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In 1997, Serre proved an equidistribution theorem for eigenvalues
of Hecke operators on the space S(N,k) of cusp forms of weight k
and level N . In this paper, we derive an effective version of Serre’s
theorem. As a consequence, we estimate, for a given d and prime p
coprime to N , the number of eigenvalues of the pth Hecke operator
T p acting on S(N,k) of degree less than or equal to d. This allows
us to determine an effectively computable constant Bd such that
if J0(N) is isogenous to a product of Q-simple abelian varieties of
dimensions less than or equal to d, then N � Bd . We also study
the effective equidistribution of eigenvalues of Frobenius acting
on a family of curves over a fixed finite field as well as the
eigenvalue distribution of adjacency matrices of families of regular
graphs. These results are derived from a general “all-purpose”
equidistribution theorem.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let S(N,k) be the space of cusp forms of weight k on Γ0(N) and for every positive integer n,

let Tn(N,k) be the nth Hecke operator acting on S(N,k). Let s(N,k) be the dimension of S(N,k)

and let ap,i , 1 � i � s(N,k), denote the eigenvalues of T p, counted with multiplicity. The asymptotic
distribution of eigenvalues of the Hecke operator T p on S(N,k) for a prime p is an interesting and
difficult problem. By a result of Deligne [7], we know that the eigenvalues of T p lie in the interval

[−2p
k−1

2 ,2p
k−1

2
]
.
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Thus, the eigenvalues of the normalized Hecke operator

T ′
p = T p

p
k−1

2

lie in the interval [−2,2]. If we fix N and k and vary the prime p, the distribution of the eigenvalues
is predicted by the Sato–Tate conjecture (see [27]). In the generic case, the eigenvalues of a fixed
Hecke eigenform are expected to be equidistributed in [−2,2] with respect to the measure

μ∞ = 1

π

√
1 − x2

4
dx.

Recently, Taylor [29] has announced that this conjecture is true in the case k = 2 and N is squarefree
and the eigenform has rational integer coefficients. Such forms correspond to elliptic curves over Q

by a celebrated theorem of Wiles [31].
In his 1997 paper [26], Serre considered a “vertical” Sato–Tate conjecture by fixing a prime p and

varying N and k. He proved the following theorem:

Theorem 1. Let Nλ , kλ be positive integers such that kλ is even, Nλ +kλ → ∞ and p is a prime not dividing Nλ

for any λ. Then the family of eigenvalues of the normalized pth Hecke operator

T ′
p(Nλ,kλ) = T p(Nλ,kλ)

p(kλ−1)/2

is equidistributed in the interval Ω = [−2,2] with respect to the measure

μp := p + 1

π

(1 − x2/4)1/2

(p1/2 + p−1/2)2 − x2
dx.

Serre’s theorem has several applications, and some of the most interesting ones are as follows. For
any positive integer d,

#
{

1 � i � s(N,k):
[
Q(ap,i) : Q

]
� d

} = o
(
s(N,k)

)
as N + k → ∞.

In particular,

#
{

1 � i � s(N,k): ap,i ∈ Z
} = o

(
s(N,k)

)
as N + k → ∞.

Consequently, there are only finitely many values of N such that J0(N) is isogenous to a product of
elliptic curves. More generally, there are only finitely many values of N such that J0(N) is isogenous
to a product of Q-simple abelian varieties A f with dimensions less than or equal to d. The limitation
of Serre’s theorem and its proof is that it does not give us an effective bound for these values of N .
In this paper, we obtain an effective version of Serre’s theorem. We prove

Theorem 2. Let N be a positive integer and p a prime number coprime to N. For an interval [α,β] ⊂ [−2,2],

1

s(N,k)
#

{
1 � i � s(N,k):

ap,i

p
k−1

2

∈ [α,β]
}

=
β∫

α

μp + O

(
log p

log kN

)
,

where the implied constant is effectively computable.
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Remark 3. In the special case N = 1 and k → ∞, Serre’s equidistribution theorem was also discovered
by Conrey, Duke and Farmer [6]. A version of Serre’s theorem with error term, in this special case,
was obtained by E.P. Golubeva in [9], but this result is not effective. The error obtained there is

Oε

(
log p

(log k)1−ε

)

for any ε > 0. However, it seems that in the application of Vinogradov’s trigonometric polynomial,
only the cosine polynomial is treated and the sine polynomial is left untreated in [9]. Thus, the proof
seems to be incomplete. In the context of Maass forms, Sarnak [24] obtained an analogous theorem
in 1984.

If α = β, then the integral in Theorem 2 is zero. Thus, for a fixed number α,

#

{
i:

ap,i

p
k−1

2

= α

}
= O

(
s(N,k) log p

log kN

)
. (1)

By careful estimation, in the special case α = β, we also get a sharper error term. Moreover, keeping
future applications in mind, we determine an explicit constant in the error term. In fact, we have the
following result:

Theorem 4. Let N be a positive integer and p be a prime not dividing N. Then, for a fixed number α lying in
[−2,2],

#

{
i:

ap,i

p
k−1

2

= α

}
� 3s(N,k) log p

log kN
+ 63kN log p

log kN
,

for N � e1024 .

As a consequence of Theorem 4, we deduce the following:

Theorem 5. Let r = s(N,k). Let d be a positive integer and K p,i = Q(ap,i) for every 1 � i � r. Then

#
{

i: [K p,i : Q] = d
}

� d
d∏

j=1

(
2

(
d

j

)(
2p

k−1
2

) j + 1

)(
3s(N,k)

log p

log kN
+ 63kN

log kN

)
,

provided N � e1024 .

