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Graphene: Electronic Structure

pz - orbital pz - orbital

plane of the
spo - orbitals

e Carbon atoms are in sp? hybrid state
e Hybrid orbitals form strong & directional ¢ bonds

e Out-of-plane p, orbitals merge and form 7w bonds



Graphene: Electronic Structure

e Hexagonal tiling can be thought of as two interpenetrating
triangular lattices (A,B)

e Unit Cell consists of two sites, one from each lattice



Graphene: Electronic Structure

Delocalised 7 electrons can be modeled by simple hopping
Hamiltonian:

H=-tY (aT(F)b(F+ ;) + h.c,)
7,5
¥ point A lattice points and 5;(:« = 1,2,3) point B lattice
points from any A site

In Fourier space Hamiltonian is:

} ) k5N (ke
H = —tZ (aT(k), bT(k)) ( ° = 0 ) (bgg>
k

S e tk-S;



Graphene: Electronic Structure

e Single particle Energy (Band structure)
E(k) = 4t Y e* 5|
i
where 4+ stand for Conduction/Valence Band

e \Wallace™ observed that for six points in Fourier space, above
energy vanishes

e Only two points, called Dirac points K4, in k-space are in-
dependent, rest can be reached via symmetry operations

*Wallace, P. R., 1947, Phys. Rev. 71, 622.



Graphene: Band Structure

ENERGY




Graphene: Electronic Structure

e Semenoff* showed that linearised Hamiltonian around two
Dirac points (also commonly referred to as valleys) has Dirac
structure

Hp = [ dPowl, (v;5 ) by + ol (vpo* - 5) v

vy is Fermi velocity (~ 106m/s), vi(k) = (ax(k), b+ (k)T

e Low energy w electron dynamics (< 1 eV) is captured by two
species of massless Dirac electrons each living at K4 valley

*Semenoff, G. W., 1984, Phys. Rev. Lett. 53, 2449.



e Long wavelength modes see an emergent relativity, albeit ¢
IS replaced by o

e o represents NOT spin but pseudo-spin

e Understanding of this pseudo-spin is still not clear® (namely
whether it is a genuine ‘spin’ ?)

e Mass-Gap can be induced by say onsite(local) interaction
that breaks sublattice symmetry, essential for any semicon-
ducting application

Honsite = 0 Z (a;‘raz’ - bgbi) -
)

*Mecklenburg M. and Regan B. C., 2011,Phys. Rev. Lett. 106, 116803.
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e T his can be done selectively functionalising or doping one
sublattice

e Gap can also be induced by placing Graphene on carefully
choosen substrate (lattice mismatch)

e Boron Nitride has Dirac fermions and is naturally gapped
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Integer Quantum Hall Effect @ Room Temperature
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Figure 4. Quantum Hall effect for massless Dirac fermions. Hall conductivity o and longitudinal resistivity p, of
graphene as a function of their concentration at B =14T. o, =(4e*/h)v is calculated from the measured dependences
i 1 = i 4 2 The heba vio "1 s : . : o ; ~
of p, (V) and p (V) aso, =p,Ap,, +p,). The behaviour of 1 Py I8 similar but exhibits a discontinuity at V, =0,
which is avoided by plotting & Inset: o in “two-layer graphene™ where the quantization sequence is normal and

oceurs at integer v. The latter shows that the half-integer QHE is exclusive to “ideal” graphene.

(K. S. Novoselov et. al., Nature 438, 197-200 (10 November 2005))
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e Klein Paradox was predicted and observed
e Universal Conductance, Ballistic transport

e Proposals:
— Quantum Spin Hall Effect
— Fermion fractionalisation

e Fractional Quantum Hall effect is observed in freely standing
Graphene
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Superconductivity

e In Graphene natural units h = V= 1, electronic Lagrangian
in manifestly covariant form reads:

Zp = (VO —m)Yy + (Vo —m)p—. (1)

e Above Lagrangian is invariant under two types of indepen-
dent global transformations:

Y (r) = e Py (1), P (r) — e (), (2)
Py (r) — e Py (r), Y (r) — e (r). (3)
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e Independence of these two transformations can be seen easily
by working in a reducible representation:

Lp = V(ivH'd, — m)W
where W = (by, —b_,a_,ay)!, and
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e Above two transformations now read:

W(r) — e P w(r),and
W(r) — e AW

which clearly shows their independence.

