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>

In order to probe spacetime at the Planck scale [p, the
Compton wavelength % of the probe must fulfill

h h
e <lIp or M > lp_c ~ Planck mass.

Such high mass in the small volume [% will strongly affect
gravity and can lead to black holes and their horizons to
form. This suggests a fundamental length limiting spatial
localization.

Similar arguments holds time localization.

Observation of very short time scales requires very high
energies. They can produce black holes and black hole
horizons will then limit spatial resolution suggesting

AtA|T| > 13 lp = a fundamental length.

The Noncommutative space-time models above spacetime
uncertainties. (Doplicher, Fredenhagen - Roberts)



» All different approaches to study quantum gravity like
String Theory, Loop Gravity, Causal set approach, etc do
predict the existence of a minimum length scale.

» Thus there are compelling reasons to expect the existence
of a fundamental length scale and we need to incorporate
this length scale in the discussions of quantum gravity.

» Quantum gravity can be, possibly modeled using
non-commutative space-time, which will naturally bring in
a length scale into the discussion.



But if such a fundamental length scale exist, it will be in
direct conflict with Special Theory of Relativity.

This led to study of possible modifications of STR. Now
we have a mathematically consistant theory of relativity.
This modified relativity principle, has two fumdamental
constants, velocity of light ¢ and a fumdamental length
scale..Deformed Special Relativity.

Now the transformations that leave physics invariant are
Deformed Lorentz transformations,

and symmetry group is Deformed Lorentz ( or Poincare)
group.



» The fumdamental length scale modifies the
Lorentz/Poincare transformations.

» Poincare transformations are generated by P,, My = N;
and Mij = Eiijk

» Poincare algebra (M; = J;)
[P/MPI/] :07 [MHP,U,] :iei,ujpja [NUPO] :ZP’L
[N;, Pj| =0 Py
[M,uu; Maﬁ] = i(n,u,BMz/a - nuaMuﬁ + nyaM,u,B - ny,BMua>



P,P* is the Casimir of Poincare algebra

We can label representations of Poincare algebra using
the value for the Casimir

P,P* =m?*c* is the Energy-Momentum relation,

E? = p22 + m2ct

The quadratic Casimir of the underlying symmetry
algebra gives the dispersion relation

The existence of a fumdamental length scale Deforms the
Poincare algebra.

The deformed algebra relevant for us is the
kappa-Poincare algebra.

Underlying space-time is xk-Minkowski spacetime;

[fiai’j] =0, [i'Oai)i] = 1aL;



Symmetry algebra of k-spacetime

» The symmetry algebra of this spacetime is k-Poincare
algebra

(M, Mag] = i(1us Moo — NuaMup + MuaMpus — v M)
[N;, P;] = idy; i(1 — ey L P2} _app
iy d g iJ 2 9 g

with Casimir m? = (2sinh(242))? — P2et



» There are different approaches to construct field theory
on k-spacetime.

» Using fields which are functions of 2, and defining the
action which is invariant under x-Poincare algebra.

» Map x-spacetime coordinates and their functions to
commutative ones and work with these commutative
functions.

» We take the second approach



Realisation of kappa spacetime and its Symmetry Algebra



K-spacetime, ordering, Leibnitz rules

» We have [fo,.ﬁ%l] = Y;Cl.f?i, [i’“i‘j] =0

» 2, = 2,P,,(0) This defines a unique mapping of
functions on k-spacetime to that on commutative space
time

» Imposing
[61',5%]'] = 5ij90(A)a [31'75%0] = z’a@ﬁ(A)

[807':%1'] = 07 [807:%0] = 17
with A = 7ady, we get from 2, = 2,P,,(0)



K-spacetime, ordering, Leibnitz rules

>
Ty = w0(A)
» from the commutators we get %¢ =v—-1

(¢(0) =1,4(0) = 1,7(0) = ¢'(0) + 1)
» Leibnitz rule for 0; is modified

(4: + Ay) (4: + Ay)
p(As) p(Ay)
> Aw(ao):5’0@[4—]@80:866]1/4—]3083

Ag(8r) = 072 Loy



k-Poincare algebra, Casimir and Dispersion relation

» Define Dirac derivatives and their algebra:
[Ml“/’ .TA})\] = SAC#&,)\ — i'ydl,)\ — iauM,,,\ — Z'CLZ,MH)\

[M,uw D)\] = 51/)\D,u - 6/1)\DV

[D/u D)) =0
[DH’ ilAf,/] = 5/“,\/ 1— (ZZDaDa + iCLo((SuoD,/ — (SH,,D())
o SinhA ,e 4 e~
DO = —2(90 A — za(ai) 2—902; Dz = 827