Theorems 4 and 5 will be proved in Sections 14 and 15. Theorem 5 gives us important arithmetic
information about J0(N), the Jacobian of the modular curve X0(N). In Section 16, we prove the
following theorem:

Theorem 6. If J0(N) is isogenous to a product of Q-simple abelian varieties of dimension less than or equal
to d, then N � C(d) for some effectively computable constant C(d).

As will be seen later, the effective nature of C(d) allows us to deduce the following corollary,
a result also obtained by Royer [23] using different methods.
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Corollary 7. J0(N) has a Q-simple factor of dimension

� √
log log N.

The main ingredients in the proof of Theorem 2 are the Theorem 8 (stated below), the Eichler–
Selberg trace formula and certain trigonometric polynomials, which give a good approximation for
the characteristic function of an interval contained in [0,1]. In the next eight sections, we will briefly
state the information needed in order to prove Theorem 2.

As in [26], there are two other analogous contexts in which one can ask similar questions. The
first is the case where we fix a finite field Fq and consider a family of curves Cr of genus gr with
gr tending to infinity as r → ∞. The Frobenius endomorphism acts on the curve over Fq and one can
study the equidistribution of the sets Ar of eigenvalues of this endomorphism acting on the curves Cr .
The precise result can be found in Theorem 33. In a similar vein, let Xi be a family of k-regular graphs.
In Theorem 34, we derive an equidistribution theorem concerning the eigenvalues of the adjacency
matrices of the Xi ’s.

All of these results will be derived from an “all-purpose” equidistribution theorem (Theorem 8
below). We believe this theorem will have further applications and expect to pursue them in future
research.

2. Uniform distribution of sequences

A sequence of real numbers {xn} is said to be uniformly distributed (or equivalently, equidistributed)
mod 1 if for every interval I ⊂ [0,1], we have

lim
V →∞

#{n � V : xn mod 1 ∈ I}
V

= 	(I),

where 	(I) is the usual Lebesgue measure equal to the length of the interval I . The well-known
criterion of Weyl [16] states that the sequence {xn} is uniformly distributed if and only if∑

n�V

e(mxn) = o(V ), e(t) = e2π it,

as V → ∞ for every integer m 	= 0. Since the trigonometric polynomials are dense in C1[0,1], this
criterion is equivalent to the assertion that

lim
V →∞

1

V

∑
n�V

f (xn) =
1∫

0

f (t)dt,

for every continuous function f . It is easy to see that Weyl’s criterion is necessary. Indeed, if the
limits

lim
V →∞

#{n � V : xn mod 1 ∈ I}
V

= 	(I)

hold for every interval I , then, by the usual argument of approximating continuous functions via
step functions and using the theory of the Riemann integral, we deduce that for every piece-wise
continuous function f (or more generally, for any Riemann integrable function f ),

lim
V →∞

1

V

∑
n�V

f (xn) =
1∫

f (t)dt.
0
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Putting f (x) = e(mx), we deduce Weyl’s criterion. For the sufficiency, one needs to approximate the
characteristic function of an interval by trigonometric polynomials. This is usually done by invoking
the Weierstrass approximation theorem. Though this is the most expedient route to prove sufficiency,
its limitation is that we cannot write down error estimates.

In 1948, Erdös and Turán [8] proved an inequality which can be viewed as an effective version of
Weyl’s criterion in the sense that it allows us to deduce error estimates in terms of exponential sums.
They proved that there exist constants c1, c2 such that

∣∣#{n � V : xn mod 1 ∈ I} − V 	(I)
∣∣ � c1 V

M + 1
+ c2

M∑
m=1

1

m

∣∣∣∣ ∑
n�V

e(mxn)

∣∣∣∣.
The pair of constants c1 = 1, c2 = 3 is given on p. 8 of Montgomery [16]. The pair c1 = c2 = 1 was re-
cently derived in [15]. Before we proceed, we clarify our use of the term “effective.” The Erdös–Turán
inequality is effective in the sense that it allows us to determine the error term in the equidistribu-
tion theorem, provided we have estimates for the exponential sums that appear in the inequality. It is
strong enough to establish Weyl’s theorem on equidistribution. Indeed, if Weyl’s criterion holds, then
for any given M and ε1 > 0, ∣∣∣∣ ∑

n�V

e(mxn)

∣∣∣∣ 
 ε1 V ,

for m 	= 0 and m � M and V � c(M, ε1), a sufficiently large constant depending on M and ε1. By the
Erdös–Turán inequality, we have∣∣∣∣ 1

V
#{n � V : xn mod 1 ∈ I} − 	(I)

∣∣∣∣ � 1

M + 1
+ 3ε1 log M.

Choosing M = [1/ε1] and observing that x log x → 0 as x → 0, we deduce that the sequence is uni-
formly distributed.

In many applications of interest (like the context of the present paper), the sequence xn may not be
uniformly distributed with respect to the Lebesgue measure, but with respect to some other measure.
Let μ be a measure on [0,1]. We will say that the sequence {xn}, with 0 � xn � 1, is μ-equidistributed
in the following sense. For any piece-wise continuous function f ∈ L1[0,1], we have

lim
V →∞

1

V

∑
n�V

f (xn) =
1∫

0

f (x)dμ.