16

(4)
(5)



e Since these are continuous symmetry operations, Noether
theorem holds, and as a result one finds two independently
conserved currents:

Ou(sly +32) = 0 and 9 (4 — %) =0,
where jH(r) = (r)yHp(r).
e Above relations imply conservation of both the valley cur-

rents separately, which means that no intervalley scattering
takes place.
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e Transformations of first type can be gauged using external
electromagnetic field A,

Z :Qﬁ—l— (’Wiau —m —+ ’YiA,u)w—l—
+ (V0 —m + ALY

e [ his means that above remains invariant under local gauge
transformations:

b (r) — e Ny (1), (r) — e Ny (1),
and A, — Ay + OuN(r).

e Above action is responsible for observed electromagnetic re-
sponse of Graphene
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e \What happens when one gauges the transformations of sec-
ond type ?
e [ WO routes to gauge invariance

— Route No. 1: By introducing a gauge field explicitly
(arxiv: 0901.1034)

— Route No. 2: By introducing a gauge field implicitly (i.e.,
via a constraint) (arxiv: 1107.5521)

e In this talk only Route No. 1 will be discussed
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Route No. 1

e We shall assume that there exist a gauge field a, such that,
L =4 (i O —m + Al ap)py
+ &—(i’yﬁau —m — ’Yﬁau)w— - 4;2fMVf'uV7
and remains invariant under local gauge transformations:

b (r) — e Xy (1), 9 (r) = XMy _(7),
and ay — ay + Oux(r).
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Electromagnetic response

e In functional integral formulation, vacuum functional is de-
fined as:

Z=N [ D15, au) S0l
where action is given by,
S = [ Bady (o —m+au+ Ay

+ (i o — m — yay + ALY — ngwf“”.

e Fermion spectrum is gapped and hence at low energy they
are only virtually excited
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e Hence they can be integrated out from above action, and us-
ing the method of derivative expansion®, it yields an effective
action in terms of a and A to the lowest order:

3
7 = N/@[au] et ) d TZeff where,

1 m

geff[aa Al = —4—§2fw/fuy -

1
eAALBpay + O(E).

m|m|

e An additional factor of 2 have multiplied in above action to
take into account spin degeneracy

e Virtual fermion loops have generated a mixed Chern-Simons
term in above action

*Babu K.S., Das A. and Panigrahi P.K., 1988, Phys. Rev. D 36, 3725
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This term is topological, but unlike pure Chern-Simons term,
this does not violate P and 1" symmetry

Inorder to study electromagnetic response, one needs to find
the effective action for external A, field by integrating out a
field from above action, which is given by

~2

o
L. i[A] = g—ﬁ <AMA“ — Ay A,,) |

Amazingly, one finds that photon has become massive

In regime of linear response, all the electromagnetic response
functions can be obtained from above action
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e Electric current induced in the system due to presence of an
external electromagnetic field is given by:

G @ina = 51 oy Sets

e \When the system is subjected to a constant external mag-
netic field, in Coulomb gauge V. A= 0, one finds:
- G° -
((2))ina = —"—A(x),

which is the celebrated London equation

e Further, when external electric field is applied such that A=
0, one obtains:
- 3° =
(J(W))ing = —FE(w)
TTW