[M#W D] =0, [D, j#] - ZD#
—A
€
0= (@)2? +202(1 — coshA) | A



k-Poincare algebra, Casimir and Dispersion relation

» The Casimir
2

D,D,=0(1- CLZD) quartic

» Dispersion relation (E? = P2c + m?ct, p; = mi;)

E
4 a2/ aE e %c 2.2
— sinh”(%2) — Dibi g my e

a2 [ 4 o 12/aE caZ 17
+% |z sinh*(52) — pips aE )] =0

» We have constructed scalar field theory on k-spacetime.
» Investigated the implication of k-deformation on the flip
operators
ie., 7:P(x)P(y) — P(y)P(x) The statistics is
modified.
Phys.Rev.D80:025014,2009;Phys.Rev.D77:105010,2008 T R Govindarajan, K S
Gupta, EH, D. Meljanac, S.Meljanac
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» There may exist effects/signals reminiscent of underlying
NC structure at low energies. It is important to look for
such signals.

» Our strategy is to start with the deformed disperion
relation, expand in powers of a, keep only terms up to
first order in a.

» See whether there are significant effects which are
affected by this 1st order deformation.



Dirac Equation on x-Spacetime



Dirac Equation on x Spacetime

» Dispersion relation

a? ;0 p2/aP0N _ 2 e"%P0 9
T Sinh* (%) — p; Sape) — ™
2

2 —ap 2
o [%SinhQ(%ﬂ) 2 _e”*P0 ] =0

4 ~ Pi 52 (apo)

» Dirac Derivatives are

D, = 9,—
'

DOIaO

» Dirac Equation



Under parity, P: 2 — —x, P:t —t,

P:D,— —-D;, P:Dy— Dy

("°Dy — v'D; + mch™ 1)U (—z,t) =0

PV = v PV(z,t) is a solution if W(x,t) is a solution to
Dirac Eqn.

vV v v v

» Parity is a symmetry of the x-Dirac equation



Time reversal

> 7 x—x, T:t— —t,
» T7:D;,— D, T : Dy — Do where

Dy = —Zsz'nh(—iaé?o) + %V%”“‘%
a

> ihDoW(z, —t) = HU(z, —t)

» TU*(z,t) = —icyazTV* is a solution if U(z,t) is a
solution to Dirac Eqn.

» Time Reversal is a symmetry of the x-Dirac equation



Charge Conjugation

» Minimaly coupled Dirac Eqn.
ih (gsmh[a(po —eAy)] — 25 (P — eg)Qea(p0*6A0)> v
= (c?- (ﬁ—eff)jLﬁmc) G
> we get
ih (%smh[a(po + eAo)] + 3% (P + e/Y)Ze*“(pO*eAO)) A
= <o_2* (f+ ed) — ﬁ*mc) v*

» Similarity transformation by C' = i3y st Ca*C™! = a,
Op*C~! = —3 takes RHS of 2nd to 1st. Similarity
transformation will not change the sign of the second
term as well as the sign of the exponential.

» Charge conjugation is NOT a symmetry . Particle and
anti-particle have different Equations



H- Atom Spectrum

» r-Dirac equation for Hydrogen atom (valid up to 1st
order in a) is

. B
ihoW = [—z‘hc& Y+ mB+ V(r) + %vﬂ v

where V(r) = —%
» first order perturbation to 18% and 25'% are
AFE; = —0.10256a J, AFE, = —236.32a J
» We get
AF, — AFE
|#\ — a(2.89 x 10*%)m ™ (1)
1

The frequency of 1.5 — 2S5 is a now known to an accuracy
of 107!, Thus, we get a2.89 x 10 < 10~'*m implying

a<107%m



» In the NR limit, we get

BU = |~ 2V 4V + REDVE 4+ o L 8)| U

4m?2c? 2m202

R dV 0 4 achyy? 4
+|: 4m202d7‘6r QV 82CV]U

» Energy Eigenvalue
Za\2 n 3
acm Za\2 (3 n
B [1 - (%) (z - @)}

k-deformation breaks the degeneracy in the orbital
quantum number [. But do not lift the degeneracy in m.




H- Atom Spectrum

» For n =1, the ratio of the shift in Rydberg energy to the
unperturbed one

AFE a
e DR S RIS
| Z 5 X m
» accuracy in the measurement of Rydberg energy is 1075,
Hence.
a<107%m
LHC scale!