With this generalization in hand, it is useful to derive a variant of the Erdös–Turán inequality. To
this end, suppose that the Weyl limits

cm := lim
V →∞

1

V

∑
n�V

e(mxn),

exist for every integer m. A classical theorem of Schoenberg and Wiener (see [14]) states that the xn ’s
are equidistributed with respect to some positive continuous measure if and only all the Weyl limits
exist and

lim
V →∞

1

V

∑
|m|�V

|cm|2 = 0.
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A simple application of the Cauchy–Schwarz inequality shows that this is equivalent to

∑
|m|�V

|cm| = o(V ).

In our context, we will suppose that

∞∑
m=−∞

|cm| < ∞.

Since the cm ’s are bounded, this certainly implies the Wiener–Schoenberg condition. Our assumption
allows us to write down an absolutely convergent Fourier series for the measure. Let

μ = F (−x)dx,

where

F (x) =
∞∑

m=−∞
cme(mx).

We also define ‖μ‖ to be the supremum of |F (x)| for x ∈ [0,1].
We will prove this using the following variant of the Erdös–Turán inequality. Define

NI (V ) := #{n � V : xn ∈ I}.

Theorem 8. With the cm’s defined as above, and I = [a,b], set

D I,V (μ) := ∣∣NI (V ) − V μ(I)
∣∣.

Then,

D I,V (μ) � V ‖μ‖
M + 1

+
∑

1�|m|�M

(
1

M + 1
+ min

(
b − a,

1

π |m|
))∣∣∣∣∣

V∑
n=1

e(mxn) − V cm

∣∣∣∣∣,
if V and M are natural numbers.

We will prove this theorem in Section 4. It follows the same line of proof as in [16] in the clas-
sical case and makes essential use of the Beurling–Selberg polynomials which we review in the next
section. The reader may also consult [17].

3. The Beurling–Selberg polynomials

In this section, we will describe some tools provided by the theory of Fourier series and harmonic
analysis, which will play an important role in proving Theorems 2 and 8. For convenience of the
reader, we review the relevant facts about Fourier series that will be used later.

Let f (x) be a function of a real variable that is bounded, measurable and periodic with period 1.
For each n ∈ Z, the nth Fourier coefficient of f is given by



M.R. Murty, K. Sinha / Journal of Number Theory 129 (2009) 681–714 687
f̂ (n) =
1∫

0

f (x)e(−nx)dx, where e(x) = e2π ix.

When f (x) is continuous and

∞∑
−∞

∣∣ f̂ (n)
∣∣ < ∞,

then the function f (x) is represented by the absolutely convergent Fourier series

f (x) =
∞∑

n=−∞
f̂ (n)e(nx).

We now describe some trigonometric polynomials which give a good approximation for the char-
acteristic function χI (x) of an interval I = [a,b] contained in [0,1]. For a positive integer M, we
define �M(x) to be Féjer’s kernel, given as below:

�M(x) =
∑

|n|<M

(
1 − |n|

M

)
e(nx) = 1

M

(
sinπ Mx

sinπx

)2

.

The Mth order Beurling polynomial is defined as follows:

B∗
M(x) = 1

M + 1

M∑
n=1

(
n

M + 1
− 1

2

)
�M

(
x − n

M + 1

)

+ 1

2π(M + 1)
sin

(
2π(M + 1)x

) − 1

2π
�M+1(x) sin 2πx + 1

2(M + 1)
�M+1(x).

For an interval [a,b], we define the Mth order Selberg polynomials as:

S+
M(x) = b − a + B∗

M(x − b) + B∗
M(a − x)

and

S−
M(x) = b − a − B∗

M(b − x) − B∗
M(x − a).

Clearly, both the above polynomials are trigonometric polynomials of degree at most M. From the
work of Vaaler [30], we also have the following facts:

(a) For a subinterval I = [a,b] of [0,1],

S−
M(x) � χI (x) � S+

M(x). (2)

(b)

1∫
S+

M(x)dx = b − a + 1

M + 1

0
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and

1∫
0

S−
M(x)dx = b − a − 1

M + 1
.

(c)

∥∥S+
M(x) − χI (x)

∥∥
L1 � 1

M + 1
.

Thus, if Ŝ+
M(n) denotes the nth Fourier coefficient of S+

M(x), then

∣∣̂S+
M(n) − χ̂I (n)

∣∣ �
∥∥S+

M(x) − χI (x)
∥∥

L1 � 1

M + 1
.

The same property holds for Fourier coefficients of S−
M(x).

(d) For n 	= 0,

χ̂I (n) = e(na) − e(nb)

2π in
.

Thus, for non-zero n,

∣∣χ̂I (n)
∣∣ =

∣∣∣∣ sinπn(b − a)

πn

∣∣∣∣ � min

(
b − a,

1

π |n|
)

.

Combining this with the inequality in fact (c), we find that for 0 < |n| < M,

∣∣̂S+
M(n)

∣∣ � 1

M + 1
+ min

(
b − a,

1

π |n|
)

.

Suppose now we have a sequence xn of points lying in [0,1]. If

Z(r;a,b) = #
{

1 � n � r: xn ∈ [a,b]},
then clearly,

Z(r;a,b) =
r∑

n=1

χI (xn).

Thus, from the properties of Selberg polynomials described above, we see that

r∑
n=1

S−
M(xn) � Z(r;a,b) �

r∑
n=1

S+
M(xn). (3)

In what follows, we will denote

sn = Ŝ+
M(n) and tn = Ŝ−

M(n).
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4. A variant of the Erdös–Turán inequality

We can now prove Theorem 8. Let χI be the characteristic function of the interval I . Then,

∑
n�V

S−
M(xn) �

∑
n�V

χI (xn) �
∑
n�V

S+
M(xn).

