Subhasis Sinha

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

Department of Physical Sciences Indian Institute of Science Education and Research, Kolkata

・ロト・西ト・山田・山田・山下

- Quantum Phase Transition of ultracold bosons: Superfluid to Mott insulator
- Mott-Superfluid transition in presence of synthetic gauge fields
- Bosons in artificial non-abelian gauge field (effective spin-orbit interaction).

Ultracold atoms in an optical lattice

Ultracold atoms in the presence of a synthetic gauge field

- periodic potential: $V(x) = V_0 \cos^2(kx)$
- V₀ can be controlled by the intensity of the laser beam.

Quantum phase transition of Bosons in Optical Lattice: from Superfluid to Mott Insulator Ultracold atoms in the presence of a synthetic gauge field

Bose-Hubbard Model

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

The Model:

$$\hat{H} = -t \sum_{i,\delta} \hat{a}_i^{\dagger} \hat{a}_{i+\delta} + \sum_i \left[\frac{U}{2} \hat{n}_i (\hat{n}_i - 1) + \frac{m\omega^2}{2} \mathbf{r}_i^2 \hat{n}_i \right]$$
$$\hat{n}_i = \mathbf{a}_i^{\dagger} \mathbf{a}_i$$

シック・ 川 ・ 川 ・ 川 ・ 一日・

Strong coupling limit: U >> t

•
$$H_0 = \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \hat{n}_i$$

- Mott state : $|M.I>=\prod |n_0>_i$ $n_0=1,2,3...$
- Particle Hole excitation:

 $E_{p} = E(N+1) - E(N) = Un_{0} - \mu$ $E_{h} = E(N-1) - E(N) = \mu - U(n_{0} - 1).$

- perturbation: $H_1 = -t \sum_{\langle ij \rangle} a_i^{\dagger} a_j + h.c$
- Mean Field: $H_{MF} = -t(a^{\dagger}\psi + a\psi^{*}),$ Order parameter:

 $\psi = \sum_{nn} \langle a \rangle \neq 0$ in SF, and $\psi = 0$ in M.I.

second order perturbation :

$$\mathsf{E} = \mathsf{E}_{\mathsf{Mott}} + \mathsf{r}|\psi|^2 + \mathsf{O}(|\psi|^4)$$

For r < 0 SF phase appears.

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

・ロト・西ト・西ト・日・ 白・ シュウ・

Gutzwiller's variational wave-function

- Product wave function: $|\Psi\rangle = \prod_i \sum_n f_i^n |n\rangle$
- ► In M.I $f_i^n = \delta_{n,n_0}$ In deep SF | Ψ > becomes a coherent state and $a \rightarrow \phi$.
- In deep SF phase, the system can be described by DNLS (GP equation) of the classical fields \u03c6.

Distribution Function

D. L. Kovrizhin, G. V. Pai, S. Sinha, E.P.L 72, 162 (2005), cond-mat 07072937.

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

・ロト・西ト・西ト・西・ うくの

- Excitation Energies: Linearized time-dependent Gutzwiller Method Minimization of action: S =< Ψ(f_i(t))|i∂_t − H|Ψ(f_i) >
- Gapped Particle, Hole excitation in Mott phase:

$$\varepsilon_{\mathcal{P}(h)} = \sqrt{\frac{U^2}{4} + \frac{\epsilon_{\mathbf{k}}^2}{4} + \epsilon_{\mathbf{k}} U(n_0 + \frac{1}{2})} \pm \left[U(n_0 - \frac{1}{2}) - \mu + \frac{\epsilon_{\mathbf{k}}}{2} \right]$$

- ► Gapless sound mode in SF phase: ε(k) = csk
- ► sound velocity : $c_s = t\sqrt{d}\cos\theta\sqrt{(\alpha^2\cos^2\theta 1)/2}$ $\alpha = (\sqrt{n_0} + \sqrt{n_0 + 1})^2 = U/(2td\cos 2\theta)$
- Amplitude mode: $\omega(\mathbf{k}) = \sqrt{\Delta^2 + c^2 \mathbf{k}^2}$