» Shift in Rydberg Energy is distinctive signal of
r-deformation



Deformed Newton's Law



Deformed Kepler Problem

» Dispresion relation

E
4 2(aF e %¢c 2.2
2 sinh (g) —pzplwag) — m-c

a? : a e_a% 2
+Z %Slnh2(2—f)—pipim:| =0

» With p(A) = e~ in the NR limit, we find

1—acm) _, _
H:gp.p

2m
» Since in our realisation, o — zo, Z; — x;p(A), we get

1 1 ar

A A _> - a5 9
T.x; o 2cr?



- =

H= (
» Radial Eqn

. K
i —r¢* = ——(1 — acm)
m

» Polar eqn. (with m.sr = m/(1 — acm))

d .

%(meffr%) =0

1 —acm) K Ka

2m P r 2mer3

r2



Pioneer anomaly

Radial Eqn. # — 7¢? = —£(1 — acm)

» change in the magnitude of the radial force. This

modification depends on the distance from sun in addition
to Kac.

an acceleration different from that given by the Newton's
law of gravitation

magnitude and direction will depend on the deformation
parameter a as well as on r.

The Pioneer anomaly: constant acceleration of
8.5 x 1071%mn /s? directed towards the sun, unaccounted
by the Newton's law.



This additional force is not constant, but its variation with
respect to 7 is small, since a is expected to be very small.

for the acceleration to be pointing towards sun, a should
be negative.

By approximating this additional force to be a constant
(as far as Pioneer measurements are concerned), we can
get a bound on |a| < 107%m.

Clearly, more sensitive measurements are needed. If
Pioneer anomaly is still turn out to be a constant force,
and if x deformation is also a fact, it leads to more
questions!



Violation of Equivalence Principle

>

>

v

v

v

EOM: meffii = —g;/l

Combining with Newtons Law of

gravitation ¥ = —G™452 we find
. M, m,
T =—-G——=(1 —amc
r? m( )

deviation in the ratio of gravitational to inertial mass is

mg,  amc

5(2e) = -2

m

EP violation is not unifrom, but depends on the inertial
mass of the body

la] < 107%°m



r-Maxwell Equations



(covariant generalisation of) Feynman's approach

» relativistic particle in 4-dimensions is described by z#(7),
T is just a parameter and not the proper time.
> [zt V] =0,
Feynman postulated [z#,3"] = ;—’jn‘“’
» Newtons Eqn. of motion is assumed to hold. i.e.,
mit = F*(x, 1)
» [A, B] = —[B, 4],
(A, [B,C)]| + [B,[C,A]] + [C,[A,B]] =0
» the Leibniz rules

4,BC] = [A,BIC+BIA,C],
d A dB

» Leibniz rules are not automatically satisfied by Poisson
brackets (need canonical equations of motion)



(covariant generalisation of) Feynman's approach

Differentiating Feynman bracket gives

[a';M?i.V] - _[xﬂ,‘fV] = ZJL_};FMV

F™ is an arbitrary rank-2, anti-symmetric tensor
Feynman derived homogeneous Maxwell eqn. by repeted
use of Jacobi identities involving coordinates and
momenta (this would also identify F* with Maxwell's
field strength)

X 4 9 FM 4 P = ()

Force equation is also derived F¥(z, &) = G* + qF"™ i,
» Inhomogeneous Eqn. 9, F"" = J" is taken as defining
relation for the current (This can also be derived).



Start with [2#, #"] = ic"\&*
adpat the approach to kappa-spacetime

Force equation and Maxwell's eqns. are derived

vV vV v v

Using F* = mespi*, we get

F(z,@)* = G(z)" 4+ qFh 3"

v

GH = 0D + O(a), F, = 0,4, — 9,4, + O(a)



r-Maxwell's Eqn

dz’ I3

> T U
V-B+ % 70,8 =0,
80§+ﬁxﬁ+%[ 0,8 + 7 x aOE}:
V- E—i—% 6OE:pe

aoﬁ—ﬁxg—l—%[vi@ﬁ—vxaog} = —J.

» in the limit @ — 0, we get the Maxwell's Egns. in
commutative spacetime.
» E-M duality:

E— B B— —E
peyje - pmag7jmag

pmag7jmag — —Pey —Je
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Conclusions

» We have constructed certain physical models and
analysed implications of x deformation

» We have seen distigushing signals from k-deformation.

r-Dirac equation, EH, M. Sivakumar and N. Srinivas; Mod. Phys. Lett. A26 (2011)
1103
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Maxwell’s equations on the k-Minkowski spacetime and Electric-Magnetic duality,
EH,Europhys.Lett. 90 (2010)21001.

Electrodynamics on x-Minkowski space-time, EH, T. Juric and S. Meljanac,

arXiv:1107.3936
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