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Outline

◮ Quantum Phase Transition of ultracold bosons:
Superfluid to Mott insulator

◮ Mott-Superfluid transition in presence of synthetic
gauge fields

◮ Bosons in artificial non-abelian gauge field (effective
spin-orbit interaction).
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Ultracold atoms in an optical lattice

◮ periodic potential: V (x) = V0 cos2(kx)

◮ V0 can be controlled by the intensity of the laser
beam.
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Quantum phase transition of Bosons in
Optical Lattice: from Superfluid to Mott
Insulator

Increasing V (U/t)

M. Greiner et. al
Nature415,39 (2002)
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Bose-Hubbard Model
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◮ The Model:
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Strong coupling limit: U >> t

◮ H0 = U
2

∑

i n̂i(n̂i − 1) − µn̂i

◮ Mott state : |M.I >=
∏ |n0 >i n0 = 1,2,3....

◮ Particle Hole excitation:

Ep = E(N + 1) − E(N) = Un0 − µ
Eh = E(N − 1) − E(N) = µ− U(n0 − 1).

◮ perturbation: H1 = −t
∑

<ij> a†
i aj + h.c

◮ Mean Field: HMF = −t(a†ψ + aψ∗),
Order parameter:
ψ =

∑

nn < a >6= 0 in SF, and ψ = 0 in M.I.
◮ second order perturbation :

E = EMott + r |ψ|2 + O(|ψ|4)

For r < 0 SF phase appears.
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Gutzwiller’s variational wave-function

◮ Product wave function: |Ψ >=
∏

i
∑

n f n
i |n >

◮ In M.I f n
i = δn,n0 In deep SF |Ψ > becomes a

coherent state and a → φ.
◮ In deep SF phase, the system can be described by

DNLS (GP equation) of the classical fields φ.

D. L. Kovrizhin, G. V. Pai, S. Sinha, E.P.L 72, 162 (2005), cond-mat 07072937.
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Gutzwiller Method
Minimization of action: S =< Ψ(fi(t))|i∂t − H|Ψ(fi) >

◮ Gapped Particle, Hole excitation in Mott phase:
εp(h) =
√

U2

4 +
ǫ2k
4 + ǫkU(n0 + 1

2) ±
[

U(n0 − 1
2) − µ+ ǫk

2

]

.
◮ Gapless sound mode in SF phase: ε(k) = csk

◮ sound velocity : cs = t
√

d cos θ
√

(α2 cos2 θ − 1)/2
α = (

√
n0 +

√
n0 + 1)

2
= U/(2td cos 2θ)

◮ Amplitude mode: ω(k) =
√

∆2 + c2k2
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Ultracold atoms in artificial magnetic field

◮ Rotating condensate in 2D:

H =
~P2

2m
+

1
2

mω2r2 − ΩL̂z .

=
1

2m
(~P − ~A)2 +

1
2

m(ω2 − Ω2)r2.

◮ ~A = (mΩy ,−mΩx ,0).
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◮ Now it is possible to generate synthetic gauge fields:
Y.J. Lin et. al. Nature 462, 628 (2009). P.R.L 102, 130401 (2009).

◮ Using two laser beams and F = 1 state of 87Rb
atoms it is possible to generate single particle
dispersion E(k) ≈ ~

2

2m∗ (kx − KL(y))2.
◮ Effective gauge field : A∗

x = KL(y)
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SF-MI transition in the presence of a
magnetic field

◮ Bose-Hubbard model:
H =

∑

i,j Jijb
†
i bj +

∑

i [−µn̂i + U
2 n̂i(n̂i − 1)].

◮ Peierls substitution: Jij = −J exp(−iq∗
∫ j

i
~A∗ · ~dl/~c)

◮ In Landau gauge: ~A∗ = B∗(0, x)

◮ Φ = B∗

a2 = 2πp/q flux quanta passing through each
lattice plaquette.

Jx ,x+1 = J and J(x ,y),(x ,y+1) = Jeix2πp/q

S. Sinha, K. Sengupta, EPL (93) ,30005 (2011)
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Single particle spectrum: Hofstadter’s
butterfly

◮ Wave function: Ψ(x , y) = eıky yg(x)
−(g(x + 1) + g(x − 1))− 2 cos(φx − ky )g(x) = ǫg(x)

◮ ǫ(k) forms q bands, with −π/q ≤ kx ≤ π/q,
−π ≤ ky ≤ π.

E

p/q
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Mott Phase

◮ Particle hole excitation:
Eα±

q (k) = −µ+ U(n0 − 1/2) + ǫαq (k)/2 ±
√

ǫαq (k)2 + 4ǫαq (k)Un0 + U2/2

where ǫαq (k) are single particle energies of
Hofstadter problem.