Now,

∑
n�V

S±
M(xn) =

∑
|m|�M

Ŝ±
M(m)

∑
n�V

e(mxn).

Subtracting the expected value of cm V from the inner exponential sum, we get

∑
n�V

S±
M(xn) − V

∑
|m|�M

Ŝ±
M(m)cm =

∑
|m|�M

Ŝ±
M(m)

( ∑
n�V

e(mxn) − V cm

)
.

Noting that the inner sum on the right-hand side is zero for m = 0, we get upon putting absolute
values,

∣∣∣∣ ∑
n�V

S±
M(xn) − V

∑
|m|�M

Ŝ±
M(m)cm

∣∣∣∣ �
∑

1�|m|�M

∣∣̂S±
M(m)

∣∣∣∣∣∣ ∑
n�V

e(mxn) − V cm

∣∣∣∣.
Let us consider the sum

∑
|m|�M

Ŝ±
M(m)cm.

Since Ŝ±
M(m) = 0 for |m| > M , we extend the range of the sum to all m ∈ Z. Then,

∑
m

Ŝ±
M(m)cm =

∑
m

cm

1∫
0

S±
M(t)e(−mt)dt =

1∫
0

S±
M(t)dμ,

upon interchanging the sum and the integral. Since

∣∣∣∣∣
1∫

0

(
S±

M(t) − χI (t)
)

dμ

∣∣∣∣∣ � ‖μ‖
M + 1

,

we obtain the desired result using the estimate for Ŝ±
M(m). This proves Theorem 8.
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5. A generalized Koksma inequality

In this section, we give an interesting application of Theorem 8. When a sequence x1, x2, . . . is
uniformly distributed mod 1, we have noted above that for any Riemann integrable function f ,

lim
V →∞

1

V

V∑
n=1

f (xn) =
1∫

0

f (t)dt.

It will be useful to have an effective version of this theorem. Indeed, such a theorem was derived by
Koksma in 1950. He showed the following. Suppose that we are given a finite sequence of numbers
x1, . . . , xV in [0,1]. Define the discrepancy

D V = sup
I⊆[0,1]

∣∣NI (V ) − 	(I)V
∣∣,

where 	(I) denotes the length of I and the supremum is over all subintervals of [0,1]. Then, for any
Riemann integrable function f of bounded variation δ( f ), we have

∣∣∣∣∣
V∑

n=1

f (xn) − V

1∫
0

f (t)dt

∣∣∣∣∣ � δ( f )D V .

The classical inequality of Erdös and Turán gives us an upper bound for the discrepancy. Consequently,
one has the following effective result. For any function f of bounded variation δ( f ), we have

∣∣∣∣∣
V∑

n=1

f (xn) − V

1∫
0

f (t)dt

∣∣∣∣∣ � δ( f )

(
V

M + 1
+

M∑
m=1

1

m

∣∣∣∣ ∑
n�V

e(mxn)

∣∣∣∣
)

,

invoking the improvement of [15].
One interesting consequence of Theorem 8 is its application to a generalized version of this classi-

cal result of Koksma. We have

Theorem 9. Given a sequence of numbers x1, x2, . . . in [0,1] which is μ-equidistributed, define the μ-
discrepancy as

D V (μ) = sup
I⊆[0,1]

∣∣NI (V ) − μ(I)V
∣∣.

Then, for any function f of bounded variation δ( f ), we have

∣∣∣∣∣
V∑

n=1

f (xn) − V

1∫
0

f (t)dμ

∣∣∣∣∣ � δ( f )D V .

Consequently, this is bounded by

� δ( f )

(
V ‖μ‖
M + 1

+
∑

1�|m|�M

(
1

M + 1
+ 1

πm

)∣∣∣∣∣
V∑

n=1

e(mxn) − V cm

∣∣∣∣∣
)

,

where the cm’s are the Weyl limits.
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The proof of this follows the classical proof as given in [14]. Indeed, the relevant result on μ-
discrepancy needed in the proof has been derived in Theorem 3.3 of [10] which states the following.
Given any positive measure μ and a sequence of points x1, x2, . . . , xV in [0,1], define D V (μ) as above.
Then, for any Riemann integrable function f of bounded variation δ( f ) on [0,1], we have

∣∣∣∣∣
V∑

n=1

f (xn) − V

1∫
0

f (t)dμ

∣∣∣∣∣ � δ( f )D V (μ).

Theorem 9 follows immediately upon noting that b −a � 1 and injecting Theorem 8 to obtain a bound
for D V (μ).

6. Set equidistribution

It is convenient to have a mild variant of the notion of equidistribution of sequences. We will say
that a sequence of finite multisets An with #An → ∞ is set equidistributed mod 1 with respect to a
probability measure μ if for every continuous function f on [0,1], we have

lim
n→∞

1

#An

∑
t∈An

f (t) =
1∫

0

f (x)dμ.

If μ is the Lebesgue measure and An = {x1, x2, . . . , xn}, this recovers the classical notion of uniform
distribution mod 1. It is not difficult to show that the Wiener–Schoenberg theorem extends to this
context. That is, the sequence {An} is set equidistributed with respect to some positive continuous
measure if and only if the Weyl limits

cm := lim
n→∞

1

#An

∑
t∈An

e2π imt

exist and

N∑
m=1

|cm|2 = o(N).

