 4+ e AR A ARK = 0 or
de! + e”Ke; Awk =0 and

2dw’ + €UKWJ NwK = —%GUKeJ N ek.
- 1 1
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same equations of motion.

AT, A7) = ke jjat] + A, ke = (UL



1 i 1
2 P > exp(6mis(Q,P)/R
e +)exp{ (204 (Q+ Q")

(Q,P)=1

Ztot _
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Conclusion

There may be space time structure where canonical quantization is
possible and partition function approach is almost impossible (anti-de
Sitter) and there are certain space tiem structure where canonical
approach fails and partition function is exactly calculable (de Sitter).



