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» Quantum Phase Transition of ultracold bosons:
Superfluid to

» Mott-Superfluid transition in presence of synthetic
gauge fields

» Bosons in artificial non-abelian gauge field (effective
spin-orbit interaction).
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» periodic potential: V (x) = Vg cos?(kx)
» Vj can be controlled by the intensity of the laser
beam.




Quantum phase transition of Bosons in e
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Optical Lattice: from Superfluid to Mott feid”
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» The Model:
~ At A u. . mw? ..
H=-t Za?ai-l—é +) [zni (A — 1)+ Trizni
i\ i

n = aiTai



Strong coupling limit: U >> t 'ne presence of &
synthetic gauge
field

U A A A Subhasis Sinha
> Ho =5 > (A — 1) — ph
» Mottstate : M.l >=]]|np > ng=1,2,3....
» Particle Hole excitation:
Ep =E(N+1)—-E(N)=Ung— u
En=E(N —1)—E(N) = u—U(ng — 1).
» perturbation: Hy = —t >~ ;. ala +h.c

» Mean Field: Hye = —t(afy + ay*),
Order parameter:
=5 .,<a>#0inSF,and ¢ =0in M.l

» second order perturbation :
E = Ewmott + r[v[2+O(|¢|*)

For r < 0 SF phase appears.



Gutzwiller’s variational wave-function e e
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» Product wave function: |V >=[[; >, f"|n >
> In M.IE" = 6nn, Indeep SF |V > becomes a
coherent state and a — ¢.

» In deep SF phase, the system can be described by
DNLS (GP equation) of the classical fields ¢.

Distribution Function
Mott Insulator Superfluid

numbsr of partices on each number of particles on each

site is locked to N=1, site fluctuates, phase cohe rence
no sunerfuidity superfuidity

D. L. Kovrizhin, G. V. Pai, S. Sinha, E.P.L 72, 162 (2005), cond-mat 07072937.
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Excitation Energies: Linearized time-dependent Subhasis Sinha
Gutzwiller Method
Minimization of action: S =< W(fi(t))[ior — H|W(f;) >

Gapped Particle, Hole excitation in Mott phase:
p(h) =
62 €]
Y+ F+ralng+3)+[Ung—3)—p+%]

Gapless sound mode in SF phase:

sound velocity : ¢s = t\f d cosf+/(a2cos?2f —1)/2
a=(y/Ng + N + 1)> = U/(2td cos 20)

Amplitude mode: w(k) = VA2 + c2k?



Ultracold atoms in

Ultracold atoms in artificial magnetic field the sresbace o8

synthetic gauge
field

Subhasis Sinha

» Rotating condensate in 2D:

» A= (mQy, —mQx, 0).



» Now it is possible to generate synthetic gauge fields:

\ Y.J. Lin et. al. Nature 462, 628 (2009). P.R.L 102, 130401 (2009). \

Tl
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» Using two laser beams and F = 1 state of 8/Rb
atoms it is possible to generate single particle
dispersion E (k) ~ % (kx — K (y))2.

» Effective gauge field : AZ = K (y)
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SF-MI transition in the presence of a ‘e presence of a
synthetic gauge

magnetic field feld
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» Bose-Hubbard model:
H =Y, yblby + X[~ phi + S — 1)].
» Peierls substitution: J; = —J exp(—igq* fij A* . di/hc)
» In Landau gauge: A* = B*(0,x)
> O = % = 27wp/q flux quanta passing through each
lattice plaquette.

Jx,x—i—l =J and ‘](X,y),(x,y-i,-l) — Jeix2mp/q

‘ S. Sinha, K. Sengupta, EPL (93) ,30005 (2011) ‘




Single particle spectrum: Hofstadter’s e
synthetic gauge

butterfly fe
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» Wave function: W(x,y) = eYg(x)
—(9(x +1) +9(x — 1)) — 2cos(¢x — ky)g(x) = eg(x)

» ¢(k) forms q bands, with —7/q < ky < 7/q,

plg
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» Particle hole excitation:
EqT(K) = —p+U(no — 1/2) + €5 (k) /2 +

\/eg(k)Z + 4eg (K)Ung + U2/2

where €g(k) are single particle energies of
Hofstadter problem.