Clearly, the discussion can be generalized to treat set equidistribution in an arbitrary interval. After
suitable rescaling, the problem becomes equivalent to set equidistribution in [0,1]. In addition, the
analogue of Theorem 8 translates without change, into the context of set-equidistribution.

In the setting discussed below, we will be considering the family of normalized eigenvalues of T p
acting on S(N,k) and study their equidistribution. In later sections, we consider the eigenvalues of the
Frobenius automorphism acting on a family of curves over a fixed finite field. Finally, we consider the
eigenvalues of adjacency matrices of a sequence of regular graphs and study their equidistribution.

7. The Eichler–Selberg trace formula

To prove Theorem 2, a principal role is played by the Eichler–Selberg trace formula, which gives
us a formula for the trace Tr of Tn acting on S(N,k) in terms of class numbers of binary quadratic
forms. In this section, we will follow the presentation of this formula in [25]. For a negative integer
� congruent to 0 or 1 (mod 4), let B(�) be the set of all positive definite binary quadratic forms
with discriminant �. That is,

B(�) = {
ax2 + bxy + cy2: a,b, c ∈ Z, a > 0, b2 − 4ac = �

}
.
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By b(�), we denote the set of primitive forms

b(�) = {
f (x, y) ∈ B(�): gcd(a,b, c) = 1

}
.

One can define a right action of the group SL2(Z) on B(�) as follows:
For f (x, y) ∈ B(�), let

f (x, y) ·
(

α β

γ δ

)
:= f (αx + β y, γ x + δy).

It is not difficult to show that this action respects the primitive forms. It is a well-known fact that
this action has only finitely many orbits (See for example [1].) We define h(�) to be the number of
orbits of b(�).

Let hw be defined as follows:

hw(−3) = 1/3,

hw(−4) = 1/2,

hw(�) = h(�) for � < −4.

Theorem 10 (Eichler–Selberg Trace Formula). For every integer n � 1, the trace Tr of Tn acting on S(N,k) is
given by

Tr Tn = A1(n) + A2(n) + A3(n) + A4(n),

where Ai(n)’s are as follows:

A1(n) =
{

n(k/2−1) · k−1
12 ψ(N) if n is a square,

0 otherwise,
where ψ(N) = N

∏
p|N

(
1 + 1

p

)
; (4)

A2(n) = −1

2

∑
t∈Z, t2<4n

�k−1 − �k−1

� − �

∑
f

hw

(
t2 − 4n

f 2

)
μ(t, f ,n); (5)

Here � and � are the zeroes of the polynomial x2 − tx + n and the inner sum runs over all positive divisors f
of t2 − 4n such that (t2 − 4n)/ f 2 ∈ Z is congruent to 0 or 1 (mod 4). μ(t, f ,n) is given by

μ(t, f ,n) = ψ(N)

ψ( N
N f

)
M(t,n, N N f ),

where N f = gcd(N, f ) and M(t,n, K ) denotes the number of solutions of the congruence x2 − tx + n ≡
0 (mod K );

A3(n) = −
∑

d|n,0<d�√
n

dk−1
∑
c|N

φ

(
gcd

(
c,

N

c

))
; (6)
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Here, φ denotes Euler’s function and in the first summation, if there is a contribution from the term
d = √

n, it should be multiplied by 1
2 . In the inner sum, we also need the condition that gcd(c, N/c) divides

gcd(N,n/d − d);

A4(n) =
{∑

t|n, t>0 t if k = 2,

0 otherwise.
(7)

In his paper [26], Serre proves the following proposition:

Proposition 11. If n is a square,

∣∣∣∣Tr Tn − k − 1

12
nk/2−1ψ(N)

∣∣∣∣ 
n nk/2N1/2d(N),

where d(N) is the number of positive divisors of N.

In order to refine Serre’s equidistribution theorem, we would like to obtain precise estimates for
the terms Ai(n) in the Eichler–Selberg Trace Formula and make their dependence on n explicit.

To this end, we need the following lemma, due to Huxley [13].

Lemma 12. Suppose a and b are integers such that a2 − 4b 	= 0. Given K , let M(a,b, K ) be the number of
solutions mod K of the congruence

x2 − ax + b ≡ 0 mod K .

Then,

M(a,b, K ) � 2ν(K ) · ∣∣a2 − 4b
∣∣ 1

2 ,

where ν(K ) denotes the number of distinct prime divisors of K .

As in [25], specializing the Eichler–Selberg trace formula to the case n = 1 gives us a formula for
the dimension of S(N,k).

Theorem 13.

s(N,k) = k − 1

12
ψ(N) −

(
k − 1

3
−

[
k

3

])
δ1(N) −

(
k − 1

4
−

[
k

4

])
δ2(N)

− 1

2

∑
c|N,c>0

φ
(
gcd(c, N/c)

) + δ3(k),

where δ1(N) and δ2(N) are respectively the number of solutions of the congruences

x2 + x + 1 ≡ 0 (mod N) and x2 + 1 ≡ 0 (mod N),

δ3(k) = 1 if k = 2 and zero otherwise.
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Observing that

∑
c|N

φ
(
gcd(c, N/c)

)
� 2ν(N),

and that

−1

3
� k − 1

3
−

[
k

3

]
� 2

3
, −1

4
� k − 1

4
−

[
k

4

]
� 3

4
,

we easily deduce upon inserting Huxley’s estimate into the case n = 1 of the above theorem, the
following useful inequality.

Corollary 14.

s(N,k) � k − 1

12
ψ(N) +

(
2√
3

+ 1

)
2ν(N) + δ3(k).

