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Whole of quantum mechanics rests on three canonical
commutation relations

[x̂i, x̂j ] = [p̂i, p̂j ] = 0, [x̂i, p̂j ] = i~δij .

The consequences of these commutation relations is
well-known. We wish to remind that immediate consequence of
this is the Heisenberg’s uncertainty relation

∆x∆p ≥ ~/2.

This means that one cannot localize the points of phase space
as in the classical world.
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History of noncommutative physics

• Historically the idea of a NC space-time was proposed by
Heisenberg in a letter to Peierls.

• Peierls described this idea to Pauli who in turn told it to
Oppenheimer.

• Oppenheimer then told about this, to his graduate student
H. S. Snyder, who wrote the first full length article on this
subject in 1947.

• C. N. Yang the Nobel laureate had also considered such a
proposal at the same time.
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The Original
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Star product

The fact that we have replaced commuting coordinates with their
NC counterparts (operators) is not very convenient for field
theoretical calculations. It is convenient to work with functions,
instead of operators, but with a new kind of product called the
"Star" product.

f(x̂)g(x̂) = exp

[
i

2
Θij∂1i ∂

2
j

]
f(x1)g(x2) |x1=x2=x

= f(x) ⋆ g(x).
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Properties of star product

1. Associativity: [(f ⋆ g) ⋆ h] = [f ⋆ (g ⋆ h)].

2. Cyclicity:∫
d4x(f1 ⋆ f2 ⋆ · · · ⋆ fn)(x) =

∫
d4x(fn ⋆ f1 ⋆ · · · ⋆ fn−1)(x).

3. Complex conjugation: (f ⋆ g)∗ = g∗ ⋆ f∗.

4. Bilinears:
∫
d4x(f ⋆ g) =

∫
d4x(g ⋆ f) =

∫
d4x(fg).

5. Exponentials: eipx ⋆ eikx = ei(p+k)xeip
iΘijkj/2.
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Vacuum structure of NC field theory

• Well known phenomena of Superconductivity
• Superconductivity results due to formation of Cooper pairs.
• Cooper pairs characterized by fermion pairs with equal and

opposite momentum.
• The order parameter is constant. 〈ψψ〉 = ∆.
• ∆ is called the gap parameter. The minimum required

energy to excite particles in the superconducting state.
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The LOFF phase

• Quite an old result dating back to 1960’s. Discovered
Independently by Larkin-Ovchinnikov and Fulde-Ferrel while
studying role of impurities in a superconductor.

• Fermion pairs characterized by non-zero net momentum.
• Density imbalance or in other words two fermionic species

necessary for the formation of pairs.
• Order parameter is no longer a constant.

∆(r) = ∆ eiq·r.

• Possible occurrence in dense quark matter, cold fermionic
gases and Heavy fermionic superconductors.
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The Noncommutative Hamiltonian

The Hamiltonian is given by

H = ψ†
r

[
−∇2

2m
− µ

]
ψr −

g

2
ψ†
r ⋆ ψr ⋆ ψ

†
s ⋆ ψs

We need to find out the ground state.

| Ω(β, µ)〉 = Uβ, µ | Ω〉q = Uβ, µ Uq | 0〉.
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The Noncommutative Hamiltonian

The Hamiltonian is given by

H = ψ†
r

[
−∇2

2m
− µ

]
ψr −

g

2
ψ†
r ⋆ ψr ⋆ ψ

†
s ⋆ ψs

We need to find out the ground state.

| Ω(β, µ)〉 = Uβ, µ | Ω〉q = Uβ, µ Uq | 0〉.

Uq = exp
[
B†

q
−Bq

]
Uβ, µ = exp

[
B†

β, µ −Bβ, µ

]

B†
q

=

∫
d3k ψ†

r(k+
q

2
) f(k)ψ†

−r(−k+
q

2
)

B†
β, µ =

∫
dk ψ̃†

r(k)θ(k, β, µ)φ̃
†
r(k)
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Bogoliubov Transformation

[
ψ̃r(k)

ψ̃†
−r(−k+ q)

]
=

(
cos f(k− q/2) −2r sin f(k− q/2)

2r sin f(k− q/2) cos f(k− q/2)

)[
ψr(k)

ψ†
−r(−k+ q)

]
.
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Bogoliubov Transformation

[
ψ̃r(k)

ψ̃†
−r(−k+ q)

]
=

(
cos f(k− q/2) −2r sin f(k− q/2)

2r sin f(k− q/2) cos f(k− q/2)

)[
ψr(k)

ψ†
−r(−k+ q)

]
.

[
ψr(k, β)

φ†r(k, β)

]
=

(
cos θ(k, β) − sin θ(k, β)

sin θ(k, β) cos θ(k, β)

)[
ψ̃r(k)

φ̃†r(k)

]

[
ψ†
r(k, β)

φr(k, β)

]
=

(
cos θ(k, β) − sin θ(k, β)

sin θ(k, β) cos θ(k, β)

)[
ψ̃†
r(k)

φ̃r(k)

]
.
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Expectation values

Ω = 〈H0〉+ 〈HI〉 −
1

β
S.

S = −
∑

a=±

∫
dP

(2π)3
[ sin2 θa ln sin

2 θa + cos2 θa ln cos
2 θa].