» Momentum Distribution forq = 2,4




Effective action: Strong coupling expansion e presence of &
synthetic gauge
field

» Hubbard-Stratonovitch transformation: Subhasis Sinha
Z = fD¢*D¢e—Seﬂ[w*,w]

9
e—Ser :/Da*Danp[_/ dr ) _afdqa +H[a",a,¢", ¢]]
0 i

H=
) [%ni(ni — 1) — pny —afy — aiil}i*} + X U

Effective action: Se =~ Sg + S

So = /k B (ieom, K)[= Gy itwm) + (K)o, K).

B
S = g/2/ dT/erW‘.
0

Green’s function:
Gol(w) = (w — Ep)(w + En)/(w + U + p)
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» Near Mott phase boundary modes become soft at q
momentum Q¢ = (0, 27«/q) where a =0,1...q — 1.
» Landau-Ginzburg theory to be constructed out of g
low-energy fluctuating fields ¢“(r,t) around these
minima:
ba(r,t) = X978 x§¢°(r, t). where g are
eigenvectors of Jq(Q%) .

» Effective action:
S =
Jd?rdt [, ¢4 (kod2 — ikydk + 1 — VEV2)da + La(¢a)]



Effective action forq = 2,3
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> La(a = 2) = 3[39(I€°7 + [€*7)? — (1% — |€*1)?]

» S,%73 turns out to be O(3) symmetric:

L4(d =3) ~ (om0 [2(r 1))



Higgs and Goldstone modes e
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1
Ln = 5100* =V (#)

» The classical potential: Landau-Ginzburg free energy
functional: V (¢) = m2|¢|? + \*|¢|*

» After symmetry breaking, two modes apear:
Massless Goldstone mode: w ~ K|

Massive (gapped) tw = +/c2k2 + m2



Ultracold atoms in
the presence of a
synthetic gauge

» For g = 2 corresponding to condensate field we find field
one Goldstone and one Higgs mode: Subhasis Sinha

_ 22
o2 = (K1) ke 2(k0)2i\/( e G

» For non-condensate mode:

11, ke 1 ki, vék?

» For g = 3, corresponding to condensate mode we
find similar sound mode and Higgs mode as q = 2.

» Corresponding to two noncondensate fields:
Two gapless modes w ~ k? and two gapped modes.
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3
n=3
2 S 1
5 n=2
1 ]
M.l n=1
0



BEC with strong spin-orbit interaction e presence of &
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» Bosons in presence of artificial gauge fields:
H= [ {ul | G- A2+ gmati2| s Sutuy?

It is possible to generate SU(2) gauge fields:
(Ax,Ay) = hk(ox,oy).

» Effective Spin-Orbit interaction: H = Hg + H,

H = wa.P

‘ in collaboration with L. Santos (Hannover) ‘
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» Single particle energies: E(q) = %(\q\ — k)2
Wavefunction: vy = ek (1, e*)
Yk = 10yCrlx

» States in harmonic trap:
(61, 92) = VNe /23 (sr)e"?, 1y (nr)e+1)7)
(¢1,02)" =
—VNe "/2(23) 1 (kr)e(+1)_J,(xr)e—1?)
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Density wave state
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Momentum distribution
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Phase diagram

Rotational symmetr

Half-vortex (1

l+1/2]

*['HV (0)

Stability of SDW state: Landau-Ginzburg theory

Hexagonal symmetry

Density stripe|

E = Espw + A? {235& - mwz} +0(A%)

where A? is width of the momentum distribution of SDW
around diagonally opposite points k = ¥, —< on the

momentum ring.
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» Cold atoms can be used as Hubbard toolbox.

» Itis interesting to study excitations of cold atoms
coupled to non-abelian gauge fields.

» Quantum Hall states of bosons can be studied.