For computational purposes, we will prove

Corollary 15. For N � 61,

3ψ(N)

200
� s(N,2) � ψ(N)

12
+ 1.

Proof. In the case k = 2, it is easily seen that apart from the terms ψ(N)/12 and δ3(2) = 1, all of
the other terms appearing in the formula for s(N,2) are negative. Thus, the upper bound is clear.
For the lower bound, we appeal to a result of Halberstadt and Kraus [11] where it is proved that
the dimension g+

0 (N), of the space of new forms of weight 2 and level N is at least 3φ(N)/200 for
N � 61. Since

s(N,2) =
∑
d|N

g+
0 (N/d)σ0(d),

where σ0(n) is the number of divisors of n, we obtain

s(N,2) � 3

200

∑
d|N

φ(N/d)σ0(d).

As the sum on the right-hand side is multiplicative, we find that it is greater than ψ(N) from which
the stated result follows. �
8. Estimating the term A2

We define the Hurwitz class number H(n) as

H(n) =
∑
f 2|n

hw
(−n/ f 2).

We have the following classical result due to Hurwitz (see [4, p. 236]).
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Lemma 16.

∑
t2<4n

H
(
4n − t2) = 2σ(n) − λ(n),

where

λ(n) =
∑
d|n

min(d,n/d),

and σ(n) is the sum of the positive divisors of n.

Putting this estimate into the expression for A2 and inserting Huxley’s estimate for μ(t, f ,n), we
obtain as in [26],

|A2| < 2σ(n)n(k−1)/22ν(N) sup
f 2<4n

ψ( f ).

Now,

ψ( f ) = f
∏
p| f

(
1 + 1

p

)
.

There are various ways of estimating ψ( f ). The most trivial estimate is

ψ( f )/ f � exp

( ∑
p�ν( f )

1

p

)
� exp

( ∑
n�ν( f )

1

n

)
� eν( f ),

using the elementary inequality

∑
n�x

1

n
� 1 + log x.

We also have the trivial bound ν( f ) � log f / log 2. This gives us a final estimate of

|A2| � e2ν(N)+2nk/2σ(n)
log 4n

log 2
. (8)

For future refinements, we observe that several improvements can be made in this estimate. For
instance, there is an effective constant B such that

∑
p�x

1

p
< log log x + B,

so that this would give eB logν( f ) instead of eν( f ) in the above estimation. Furthermore, there is
Ramanujan’s bound

ν( f ) � C log f
,

log log f
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for some effectively computable C that can be utilized. This would give

|A2| 
 2ν(N)σ (n)nk/2 log log n,

where the implied constant is effectively computable.
We recall that T ′

n is the normalized nth Hecke operator

T ′
n = Tn

n
k−1

2

.

Thus, for m � 1,

Tr T ′
pm = B1(m) + B2(m) + B3(m) + B4(m),

where

Bi(m) = Ai(pm)

pm k−1
2

, 1 � i � 4.

Thus,

B1(m) =
{

p
−m

2 · k−1
12 ψ(N) if m is even,

0 if m is odd.
(9)

Also, for every integer m � 1, we have

σ
(

pm) = pm+1 − 1

p − 1
� pm+1

p − 1
� 2pm,

so that

∣∣B2(m)
∣∣ � 8e

log 2
2ν(N) p

3m
2 log 4pm.

Let us also note for future reference

B3(m) − B3(m − 2) � 2 f (N),

where

f (N) =
∑
c|N

φ
(
gcd(c, N/c)

)
,

and B4(m) − B4(m − 2) = 0 if k 	= 2 and � 2pm/2 if k = 2. A crude estimate for f (N) is
√

Nd(N) since

gcd(c, N/c) �
√

N,

for any c|N .
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For n � 0, the nth Chebychev polynomial Xn(x) is defined as follows:

Xn(x) = sin(n + 1)θ

sin θ
, where x = 2 cos θ.

The following lemma can be found in [26]:

Lemma 17. Let p be a prime. Then, for m � 0,

T ′
pm = Xm

(
T ′

p

)
.

Now, for 1 � i � r, we write

ap,i

p
k−1

2

= 2 cos θp,i

for the eigenvalues of T ′
p . Thus, for m = 1,

r∑
i=1

2 cos θp,i = Tr T ′
p .

Since

2 cos mθ = Xm(2 cos θ) − Xm−2(2 cos θ), m � 2,

we have for m � 2,

r∑
i=1

2 cos mθi = Tr T ′
pm − Tr T ′

pm−2 .

9. The measure μp

As before, we let θi ∈ [0,π ] be such that

cos θi = ap,i

2p
k−1

2

.

We will consider the sequence ±θi/2π (1 � i � r) and study its equidistribution. Accordingly, let

cm = lim
r→∞

1

r

r∑
i=1

2 cos mθi,

and define

μ = F (−x)dx,

where
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F (x) =
∞∑

m=−∞
cme(mx).

By our calculation in the previous section, we have c0 = 2, cm = 0 for m odd and for m even,

cm = 1

p|m|/2
− 1

p(|m|−2)/2
.

Consequently, we need to determine

∞∑
m=−∞

cme(mx).

We have

F (x) = 2 + 2
∞∑

m=1

(
1

pm
− 1

pm−1

)
cos 4πmx.

This is easily summed as follows. For t, x real, with |t| < 1, we have

∞∑
m=0

tm cos mx = Re

( ∞∑
m=0

tme(mx)

)
= Re

(
1

1 − te(x)

)
= 1 − t cos x

|1 − te(x)|2 .