〈H0〉 =
∫

dP

(2π)3
[ǫ(P+)− µ]

[
sin2 θ+ + sin2 f(P)

(
1− sin2 θ− − sin2 θ+

)]

+

∫
dP

(2π)3
[ǫ(P−)− µ]

[
sin2 θ− + sin2 f(P)

(
1− sin2 θ− − sin2 θ+

)]
.

〈ψ†
r(x)ψ

†
s(x)〉 = r δ−r,se

−iq·x

∫
dP

(2π)3
sin 2f(P)

[
1− sin2 θ− − sin2 θ+

]
.
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The gap equation

tan 2f(k) = cos

[
k× q

2

]
∆0

ξ(k,q)
.

∆0 = −g
2

∫
dP

(2π)3
cos2

[
P× q

2

]
∆0

ωq

[
1− sin2 θ− − sin2 θ+

]
.

LOFF Phase in Noncommutative Field Theories – p. 12/17



The gap equation

tan 2f(k) = cos

[
k× q

2

]
∆0

ξ(k,q)
.

∆0 = −g
2

∫
dP

(2π)3
cos2

[
P× q

2

]
∆0

ωq

[
1− sin2 θ− − sin2 θ+

]
.

ωq =

{[
(P 2 + q2/4)

2m
− µ

]2
+∆2

0 cos
2

[
P× q

2

]}1/2

LOFF Phase in Noncommutative Field Theories – p. 12/17



The gap equation

tan 2f(k) = cos

[
k× q

2

]
∆0

ξ(k,q)
.

∆0 = −g
2

∫
dP

(2π)3
cos2

[
P× q

2

]
∆0

ωq

[
1− sin2 θ− − sin2 θ+

]
.

ωq =

{[
(P 2 + q2/4)

2m
− µ

]2
+∆2

0 cos
2

[
P× q

2

]}1/2

sin2 θ± =
1

exp(β ω±) + 1
.
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Solution of the gap equation

F(Θ) = cos2
[
P× q

2

]
1

ωq
.

≈ F(0) + ΘF ′(Θ)|Θ=0 +
Θ2

2
F ′′(Θ)|Θ=0.
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Solution of the gap equation

F(Θ) = cos2
[
P× q

2

]
1

ωq
.

≈ F(0) + ΘF ′(Θ)|Θ=0 +
Θ2

2
F ′′(Θ)|Θ=0.

1 = −g
2

∫
dP

(2π)3

{
1

ω0
+
P 2q2Θ2

12

[
− 1

ω0
+

∆2
0

2ω3
0

]}

[1−H(−ω−)−H(−ω+)] .
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Example

I =

∫
dP

(2π)3
1

ω0
H(−ω±).

Where −ω± = ω ± δξ. With δξ = (ξ+ − ξ−)/2 ≡ (P q cos η)/2m.
Let us introduce scaled variables in terms of the Fermi
momentum as

P = xPF , q = y PF , µ = µ̂ ǫF , ∆0 = z ǫF , ǫF = P 2
F /2m.

xmax/min =
√
ν ± 1

2
√
ν

√
δ2t − z2 |δt| > z.

I =

∫ xmax

xmin

dx dt
x2

[(x2 − ν)2 + z2]1/2
H(|δt| − z).
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Solution contd..

In the weak coupling scenario the numerator x2 ≈ ν. In this case
the contribution to the integral is also maximum thus
ω0 ≡

√
4ν(x−√

ν)2 + z2. The integral can be solved by
changing the variable 2

√
ν(x−√

ν) = z tan σ. Thus the result of
the integral is

I =

∫ +1

−1
dtH(|δt| − z) ln

(
|δt|+

√
δ2t − z2

|δt| −
√
δ2t − z2

)

I =

[
ln

(
1 + T

1− T

)
− 2T

]
.

Where T =
√

1− z2/y2H(1− z/y).
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Final Gap Equation

ln

(
z

z0

)
+

Θ̂2y2

24

[
2 ln

(z
8

)
+

16

3

]
+

1

2
ln

(
1 + T

1− T

)(
1− Θ̂2y2

12

)

−T
(
1− Θ̂2y2

8

)
− Θ̂2y2

24
tan−1

(
T√

1− T 2

)
= 0.
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Final Gap Equation

ln

(
z

z0

)
+

Θ̂2y2

24

[
2 ln

(z
8

)
+

16

3

]
+

1

2
ln

(
1 + T

1− T

)(
1− Θ̂2y2

12

)

−T
(
1− Θ̂2y2

8

)
− Θ̂2y2

24
tan−1

(
T√

1− T 2

)
= 0.

Thermodynamic Potential

Ω =
z2

2

[
ln

(
z

z0

)
− 1

2

]
+
z2

2

[
ln

(
1 + T

1− T

)
− T

]
+
y2

6
(1− T 3)

+
Θ̂2y2z2

48

[
ln

(
z2

64

)
+

16

3

]
.
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Results

We can expand the potential in z of the form Ω = αz2 + βz4.
Where

α =
[
−18 + 4y2t2 + 9 ln(4y2/z20)

]
/36

β = 1/(16y2).

The best q dependance can be found by minimizing the above
expression w.r.t. y2 and we get z2/4.
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