24



This means that conductivity o(w) ~ X, and blows up at

w=2~0

Hence, we see that our theory exhibits both
1. Meissner Effect

2. Infinite DC conductivity

It is tempting to conclude that our theory describes super-
conductivity

But, what about flux quantisation 7
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Note, that transformation A, — A, + Ou/\, does not leave
mixed Chern-Simons term (e**A,8,ay ) invariant

However, the action remains invariant, assuming that fields
decay sufficiently quickly as one approaches the boundary

Consider above theory at finite temperature using imaginary
time formulation

One does a Wick rotation from Minkowskii space-time to
Euclidean space-time: t — —ir, where 7 € [0, 8] is a compact

variable and g = }
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e In this Euclidean space-time, bosonic (fermionic) fields are

required to satisfy periodic (anti-periodic) boundary condi-
tions:

F(Z,0) = +F(zZ, 3)

e [ hese conditions alongwith analyticity, imposes restriction
on choice of gauge function A(x): A(B) = A(0) + 27n

e VVacuum functional now reads:

7 Buclid :N/Q[au] e 9CS where

B

m|m|
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e Variation of Chern-Simons action under these restricted gauge
transformations (where \(7) only depends on 1) is given by:

2
0Scs = %n@, where

P = /dzx em(’?zA],

is the magnetic flux

e Demanding invariance of vacuum functional requires: 6Scg =
2miN, where N is an integer

e [ hisimplies that ® = N%. This, when appropriately scaled

to SI units, reads:
S = N ( m > hc
im| /) 2g
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Hence we find that, magnetic flux is quantized in this model,

with flux unit g—g, akin to that of a BCS superconductor



Hence we find that, magnetic flux is quantized in this model,
with flux unit g—g, akin to that of a BCS superconductor.

So this forces us to conclude that, Graphene minimally cou-
pled to a, field behaves like a superconductor.

Interestingly, there is no BCS type fermion pairing in this
theory |

Further, it is well known in context of BCS theory, that
superconductivity does not appear in any finite order of per-
turbative calculation & it occurs due to the phenomenon of
spontaneous symmetry breaking.

In above calculation, which is done perturbatively at one loop
order, we find superconductivity.
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This only indicates that this type of superconductivity has an
origin different than the conventional pairing based theories

Origin of this superconductivity is topological, since it cru-
cially depends on mixed Chern Simons term

Above reminds one of Anyon Superconductivity, proposed to
explain high T

There is no symmetry breaking, then how is this kind of
superconductivity is lost 7
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Berezinskii-Kosterlitz- T houless phase transition

e It can be shown that the effective Lagrangian can be written

in the London form after a Hubbard-Stratonovich transfor-
mation:

2
_ >
Lorp = 25 (aue + —mAM> |

m|m|

where 0(x,t) is an auxiliary field

e Note, that 0 field transforms under a gauge transformation

as.
2m

0 —0— ——N,

m|m|
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and hence it precisely mimics Nambu-Goldstone mode of BCS
theory

e As argued by Weinberg*, existence of a mode that transforms
like Nambu-Goldstone mode is sufficient for superconductiv-
ity

e Hence, in this light, occurence of superconductivity is not a
surprise

*Weinberg S., 1986, Prog. Theor. Phys. Suppl. 86, 43
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e Above Lagrangian in absence of external electromagnetic
field resembles the Lagrangian of 2D XY model in contin-
uum limit

e It is well known that the latter shows a topological phase
transition called Berezinskii-Kosterlitz-Thouless phase tran-
sition, wherein above a certain finite temperature, the system
supports spontaneous occurrence of multivalued field config-
uration or vortices

e Since our Lagrangian is already in XY form, critical temper-
ature can be readily found to be

~2
ITpgr = 27g~.
33



e Inorder to study effect of vortices, one decomposes 0 = 0,46,

e Integrating out the regular part to arrive at the following
effective action, depicting interaction of vortices and external
electromagnetic field:

1 4mg 1 1 - 16g 1
Lerr = —29 2 Jh ( )