Thus,

F (x) = 2(p + 1)
1 − cos 4πx

p + 1/p − 2 cos 4πx
= 4(p + 1)

sin2 2πx

(p1/2 + p−1/2)2 − 4 cos2 2πx
.

This determines a measure F (x)dx on [0,1] and is the distribution function for the numbers xi =
±θi/2π . The measure giving the distribution of cos θi is therefore

F

(
cos−1 x

2π

)
d

(
cos−1 x

2π

)
= 2(p + 1)

π

√
1 − x2

(p1/2 + p−1/2)2 − 4x2
dx.

Thus, the distribution of the numbers 2 cos θi is given by μp , after an easy change of variable.
From the discussion in the previous section, we now have

Theorem 18. The Weyl limits cm are given by c0 = 1 and for m � 1,

cm =
{

p−m/2 − p−(m−2)/2 if m is even,

0 if m is odd.

Moreover, ∣∣∣∣∣
r∑

i=1

2 cos mθi − cmr

∣∣∣∣∣ � 4pm2ν(N) sup
f 2<4pm

ψ( f ) + 2 f (N) + δm(k), (10)

where δm(k) = 0 unless k = 2 in which case it is equal to 2pm/2 .
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Proof. The sum in question is

Tr T ′
pm − Tr T ′

pm−2

and the result is immediate from the discussion of the previous sections. �
Let us observe that the upper bound is


 p3m/22ν(N) log pm + √
Nd(N). (11)

There is a slightly different way of estimating A2 that will be useful below in getting explicit
constants. Let us consider the term μ(t, f ,n) occurring in the trace formula. This term is easily seen
to be

� ψ(N f )M(t,n, N N f ).

Since

ψ(N f ) = N f

∏
p|N f

(
1 + 1

p

)
� N f

∏
p|N

(
1 + 1

p

)
� 2ν(N)N f .

As N f � f , we deduce

A2(n) � 4nk/2σ(n)4ν(N) (12)

which implies

B2(m) � 8p3m/24ν(N). (13)

This means that (10) can be replaced by

16p3m/24ν(N) + 2 f (N) + δm(k). (14)

10. Effective version of Serre’s theorem

In earlier sections, we described the tools necessary to obtain an effective version of Theorem 1.
In what follows, we let r = s(N,k). Let [α,β] be contained in the interval [−1,1]. For a fixed prime p
not dividing N, we want to estimate

#

{
1 � i � r:

ap,i

2p
k−1

2

∈ [α,β]
}
.

We let θi ∈ [0,π ] be such that

cos θi = ap,i

2p
k−1

2

.

We choose a subinterval I ′ = [ϕβ,ϕα] of [0,π ] such that if θi ∈ I ′, then
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cos θi = ap,i

2p
k−1

2

∈ [α,β],

and conversely. Let

I1 =
[

ϕβ

2π
,
ϕα

2π

]
⊆ [0,1/2].

Let S±
M,1(x) be the majorant and minorant Selberg polynomials for this interval. Now consider the

interval

I2 =
[

1 − ϕα

2π
,1 − ϕβ

2π

]
⊆ [1/2,1].

Let S±
M,2(x) denote the majorant and minorant Selberg polynomials for I2. We consider the sequence

±θi/2π , 1 � i � r (modulo 1) and study its equidistribution in the unit interval. Since θi/2π ∈ I1 if
and only if −θi/2π ∈ I2, we see that

r∑
i=1

S−
M,1(±θi/π) � #

{
1 � i � r: cos θi ∈ [α,β]} �

r∑
i=1

S+
M,1(±θi/π)

and

r∑
i=1

S−
M,2(±θi/π) � #

{
1 � i � r: cos θi ∈ [α,β]} �

r∑
i=1

S+
M,2(±θi/π).

Adding these two inequalities and denoting by cm the limit

lim
r→∞

1

r

r∑
i=1

2 cos mθi,

we find upon using the estimates for Ŝ±
M,i(m) for i = 1,2,

∣∣NI (r) − rμp(I)
∣∣ � r‖μp‖

M + 1
+

∑
1�|m|�M

(
1

M + 1
+ min

(
β − α,

1

π |m|
))∣∣∣∣∣

r∑
i=1

2 cos mθi − cmr

∣∣∣∣∣,
where

NI (r) = #
{

1 � i � r: cos θi ∈ [α,β]}.
We need to calculate the Weyl limits cm and estimate

r∑
i=1

2 cos mθi − cmr.

But this is the content of Theorem 18.
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We insert this estimate into Theorem 8 to obtain Theorem 2. Indeed, for the quantity in question,
we get an upper bound using (11) of


 r

M + 1
+ (

p3M/22ν(N)M log p + d(N)
√

N
)

log M.

Choosing M = [c(log kN)/ log p] for a sufficiently small constant c, we obtain Theorem 2.
For computational purposes, it may be convenient to have a sharper version of Theorem 2 with

explicit constants.
We are now ready to prove the following theorem:

Theorem 19. Let p be coprime to N. For an interval [α,β] contained in [−1,1], and any positive integer M,

∣∣∣∣∣#
{

1 � i � r:
ap,i

2p
k−1

2

∈ [α,β]
}

− k − 1

12
ψ(N)

2(p + 1)

π

β∫
α

√
1 − x2

(
√

p + 1√
p )2 − 4x2

dx

∣∣∣∣∣
� r

M + 1
+ 4pM 2ν(N) sup

f 2<4pM
ψ( f ) + 2 f (N) + δM(k),

where δM(k) = 0 unless k = 2 in which case it is equal to 2pM/2 .

