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Whole of quantum mechanics rests on three canonical
commutation relations

@', 4% = [p", ] =0, [&",] =ihs".

The consequences of these commutation relations is
well-known. We wish to remind that immediate consequence of
this is the Heisenberg’s uncertainty relation

AzAp > h/2.

This means that one cannot localize the points of phase space
as in the classical world.



History of noncommutative physics

Historically the idea of a NC space-time was proposed by
Heisenberg in a letter to Peierls.

Peierls described this idea to Pauli who in turn told it to
Oppenheimer.

Oppenheimer then told about this, to his graduate student
H. S. Snyder, who wrote the first full length article on this
subject in 1947.

C. N. Yang the Nobel laureate had also considered such a
proposal at the same time.
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It is usually assurmed that space-time is a continuum. This assumption is not reqguired by
Lorentsz invariance. In this paper we give an example of a Lorentz invadant discrete space-time.

HE problem of the interaction of matter

and felds has not been satisfactorily solved
to this date. The root of the trouble in present
ficld theories seems to lie in the assumption of
point interactions between matter and fields.
On the other hand, no relativistically invariant
Hamiltonian theory. is known for any form of
interaction other than point interactions,

Even for the case of point interactions the
relativistic invariance is of a formal nature only,
as the equations for quantized interacting ficlds
have nao solutions, The uses of source functions,
or of a cut-off in momentum space to replace
infinity by a fnite number are distasteful arbi-

trarv procedures, and neither process has vet
been formulated in a relativistically invariant
manner. [t mav not be possible to do this.

It is possible that the usual four-dimensional
continuous space-time does not provide a suitable
framework within which interacting matter and
ficlds can be described. [ have chosen the idea
that a madification of the ordinary concept of
space-time may be necessary because the “ele-
mentary'' particles have fixed masses and
associated Compton wave-lengths.

The special theory of relativity may be based
on the invariance of the indefinite quadratic form

Sl — gt — 42— g}, (1)




Star product

The fact that we have replaced commuting coordinates with their
NC counterparts (operators) is not very convenient for field
theoretical calculations. It is convenient to work with functions,
Instead of operators, but with a new kind of product called the
"Star" product.

f(z)g(z)

exp | 50170102 | £(21)9(02) ry-ss-s
f(z)xg(z).



Properties of star product

1. Associativity: [(f*xg) xh] = [f *x (g x h)].
2. Cyclicity:

Jd*z(fix fax--x fo)(x) = [d*@(fax frx--- % fa1)(x).
3. Complex conjugation: (f*g) — g* % f*.
4. Bilinears: [d*z(fxg) = [d*z(g* f) = [ d*z(fg).

5. Exponentials: eP® x e’k* = PR 7 St |2




Vacuum structure of NC field theory

Well known phenomena of Superconductivity
Superconductivity results due to formation of Cooper pairs.

Cooper pairs characterized by fermion pairs with equal and
opposite momentum.

The order parameter is constant. (yy) = A.

A Is called the gap parameter. The minimum required
energy to excite particles in the superconducting state.



The LOFF phase

Quite an old result dating back to 1960’s. Discovered
Independently by Larkin-Ovchinnikov and Fulde-Ferrel while
studying role of impurities in a superconductor.

Fermion pairs characterized by non-zero net momentum.

Density imbalance or in other words two fermionic species
necessary for the formation of pairs.

Order parameter is no longer a constant.
Alr) = AelT,

Possible occurrence in dense quark matter, cold fermionic
gases and Heavy fermionic superconductors.



The Noncommutative Hamiltonian

The Hamiltonian is given by

2
H =] lzv— M] Yy — %wiwrwg*ws
m

We need to find out the ground state.

| Q(8, u1)) = Up, 1 | Q>q = Ug,  Uq | 0).




The Noncommutative Hamiltonian

The Hamiltonian is given by

2
sz;[ lzv—m ,u] Y — %wi*%*@*%

We need to find out the ground state.

| Q(8, u1)) = Up, 1 | Q>q = Ug, ;. Uq | 0).