Subhasis Sinha

・ロト・日本・日本・日本・日本・日本

Ultracold atoms in artificial magnetic field

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

Rotating condensate in 2D:

$$H = \frac{\vec{P}^2}{2m} + \frac{1}{2}m\omega^2 r^2 - \Omega \hat{L}_z.$$

= $\frac{1}{2m}(\vec{P} - \vec{A})^2 + \frac{1}{2}m(\omega^2 - \Omega^2)r^2.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

$$\blacktriangleright \quad \vec{A} = (m\Omega y, -m\Omega x, 0).$$

Subhasis Sinha

Now it is possible to generate synthetic gauge fields:

- Using two laser beams and F = 1 state of ⁸⁷Rb atoms it is possible to generate single particle dispersion E(k) ≈ ^{ħ²}/_{2m^{*}} (k_x − K_L(y))².
- Effective gauge field : $A_x^* = K_L(y)$

SF-MI transition in the presence of a magnetic field

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

Bose-Hubbard model:

$$\mathcal{H} = \sum_{i,j} J_{ij} b_i^{\dagger} b_j + \sum_i [-\mu \hat{n}_i + \frac{U}{2} \hat{n}_i (\hat{n}_i - 1)].$$

• Peierls substitution: $J_{ij} = -J \exp(-iq^* \int_i^j \vec{A^*} \cdot \vec{dl}/\hbar c)$

• In Landau gauge: $\vec{A}^* = B^*(0, x)$

• $\Phi = \frac{B^*}{a^2} = 2\pi p/q$ flux quanta passing through each lattice plaquette.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

$$J_{x,x+1} = J \text{ and } J_{(x,y),(x,y+1)} = Je^{ix2\pi p/q}$$

S. Sinha, K. Sengupta, EPL (93) ,30005 (2011)

Single particle spectrum: Hofstadter's butterfly

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

• Wave function:
$$\Psi(x, y) = e^{ik_y y}g(x)$$

- $(g(x+1) + g(x-1)) - 2\cos(\phi x - k_y)g(x) = \epsilon g(x)$

• $\epsilon(k)$ forms q bands, with $-\pi/q \le k_x \le \pi/q$, $-\pi \le k_y \le \pi$.

Mott Phase

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

► Particle hole excitation:

$$E_q^{\alpha\pm}(\mathbf{k}) = -\mu + U(n_0 - 1/2) + \epsilon_q^{\alpha}(\mathbf{k})/2 \pm \sqrt{\epsilon_q^{\alpha}(\mathbf{k})^2 + 4\epsilon_q^{\alpha}(\mathbf{k})Un_0 + U^2}/2$$

where $\epsilon_q^{\alpha}(k)$ are single particle energies of Hofstadter problem.

• Momentum Distribution for q = 2, 4

Effective action: Strong coupling expansion

ſ

. .

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

$$e^{-S_{eff}} = \int Da^* Da \exp[-\int_0^{+} d au \sum_i a_i^* \partial_ au a_i + H[a^*, a, \psi^*, \psi]]$$

$$\begin{split} H &= \\ \sum_{i} \left[\frac{U}{2} n_{i}(n_{i} - 1) - \mu n_{i} - a_{i}^{\dagger} \psi_{i} - a_{i} \psi_{i}^{*} \right] + \sum_{i,j} \psi_{i}^{*} t_{ij}^{-1} \psi_{j}. \\ \text{Effective action: } S_{eff} \approx S_{0} + S_{2} \end{split}$$

rB

$$S_0 = \int_{\mathbf{k}} \psi^*(i\omega_n, \mathbf{k}) [-G_0^{-1}(i\omega_n) + \epsilon(\mathbf{k})] \psi(i\omega_n, \mathbf{k}),$$

$$S_1 = g/2 \int_0^\beta d\tau \int d^2 r |\psi|^4.$$

Green's function: $G_0^{-1}(\omega) = (\omega - E_p)(\omega + E_h)/(\omega + U + \mu)$

Subhasis Sinha

- Near Mott phase boundary modes become soft at q momentum Q^α = (0, 2πα/q) where α = 0, 1...q − 1.
- Landau-Ginzburg theory to be constructed out of *q* low-energy fluctuating fields φ^α(*r*, *t*) around these minima:

 $\psi_q(r, t) = \sum_{\alpha=0}^{q-1} \chi_q^{\alpha} \phi^{\alpha}(r, t)$. where χ_q^{α} are eigenvectors of $J_q(\mathbf{Q}^{\alpha})$.

