
Signatures of the κ-Minkowski Spacetime

at Low Energies

E. Harikumar1

School of Physics

University of Hyderabad

Hyderabad

August 2011

1harisp@uohyd.ernet.in



Motivations/Introduction

Realisation of kappa spacetime and its Symmetry Algebra

Questions

Dirac Equation on κ-Spacetime

Deformed Newton’s Law

κ-Maxwell Equations

Conclusions



Motivations/Introduction

Realisation of kappa spacetime and its Symmetry Algebra

Questions

Dirac Equation on κ-Spacetime

Deformed Newton’s Law

κ-Maxwell Equations

Conclusions



Motivations....

◮ In order to probe spacetime at the Planck scale lP , the
Compton wavelength ~

Mc
of the probe must fulfill

~

Mc
≤ lP or M ≥ ~

lP c
≃ Planck mass.

◮ Such high mass in the small volume l3P will strongly affect
gravity and can lead to black holes and their horizons to
form. This suggests a fundamental length limiting spatial
localization.

◮ Similar arguments holds time localization.
◮ Observation of very short time scales requires very high

energies. They can produce black holes and black hole
horizons will then limit spatial resolution suggesting

∆t ∆|−→x | ≥ l2P lP = a fundamental length.

◮ The Noncommutative space-time models above spacetime
uncertainties. (Doplicher, Fredenhagen, Roberts)



Motivations....

◮ All different approaches to study quantum gravity like
String Theory, Loop Gravity, Causal set approach, etc do
predict the existence of a minimum length scale.

◮ Thus there are compelling reasons to expect the existence
of a fundamental length scale and we need to incorporate
this length scale in the discussions of quantum gravity.

◮ Quantum gravity can be, possibly modeled using
non-commutative space-time, which will naturally bring in
a length scale into the discussion.



◮ But if such a fundamental length scale exist, it will be in
direct conflict with Special Theory of Relativity.

◮ This led to study of possible modifications of STR. Now
we have a mathematically consistant theory of relativity.
This modified relativity principle, has two fumdamental
constants, velocity of light c and a fumdamental length
scale..Deformed Special Relativity.

◮ Now the transformations that leave physics invariant are
Deformed Lorentz transformations,

◮ and symmetry group is Deformed Lorentz ( or Poincare)
group.



κ-Deformation

◮ The fumdamental length scale modifies the
Lorentz/Poincare transformations.

◮ Poincare transformations are generated by Pµ, M0i = Ni,
and Mij = ǫijkJk

◮ Poincare algebra (Mi = Ji)

[Pµ, Pν ] = 0, [Mi, Pµ] = iǫiµjPj, [Ni, P0] = iPi

[Ni, Pj] = iδijP0

[Mµν ,Mαβ] = i(ηµβMνα − ηµαMνβ + ηναMµβ − ηνβMµα)



◮ PµP
µ is the Casimir of Poincare algebra

◮ We can label representations of Poincare algebra using
the value for the Casimir
PµP

µ = m2c2 is the Energy-Momentum relation,
E2 = p2c2 + m2c4

◮ The quadratic Casimir of the underlying symmetry
algebra gives the dispersion relation

◮ The existence of a fumdamental length scale Deforms the
Poincare algebra.

◮ The deformed algebra relevant for us is the
kappa-Poincare algebra.

◮ Underlying space-time is κ-Minkowski spacetime;

[x̂i, x̂j] = 0, [x̂0, x̂i] = iax̂i



Symmetry algebra of κ-spacetime

◮ The symmetry algebra of this spacetime is κ-Poincare
algebra

[Mµν ,Mαβ] = i(ηµβMνα − ηµαMνβ + ηναMµβ − ηνβMµα)

[Ni, Pj] = iδij

(

1

2a
(1 − e−2aP0) +

a

2
~P 2

)

− iaPiPj

with Casimir m2 = ( 2
a
sinh(aPo

2
))2 − ~P 2eaP0



◮ There are different approaches to construct field theory
on k-spacetime.

◮ Using fields which are functions of x̂µ and defining the
action which is invariant under κ-Poincare algebra.

◮ Map κ-spacetime coordinates and their functions to
commutative ones and work with these commutative
functions.