Uy = exp [B(Tl — Bq] Ug, , = exp [Bg,u — Bﬁ,u}

By = [l Dl (ke D)

Bl = [ ki, 5.0}



Bogoliubov Transformation

hm
wT—r(_k + q)

( cos f(k — q/2) —2rsin f(k — q/2) ) { ¥ (k)

2rsin f(k —q/2)  cos f(k — q/2) WL_T(—k +q)




Bogoliubov Transformation

(k)
wT—fr(_k T q)

( cos f(k — q/2) —2rsin f(k — q/2) ) { ¥ (k)

2rsin f(k — q/2) cos f(k —q/2) wT—r(_kJFq)

Ur(k, ) | _ [ cosO(k,8) —sind(k,p) ¥ (k)
ol (k, B) sinf(k, )  cosf(k, ) ol (k)
Wik, B) | _ [ cosO(k,B) —sinb(k,B) \ | ¢i(k)
or(k, B) sinf(k,3) cosf(k,[) or(k) |



Expectation values

Q= (Ho) + (Hp) — %S.

S =-— C;E / (;lf)g [sin2 0, Insin® 6, + cos® 0, In cos® 0]

(Ho) = / (j;?) e(P4) — p] [sin? 04 + sin® f(P) (1 — sin®0_ — sin® 6, )]

+/ dP3 [e(P_) — y] [Sin2 6_ -+ sin? f(P) (1 — sin?60_ — sin? 9+)} :

dP

23 sin2f(P) [1 —sin® §_ — sin® 6] .




The gap equation

tan 2 f (k) = cos [k . q] Bo

2 | ék,q)

g dP 5 | P X ql| Ag . 9 . 9
A0:—§/(2ﬂ)3 cOs [ 5 ]wq [1—8111 f_ — sin (9+].




The gap equation

tan 2 f (k) = cos [k . q] Bo

2 | ék,q)

P P A
Aoz—g/ d 6082[ xq] O[l—sin2(9_—sin29+].

2 Wq




The gap equation

tan 2 f (k) = cos [k . q] g(AO

2 k.q)

P P A
Aoz—g/ d 6082[ xq] O[l—sin2(9_—sin29+].

2 Wq




Solution of the gap equation

F(O©) = cos [qu] !

2 Wy
@2

F(0) + 0 F'(©)le=o + 7]'—"(@”@:0-

Q




Solution of the gap equation

F(©) = cos’ [P;q] (j .
q
/ @2 //
~ F(0) + ©F(O)le=o + - F"(O)le=0-

Vv

dP (1 P2¢°0%[ 1 A1)
1=-2 / P I |
2 | (27)3 | wo 12 wo 2w

/

[1— H(—w_) — H(-wy)].




Example

dP 1
1= [ G g )

Where —wy+ = w £ ¢ With ¢ = (§&4 —£-)/2 = (P q cosn)/2m.
Let us Introduce scaled variables in terms of the Fermi
momentum as

PZCIJPF, q:yPF, /L:ﬂEF, A0:Z€F, EF:P}%/ZTIL.

1/
Lmaz/min = \/;j: ﬁ 5752 — 22 ‘575‘ > Z.

xmaw mz
[ = / dz dt H6. — .
Tmin [(332 _ V)Q 4 22]1/2 (‘ t‘ )



Solution contd..

In the weak coupling scenario the numerator z? ~ v. In this case
the contribution to the integral is also maximum thus

wo = v/4v(x — \/v)? + 22. The integral can be solved by
changing the variable 2./v(x — /) = ztan o. Thus the result of
the integral is

+1 /852 _ .2
—1 |5t| — \/5? — Z2

()]

Where T'= /1 — 22/y2 H(1 — z/y).




Final Gap Equation
2 0242 s 161 1. (14T O2y)2
il 21 (—) 2l -m( =) (1

ln(z0)+ 24 [ ¥ +3]+2“<1—T>< 12

2, 2 (:)2 2 T
(129 9 — 0.
8 24 V1 — T2




Final Gap Equation
2 O2y2 o 161 1. /14T O2y2

In [ = 21 (—) 4+ Zn(—=)[1-

n<z0)+ 24 [ ¥ +3]+2n<1—T)< 12

@2 2 @2 2 T
T \|1— J — J tan ! =
8 24 V1 — T2

Thermodynamic Potential




Results

We can expand the potential in z of the form Q = az? + 2%
Where

a = [—18 + 4y°t* + 91n(4y* /)] /36
B =1/(16y).

The best ¢ dependance can be found by minimizing the above
expression w.r.t. y? and we get 22 /4.
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