— Ky _—

where vortex current Jy, = €,,,0"00, and dual [, = €, \F"

m|m|
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e Integrating out vortex current would give rise to a term ex-
actly the same as the third one but with opposite sign

e Hence, cancellation of the last term take place and so pres-
ence of vortices would destroy superconductivity

e SO, superconducting-to-normal phase transition is an infinite
order topological one
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Edge theory

e \We have assumed that Graphene sheet is of infinite extent,
and fields fall of sufficiently quickly, so that surface terms
give negligible contribution

e In reality, one encounters finite Graphene samples with a
boundary

e Owing to its hexagonal tiling, Graphene can exhibit boundary
of two Kkinds: Arm chair and Zig-zag

e It is known that, the latter exhibits localised electronic egde
states, whereas the former does not
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e Hence, in case of arm-chair egdes, fermions present in bulk
can freely interact with the ones living on boundary and vice
Versa

e Bulk effective Lagrangian is

m

1
Zopilo, A = = =5 fun " - A Audyay (6)

m|m|

e AsS was observed earlier, the last term in above Lagrangian is
not invariant under local gauge transformation: A, — A, +
ou/\, where A is some regular function of z. As a result, the
change in action is given by:

sgn(m)>

5SCS e ( /d3ZC E'Lujpﬁlu (/\ f]/p)
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e Above volume integral can be converted to a surface integral,
defined on closed Graphene boundary, to give an action:

sgn(m))

e [ his term, as it stands, is not gauge invariant, and is defined
on Graphene boundary, which encloses the bulk

e \We demand that the full theory i.e., Bulk + Boundary must
be Gauge Invariant
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e SO, there must exist a corresponding gauge theory living on
the boundary, defined such that it contributes a gauge nonin-
variant term of exactly opposite character and hence cancels
the one written above

e [ he simplest term, living on boundary, that obeys above
condition is:

—sgn(m) / 5
Sp = d<x 0et” :
B 2T B 2O S

where 6(x,t) is Stiickelberg field, which transforms like 0 —
0+ A.

e Because of peculiar transformation property, a quadratic mass
term for 6 is not gauge invariant
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So with a gauge invariant Kinetic term, the boundary action
reads:

Sp = / 2z [c (0,0 — A2 = 39U gy |
B 2T

and in a gauge theory framework like this, 6 field remains
massless

Using the same idea for gauge invariance with respect to ay
field, one gets net action describing gapless surface modes:

Sp = /B d°x [C (Oub — ay — A,UJ)2

_sgn(m)

o (f/ﬂ/ + F/u/) (7)
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Firstly, note that the action for 6 is in manifest London form,
and hence is indicative of non-dissipative transport on the
boundary

Secondly, 6 field is electromagnetically charged, and hence
boundary supports dissipationless electric current, or in other
words boundary is superconducting

Thirdly, the coupling of 8 field, with that of a and A field is
anomalous, as a result chiral current in this quantum theory
IS NnO longer conserved

This ultimately results in chirality of these surface modes
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e \We show that, an Abelian gauge field which couples to dif-
ference of valley fermion currents in gapped Graphene, gives
rise to a special type of superconductivity

e [ his mechanism is fundamentally different then the pairing
based ones, where spontaneous symmetry breaking occurs

e Since, the vacuum of our theory is not a condensate, 2A or
Amplitude collective mode is absent

e It remains to be seen however, whether the gauge field as-
sumed in above discussion is realizable in Graphene or not.
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e It is well known that, optical phonons in Graphene couple to
Dirac fermions as vector fields, albeit with different sign for
both valley fermions, very much like the a, gauge field *

e However, phonon vector field is massive(gapped) and hence
differs fundamentally from the one that is required

e Open Questions:
1. What carries current in this theory 7
2. Do plasmons exist in this theory 7

*K. Sasaki and R. Saito, Prog. Theor. Phys. Suppl. 176, 253 (2008)
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Thank You for your attention
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