◮ We take the second approach
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K-spacetime, ordering, Leibnitz rules

◮ We have [x̂0, x̂i] = iax̂i, [x̂i, x̂j] = 0

◮ x̂µ = xαΦαµ(∂) This defines a unique mapping of
functions on k-spacetime to that on commutative space
time

◮ Imposing

[∂i, x̂j] = δijϕ(A), [∂i, x̂0] = ia∂iγ(A)

[∂0, x̂i] = 0, [∂0, x̂0] = 1,

with A = ia∂0, we get from x̂µ = xαΦαµ(∂)



K-spacetime, ordering, Leibnitz rules

◮

x̂i = xiϕ(A)

x̂0 = x0ψ(A) + iaxi∂iγ(A)

◮ from the commutators we get ϕ′

ϕ
ψ = γ − 1

( ϕ(0) = 1, ψ(0) = 1, γ(0) = ϕ′(0) + 1)

◮ Leibnitz rule for ∂i is modified

∆ϕ(∂i) = ∂x
i

ϕ(Ax + Ay)

ϕ(Ax)
+ ∂y

i

ϕ(Ax + Ay)

ϕ(Ay)

◮ ∆ϕ(∂0) = ∂0 ⊗ I + I ⊗ ∂0 = ∂x
0 Iy + Ix∂y

0



k-Poincare algebra, Casimir and Dispersion relation

◮ Define Dirac derivatives and their algebra:
[Mµν , x̂λ] = x̂µδνλ − x̂νδνλ − iaµMνλ − iaνMµλ

[Mµν , Dλ] = δνλDµ − δµλDν

[Dµ, Dν ] = 0

[Dµ, x̂ν ] = δµν

√

1 − a2DαDα + ia0(δµ0Dν − δµνD0)

D0 = −i∂0
sinhA

A
− ia(∂i)

2 e−A

2ϕ2
; Di = ∂i

e−A

ϕ
◮

[Mµν ,¤] = 0, [¤, x̂µ] = 2Dµ

¤ = (∂i)
2 e−A

ϕ2
+ 2∂2

0(1 − coshA)/A2



k-Poincare algebra, Casimir and Dispersion relation

◮ The Casimir

DµDµ = ¤(1 − a2

4
¤) quartic

◮ Dispersion relation (E2 = P 2c2 + m2c4, pi = mẋi)

4
a2 sinh2(aE

2c
) − pipi

e−a E
c

ϕ2(a E
c

)
− m2c2

+a2

4

[

4
a2 sinh2(aE

2c
) − pipi

e−a E
c

ϕ2(a E
c

)

]2

= 0

◮ We have constructed scalar field theory on κ-spacetime.
◮ Investigated the implication of κ-deformation on the flip

operators
i.e., τ : Φ(x)Φ(y) → Φ(y)Φ(x) The statistics is
modified.

Phys.Rev.D80:025014,2009;Phys.Rev.D77:105010,2008 T R Govindarajan, K S

Gupta, EH, D. Meljanac, S.Meljanac
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Questions

◮ There may exist effects/signals reminiscent of underlying
NC structure at low energies. It is important to look for
such signals.

◮ Our strategy is to start with the deformed disperion
relation, expand in powers of a, keep only terms up to
first order in a.

◮ See whether there are significant effects which are
affected by this 1st order deformation.
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Dirac Equation on κ Spacetime

◮ Dispersion relation

a2

4
Sinh2(ap0

2
) − p2

i
e−ap0

ϕ2(ap0)
− m2

−a2

4

[

a2

4
Sinh2(ap0

2
) − p2

i
e−ap0

ϕ2(ap0)

]2

= 0

◮ Dirac Derivatives are

Di = ∂i

e−A

ϕ

D0 = ∂0
sinhA

A
+ ia∇2 e−A

2ϕ2
,

◮ Dirac Equation

(γ0D0 + γiDi +
mc

~
)Ψ = 0



Parity

◮ Under parity, P : x → −x, P : t → t,

◮ P : Di → −Di, P : D0 → D0

◮ (γ0D0 − γiDi + mc~−1)Ψ(−x, t) = 0

◮ PΨ = γ0PΨ(x, t) is a solution if Ψ(x, t) is a solution to
Dirac Eqn.