Effective action:

$$S = \int d^2 r dt \left[\sum_{\alpha} \phi_{\alpha}^* (k_0 \partial_t^2 - i k_1 \partial_t + r - v_q^2 \nabla^2) \phi_{\alpha} + L_4(\phi_{\alpha}) \right]$$

・ロト・西ト・西ト・西・ うくの

Subhasis Sinha

•
$$\mathcal{L}_4(q=2) = \frac{1}{8}[3g(|\xi^0|^2 + |\xi^1|^2)^2 - g(|\xi^0|^2 - |\xi^1|^2)^2]$$

►
$$S_2'^{q=3}$$
 turns out to be $O(3)$ symmetric:
 $\mathcal{L}_4(q=3) \sim (\sum_{\alpha=0..2} |\xi^{\alpha}(\mathbf{r},t)|^2)^2$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Higgs and Goldstone modes

$$L_H = \frac{1}{2} |\partial \phi|^2 - V(\phi)$$

► The classical potential: Landau-Ginzburg free energy functional: $V(\phi) = m^2 |\phi|^2 + \lambda^4 |\phi|^4$

 After symmetry breaking, two modes apear: Massless Goldstone mode: ω ~ |k| Massive (gapped) Higgs mode: ω = √c_s²k² + m² Ultracold atoms in the presence of a synthetic gauge field

For q = 2 corresponding to condensate field we find one Goldstone and one Higgs mode: Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

$$\omega^{2} = (v_{q}^{2}k^{2} - r)/k_{0} + \frac{1}{2}(\frac{k_{1}}{k_{0}})^{2} \pm \sqrt{\frac{(-r + v_{q}^{2}k^{2})}{k_{0}}(\frac{k_{1}}{k_{0}})^{2} + \frac{1}{4}(\frac{k_{1}}{k_{0}})^{4} + \frac{r^{2}}{k_{0}^{2}}}$$

For non-condensate mode:

$$\omega = \left[\frac{1}{2}(\pm \frac{k_1}{k_0}) + \sqrt{\frac{1}{4}(\frac{k_1}{k_0})^2 + \frac{v_q^2 k^2}{k_0} - r/2}\right]$$

- For q = 3, corresponding to condensate mode we find similar sound mode and Higgs mode as q = 2.
- Corresponding to two noncondensate fields:
 Two gapless modes ω ~ k² and two gapped modes.

Subhasis Sinha

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

BEC with strong spin-orbit interaction

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

Bosons in presence of artificial gauge fields:

$$H = \int d^2 \vec{r} \left\{ \psi^{\dagger} \left[\frac{1}{2M} (\vec{p} - \vec{A})^2 + \frac{1}{2} m \omega^2 r^2 \right] \psi + \frac{g}{2} (\psi^{\dagger} \psi)^2 \right\}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

It is possible to generate SU(2) gauge fields: $(A_x, A_y) = \hbar \kappa (\sigma_x, \sigma_y).$

• Effective Spin-Orbit interaction: $H = H_0 + H_I$

 $H_l = \frac{\hbar\kappa}{M} \vec{\sigma}. \vec{P}$

in collaboration with L. Santos (Hannover)

Single particle states and Kramer's degeneracy

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

- ► Single particle energies: $E(q) = \frac{\hbar^2}{2m}(|q| \kappa)^2$ Wavefunction: $\psi_k = e^{i\vec{k}.\vec{r}} (1, e^{i\phi_k})$ $\psi_{-k} = i\sigma_y C \psi_k$

・ロト・西ト・西ト・日・ うくの

Subhasis Sinha

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Subhasis Sinha

・ロ・・母・・由・・日・ シック

Density wave state

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

Momentum distribution

Ultracold atoms in the presence of a synthetic gauge field

Subhasis Sinha

Stability of SDW state: Landau-Ginzburg theory $E = E_{SDW} + \Delta^2 \left[\frac{gN}{2\pi k ly} - m\omega^2 \right] + O(\Delta^4)$ where Δ^2 is width of the momentum distribution of SDW around diagonally opposite points $\vec{k} = \vec{\kappa}, -\vec{\kappa}$ on the momentum ring.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Subhasis Sinha

- Cold atoms can be used as Hubbard toolbox.
- It is interesting to study excitations of cold atoms coupled to non-abelian gauge fields.
- Quantum Hall states of bosons can be studied.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