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Introduction to nonrelativistic Chern-Simons Theory

A collection of N point particles moving nonrelativistically on a
plane and interacting each other through the mediation of U(1)
gauge field, with Chern-Simons kinetic action.
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In two dimension, Green’s function of a Laplacian,
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The CS vector potential seen by particle n describes point vortices located
at all other particles.



If we exchange two particles, the wave function will pick up a phase due to A-B effect.
There statistics depends on the flux of the vortices. So the particles with CS interaction
may have any statictics, i.e., anyons including bosons and fermions.
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Pure gauge!
N-particle Schrodinger Equation for the wave function (7, --,7n;t) :
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Free Schrodinger equation, but the information of interaction is hidden
in the boundary condition satisfied by ¢0
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Statement of the FQHE problem

* Find the solutions for the quantum mechanical problem of interacting
electrons in a magnetic field.
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* In the limit of B — ® the kinetic and Zeeman energies are constant.
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What could be simpler?!!



The CF theory in a nutshell

Electrons transform into composite fermions by capturing 2p “tlux quanta.”
Composite fermions experience a much reduced etfective magnetic field. The
complex problem of strongly correlated electrons thus maps into a simpler
problem of weakly intcrutting fermions at an effective magnetic field.
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Composite fermions
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CF CF CF
Composite fermion = electron + 2p quantized vortices

A quantized vortex is a topological object. Hence
also is the composite fermion. The vorticity 2p is a
topological “charge™ of the composite termion.

A vortex is often represented as a flux quantum. A composite
fermion is often thought of (somewhat inaccurately) as:

Composite fermion = electron + 2p flux quanta

Courtesy: J K Jain



Chern Simons transformation

Jam; Lopez, Fradkin: Zhang,
Hansson, kivelson

HU = BV
L[k ° e 1
i i _ (S
H=3 5 [—.‘Fj— + —Aﬁl'j}} +—=> o
L 1 0 £ r;, — I,
F b } jek T3 Tk
o e N\ 2P . v i — Zp
Jr = H (j—”[") l]!" = oXp ZZJ{R Gk 1[1,.- ik = i In J -
j<k |ZJ o :'I‘:| w3 :A|

21y, &
T

P, 2p . L 1

a(ri) = 5-¢o E Vidij ['he Chern-Simons
R ; transformation attaches 2p
- = o oint “flux quanta™ to each

I!I,l'é = ‘?i- oy ) = jf!(_')n E r'J'E[MI'E- — 1y P jtante o ¢
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composite fermion.



Mean field approximation

So far, everything is exact. Now we make a mean-field approximation by
spreading the point flux on each electron into a uniform magnetic field.
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The first term has known solutions (non-interacting particles in an effective field).
The other two are to be treated perturbatively (assuming that the perturbation
theory converges). The “unperturbed™ mean-field solution is given by:
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Vyp =Py
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Because of the absence of a small parameter, it is not possible to obtain quantitative
information from the Chern-Simons approach. But it suggests good variational
wave functions.
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The “final” wave function (v-5+——
2pn + 1

2p
Viyp =@ <] =k No good. Tt does not have good
‘ " correlations, and has much amplitude

2= 2 S
1<k J ‘ in higher Landau levels.
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* The wave tunction appears simple, but represents very complicated
correlations.

* Generalization to excited states 1s straightforward.
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In the mean CS magnetic field approximation, the CS theory does not provide
good many body wave function that predicted in composite fermion theory.

Considering Gaussian fluctuation of CS gauge field over the mean magnetic field,
one can determine density distribution (square of the modulus of the wave
function). This reproduces the missing correlation that is important in CF theory.
However, the wave function becomes multivalued when n>1, because the
exponent of the Jastrow form becomes 1/n.

\IJan—Fl L H,IJ/\LJ(ZZ L Z])2p—|—1/n

VT = PD, [[ (2 — 2)%

’L<](

For multicomponent fermions, CS coupling becomes a matrix. Using this matrix,
one can determine possible filling factors and the corresponding wavefunctions
(with the help of CF theory regarding integer filling part of the wave function) may
be predicted.
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Graphene dispersion: 2D massless Dirac fermions

K’ K

K K’

Two sublattices: A and B Hamiltoman: H = (r %)
'k

e =t |1+ 2ei(V3/2)kya cos(k,a/2) Spectrum &2 = |#]?

The gap vanishes at 2 points, K, K’ = (kg 0), where ky = 47 /3a.
In the vicinity of K, K’ the spectrum is of massless Dirac-fermion type:

Hy = vy(kyoy + kyoy), Hyr = vo(—kpoy + kyoy)
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vy == 10° cm/s — effective *light velocity™, sublattice space — 1sospin
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Graphene in transverse magnetic field

Pt (KEY)

n 10" a2y

Anomalous mmteger quantum Hall effect: Oay = (-n.—l—%) X (4e*/h)

4 = 2 (spin) X 2 (number of Dirac points)

Observed up to room temperature !

FQHE in 1/3, 2/3 etc filling factors have also been observed.
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Fermionic CS theory in Graphene with SU(4) symmetry

Filling factor v <1 in n=0 Landau level :
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,Oa/Va — ,0/7/ - ]Caﬁpﬁ S = (p1+ p3 — p2 — pa)/p,
V= (p1+p2—p3—pa)/p,
M = (p1+ ps — p2 — p3)/p
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Case —1: 2k; =2ks =mq1 =mo =n =2k
v=v*/(2kv* + 1),V = (2(1n + o) — V") /V¥,
S=02( +v3)—v") /v, M =2 +v4) —v*) /U

Conventional composite fermion states are recovered.

If ) = vy, =v3 =14 = 1(SU(4)Singlet),

M:S:V:Oandyzﬁil .



Case —II : V1:I/2:V3:V4:1

(A) M=S=V=0

_ S
V= B2k 12ks +mitmatdn)’
When2k1 +1 # m, and 2]{73 +1 % Mo

Unconventional state like 4/11 appears!

(B) M=S5=0,butV 0
Unconventional states like 1/2, 3/8, 3/5, 3/7, 4/7 appear

(C) M and S undetermined

ki =ks=kand2k+1=m; =my =m, v = —2

m—+n

V is also undetermined when m=n: 1/3, 1/5
V=0 otherwise: 1/2, 2/3, 2/5, 1/3, 1/4
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Conclusion

All the states are obtained for IQHE of composite fermions,
although most of the states are not included in conventional
composite fermion theory. The present formalism suggests that
the composite fermion picture is more robust.

The validity of new states in the realistic two body interaction
potential should be tested.

Experiments need to be performed to search for the new
predicted states.
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