◮ Parity is a symmetry of the κ-Dirac equation



Time reversal

◮ T : x → x, T : t → −t,

◮ T : Di → Di, T : D0 → D̃0 where

D̃0 = − i

a
sinh(−ia∂0) +

ia

2
∇2e+ia∂0

◮ i~D̃0Ψ(x,−t) = HΨ(x,−t)

◮ T Ψ∗(x, t) = −iα1α3TΨ∗ is a solution if Ψ(x, t) is a
solution to Dirac Eqn.

◮ Time Reversal is a symmetry of the κ-Dirac equation



Charge Conjugation

◮ Minimaly coupled Dirac Eqn.

i~
(

i
a
sinh[a(p0 − eA0)] − ia

2~2 (~p − e ~A)2ea(p0−eA0)
)

Ψ

=
(

~α · (~p − e ~A) + βmc
)

Ψ

◮ we get

i~
(

i
a
sinh[a(p0 + eA0)] + ia

2~2 (~p + e ~A)2e−a(p0+eA0)
)

Ψ∗

=
(

~α∗ · (~p + e ~A) − β∗mc
)

Ψ∗

◮ Similarity transformation by C = iβα2 st Cα∗C−1 = α,
Cβ∗C−1 = −β takes RHS of 2nd to 1st. Similarity
transformation will not change the sign of the second
term as well as the sign of the exponential.

◮ Charge conjugation is NOT a symmetry . Particle and
anti-particle have different Equations



H- Atom Spectrum

◮ κ-Dirac equation for Hydrogen atom (valid up to 1st
order in a) is

i~∂tΨ =

[

−i~c~α · ~∇ + mc2β + V (r) +
ac~

2
~∇2

]

Ψ

where V (r) = − Ze2

4πǫ0r

◮ first order perturbation to 1S 1

2

and 2S 1

2

are

∆E1 = −0.10256a J, ∆E2 = −236.32a J

◮ We get

|∆E1 − ∆E2

E1

| = a(2.89 × 1015)m−1 (1)

The frequency of 1S − 2S is a now known to an accuracy
of 10−14. Thus, we get a2.89 × 1015 < 10−14m implying

a < 10−29m



◮ In the NR limit, we get

E ′U =
[

− ~
2

2m
∇2 + V + ~

2 (E′
−V )

4m2c2
∇2 + 1

2m2c2
1
r

dV
dr

(L · S)
]

U

+
[

− ~
2

4m2c2
dV
dr

∂
∂r

+ ac~

2
∇2 − a~

3

8m2c
∇4

]

U

◮ Energy Eigenvalue

En = E0
n

[

1 +
(

Zα
n

)2
(

n

j+ 1

2

− 3
4

)]

+E0
n

acm
~

[

1 −
(

Zα
n

)2
(

3
4
− n

l+ 1

2

)]

κ-deformation breaks the degeneracy in the orbital
quantum number l. But do not lift the degeneracy in m.



H- Atom Spectrum

◮ For n = 1, the ratio of the shift in Rydberg energy to the
unperturbed one

|∆E

E
| =

a

2
× 1011m−1

◮ accuracy in the measurement of Rydberg energy is 10−8.
Hence.

a < 10−19m

LHC scale!

◮ Shift in Rydberg Energy is distinctive signal of
κ-deformation
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Deformed Kepler Problem

◮ Dispresion relation

4
a2 sinh2(aE

2c
) − pipi

e−a E
c

ϕ2(a E
c

)
− m2c2

+a2

4

[

4
a2 sinh2(aE

2c
) − pipi

e−a E
c

ϕ2(a E
c

)

]2

= 0

◮ With ϕ(A) = e−A, in the NR limit, we find

H =
(1 − acm)

2m
~p · ~p

◮ Since in our realisation, x̂0 → x0, x̂i → xiϕ(A), we get

1√
x̂ix̂i

→ 1

r
− aṙ

2cr2



◮

H =
(1 − acm)

2m
~p · ~p − K

r
+

Ka

2mcr3
(x · p)

◮ Radial Eqn

r̈ − rφ̇2 = −K

m
(1 − acm)

1

r2

◮ Polar eqn. (with meff = m/(1 − acm))

d

dt
(meffr

2φ̇) = 0



Pioneer anomaly

◮ Radial Eqn. r̈ − rφ̇2 = −K
m

(1 − acm) 1
r2

◮ change in the magnitude of the radial force. This
modification depends on the distance from sun in addition
to Kac.