◮ Momentum Distribution for q = 2,4
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Effective action: Strong coupling expansion

◮ Hubbard-Stratonovitch transformation:
Z =

∫

Dψ∗Dψe−Seff [ψ
∗,ψ]

e−Seff =

∫

Da∗Da exp[−
∫ β

0
dτ

∑

i

a∗
i ∂τai + H[a∗,a, ψ∗, ψ] ]

H =
∑

i

[

U
2 ni(ni − 1) − µni − a†

i ψi − aiψ
∗
i

]

+
∑

i,j ψ
∗
i t−1

ij ψj .

Effective action: Seff ≈ S0 + S2

S0 =

∫

k
ψ∗(iωn,k)[−G−1

0 (iωn) + ǫ(k)]ψ(iωn,k),

S1 = g/2
∫ β

0
dτ

∫

d2r |ψ|4.

Green’s function:
G−1

0 (ω) = (ω − Ep)(ω + Eh)/(ω + U + µ)
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◮ Near Mott phase boundary modes become soft at q
momentum Qα = (0,2πα/q) where α = 0,1...q − 1.

◮ Landau-Ginzburg theory to be constructed out of q
low-energy fluctuating fields φα(r , t) around these
minima:
ψq(r , t) =

∑q−1
α=0 χ

α
qφ

α(r , t). where χαq are
eigenvectors of Jq(Qα) .

◮ Effective action:
S =
∫

d2rdt
[
∑

α φ
∗
α(k0∂

2
t − ik1∂t + r − v2

q∇2)φα + L4(φα)]
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Effective action for q = 2, 3

◮ L4(q = 2) = 1
8 [3g(|ξ0|2 + |ξ1|2)2 − g(|ξ0|2 − |ξ1|2)2]

◮ S
′ q=3
2 turns out to be O(3) symmetric:

L4(q = 3) ∼ (
∑

α=0..2 |ξα(r, t)|2)2.
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Higgs and Goldstone modes

LH =
1
2
|∂φ|2 − V (φ)

◮ The classical potential: Landau-Ginzburg free energy
functional: V (φ) = m2|φ|2 + λ4|φ|4

◮ After symmetry breaking, two modes apear:
Massless Goldstone mode: ω ∼ |k |
Massive (gapped) Higgs mode: ω =

√

c2
s k2 + m2
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◮ For q = 2 corresponding to condensate field we find
one Goldstone and one Higgs mode:

ω2 = (v2
q k2−r)/k0+

1
2
(
k1

k0
)2±

√

(−r + v2
q k2)

k0
(
k1

k0
)2 +

1
4
(
k1

k0
)4 +

r2

k2
0

◮ For non-condensate mode:

ω =





1
2
(±k1

k0
) +

√

1
4
(
k1

k0
)2 +

v2
q k2

k0
− r/2





◮ For q = 3, corresponding to condensate mode we
find similar sound mode and Higgs mode as q = 2.

◮ Corresponding to two noncondensate fields:
Two gapless modes ω ∼ k2 and two gapped modes.
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◮ Higgs mass and sound velocity:
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BEC with strong spin-orbit interaction

◮ Bosons in presence of artificial gauge fields:

H =

∫

d2~r
{

ψ†

[

1
2M

(~p − ~A)2 +
1
2

mω2r2
]

ψ +
g
2

(ψ†ψ)2

It is possible to generate SU(2) gauge fields:
(Ax ,Ay ) = ~κ(σx , σy ).

◮ Effective Spin-Orbit interaction: H = H0 + HI

HI = ~κ
M ~σ.

~P
in collaboration with L. Santos (Hannover)
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Single particle states and Kramer’s
degeneracy
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◮ Single particle energies: E(q) = ~
2

2m (|q| − κ)2

Wavefunction: ψk = eı~k .~r (1, eıφk )
ψ−k = ıσyCψk

◮ States in harmonic trap:
(φ1, φ2) =

√
Ne−r2/2(Jl(κr)eılθ, ıJl+1(κr)eı(l+1)θ)

(φ1, φ2)
T =

−
√

Ne−r2/2(ıJl+1(κr)e−ı(l+1)θ, Jl(κr)e−ılθ)
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Density wave state
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Momentum distribution
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Phase diagram

Stability of SDW state: Landau-Ginzburg theory

E = ESDW + ∆2
[

gN
2πlx ly

− mω2
]

+ O(∆4)

where ∆2 is width of the momentum distribution of SDW
around diagonally opposite points ~k = ~κ,−~κ on the
momentum ring.
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Outlook

◮ Cold atoms can be used as Hubbard toolbox.
◮ It is interesting to study excitations of cold atoms

coupled to non-abelian gauge fields.
◮ Quantum Hall states of bosons can be studied.