◮ an acceleration different from that given by the Newton’s
law of gravitation

◮ magnitude and direction will depend on the deformation
parameter a as well as on r.

◮ The Pioneer anomaly: constant acceleration of
8.5 × 10−10m/s2 directed towards the sun, unaccounted
by the Newton’s law.



◮ This additional force is not constant, but its variation with
respect to r is small, since a is expected to be very small.

◮ for the acceleration to be pointing towards sun, a should
be negative.

◮ By approximating this additional force to be a constant
(as far as Pioneer measurements are concerned), we can
get a bound on |a| ≤ 10−53m.

◮ Clearly, more sensitive measurements are needed. If
Pioneer anomaly is still turn out to be a constant force,
and if κ deformation is also a fact, it leads to more
questions!



Violation of Equivalence Principle

◮ EOM: meff ẍi = − ∂V
∂xi

◮ Combining with Newtons Law of
gravitation µeff ẍ = −GmgMg

r2 we find

ẍ = −G
Mg

r2

mg

m
(1 − amc)

◮ deviation in the ratio of gravitational to inertial mass is

δ(
mg

m
) = −amc

~

◮ EP violation is not unifrom, but depends on the inertial
mass of the body

◮ |a| ≤ 10−55m
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(covariant generalisation of) Feynman’s approach

◮ relativistic particle in 4-dimensions is described by xµ(τ),
τ is just a parameter and not the proper time.

◮ [xµ, xν ] = 0,
Feynman postulated [xµ, ẋν ] = i~

m
ηµν

◮ Newtons Eqn. of motion is assumed to hold. i.e.,
mẍµ = F µ(x, ẋ)

◮ [A,B] = −[B,A],
[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

◮ the Leibniz rules

[A,BC] = [A,B]C + B[A,C],

d

dt
[A,B] = [

A

dt
,B] + [A,

dB

dt
]

◮ Leibniz rules are not automatically satisfied by Poisson
brackets (need canonical equations of motion)



(covariant generalisation of) Feynman’s approach

◮ Differentiating Feynman bracket gives
[ẋµ, ẋν ] = −[xµ, ẍν ] = iq~

m2 F
µν

F µν is an arbitrary rank-2, anti-symmetric tensor

◮ Feynman derived homogeneous Maxwell eqn. by repeted
use of Jacobi identities involving coordinates and
momenta (this would also identify F µν with Maxwell’s
field strength)
∂µF νλ + ∂νF λµ + ∂λF νµ = 0

◮ Force equation is also derived F µ(x, ẋ) = Gµ + qF µν ẋν

◮ Inhomogeneous Eqn. ∂µF
µν = Jν is taken as defining

relation for the current (This can also be derived).



κ-Lorentz Eqn

◮ Start with [x̂µ, x̂ν ] = icµν
λx̂

λ

◮ adpat the approach to kappa-spacetime

◮ Force equation and Maxwell’s eqns. are derived

◮ Using F µ = meff ẍ
µ, we get

F (x, ẋ)µ = G(x)µ + qF µ
ν ẋ

ν

◮ Gµ = ∂µΦ + O(a), Fµν = ∂µAν − ∂νAµ + O(a)



κ-Maxwell’s Eqn

◮
dxi

dτ
= vi,

~∇ · ~B +
ma

~
~v · ∂0

~B = 0,

∂0
~B + ~∇× ~E +

ma

~

[

vi∂i
~B + ~v × ∂0

~E
]

= 0

~∇ · ~E +
ma

~
~v · ∂0

~E = ρe

∂0
~E − ~∇× ~B +

ma

~

[

vi∂i
~E − ~v × ∂0

~B
]

= −~je

◮ in the limit a → 0, we get the Maxwell’s Eqns. in
commutative spacetime.

◮ E-M duality:

~E → ~B, ~B → − ~E

ρe, je → ρmag, jmag

ρmag, jmag → −ρe,−je
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Conclusions

◮ We have constructed certain physical models and
analysed implications of κ deformation

◮ We have seen distigushing signals from κ-deformation.
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