Proof. This is immediate from the previous discussion. �
Remark 20. From the above equation, we can derive a new proof of Theorem 1. Dividing both sides
of the equation by

k − 1

12
ψ(N),

we notice that the second error term goes to 0 as N +k → ∞. Moreover, this equation is true for any
positive integer M. Thus, as M → ∞, the first error term tends to 0 and we retrieve Theorem 1 after
appropriate changes of variables.

Since the above equation is true for any positive integer M, we now choose M such that

M + 1 =
⌈ 1

a log k + 1
a log N

3
2 log p

⌉
,

for any a > 3 of our choice. This proves Theorem 2.
Applying Theorem 9, the same argument gives

Theorem 21. Let the notation be as in the previous theorem. For any function f : [−2,2] → R of bounded
variation δ( f ), we have

r∑
i=1

f
(
ap,i/p(k−1)/2) = s(N,k)μ( f ) + O

(
δ( f )

s(N,k) log p

log kN

)
,

where the implied constant is absolute and effectively computable.
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11. Hecke eigenvalues equal to a fixed value

When α = β , we deduce

Theorem 22. For a fixed α, the number of i � r for which θi = α is bounded by

r

M + 1
+ 4pM 2ν(N) sup

f 2<4pM
ψ( f ) + 2 f (N) + δM(k),

for any positive integer value of M.

There are several corollaries one may deduce from this result. The first concerns the multiplicity
of any given eigenvalue.

Corollary 23. The multiplicity of any given eigenvalue is


 s(N,k) log p

log kN
.

Proof. This is immediate upon setting M = c(log kN)/ log p, for a sufficiently small constant, in the
previous theorem. �

If we use (14) in our derivation of Theorem 22, we get the bound

r

M + 1
+ 16p3M/24ν(N) + 2 f (N) + δM(k).

Since f (N) �
√

Nd(N) and δM(k) � 2pM/2, this simplifies to

r

M + 1
+ 17p3M/24ν(N) + 2

√
Nd(N). (15)

For computational purposes, it may be convenient to leave (15) in this form. On the other hand, it
may also be useful to choose an optimal value of M to minimize the right-hand side, giving explicit
constants. Both viewpoints will be useful as will be seen in the next two sections.

12. The prime level case

With a view to applications in the study of factorization of J0(N) as a product of Q-simple abelian
varieties, we study in this section the case k = 2 and N prime. We derive sharper estimates in this
case. In the next section, we obtain similar results in the prime power case.

The following is easily deduced from Theorem 13.

Lemma 24. If N is prime, then

N

12
− 1

2
� s(N,2) � N + 1

12
.

We also have the following refined estimates for the terms appearing in the Selberg trace formula:
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Lemma 25. If N is prime and 4pm < N, then |A2(pm)| � 2σ(pm). We also have |B3(m) − B3(m − 2)| � 2
and |B4(m) − B4(m − 2)| � 2pm/2 . Consequently, for 4pm < N, we have∣∣∣∣∣

r∑
i=1

2 cos mθi − cmr

∣∣∣∣∣ � 10pm/2 + 2.

Proof. If 4pm < N , then all of the terms appearing in the sum defining A2(pm) are less than N so
that N f = 1. Consequently, μ(t, f , pm) is at most 2. Using Lemma 16, we obtain |A2(pm)| � 2σ(pm).
The other two estimates involving B3 and B4 are equally immediate. Finally, we use the estimate

σ(pm) = pm+1 − 1

p − 1
� 2pm,

to deduce the final estimate. �
This allows us to deduce the following refinement of Theorem 22 in the case of k = 2 and prime

level.

Theorem 26. Let k = 2 and N be prime. For a fixed α, the number of i � r for which θi = α is bounded by

r

M + 1
+ 20pM/2 + 4

provided 4pM < N.

13. The prime power case

If N is a prime power, we can refine (14), so that the number of i � r for which θi = α is bounded
by

r

M + 1
+ 68p3M/2 + 2 f (N).

If N is a prime power, it is easy to see that f (N) � 2
√

N . Thus, we obtain

r

M + 1
+ 68p3M/2 + 4

√
N, (16)

in the case that N is a prime power. This refinement will be useful in our study of factorizations
of J0(N).

14. Explicit estimates and refinements

We now derive explicit estimates for the general weight k and level N . To this end, it will be
useful to have the following lemmas in our discussion below.

Lemma 27. For any α > 0,

log x � xα

αe
,

for x � 1.
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Proof. The function

f (x) = log x

xα

has derivative

xα−1(1 − α log x)

x2α

which is negative if x > e1/α and positive for x < e1/α . Thus, the function has a maximum at x = e1/α

and the result is now immediate. �
Lemma 28. For any ε > 0, the number of divisors d(N) of N satisfies

d(N) � C(ε)Nε ,

where

C(ε) =
∏

p<21/ε

(
1 + 1

ε log p

)
.

Proof. Writing N = ∏
p|N pα we have

d(N)/Nε =
∏
p|N

(α + 1)/pαε .

We break the product into two parts. The first part is over those p’s for which p < 21/ε and the
second part is over the complementary primes. In the second part, pε � 2 so that pαε � 2α and

α + 1

pαε
� α + 1

2α
� 1.

In the first part,

α + 1

pαε
� 1 + α

pαε
� 1 + 1

ε log p

since

αε log p � eαε log p = pαε.

This completes the proof. �
In his classic paper on highly composite numbers, Ramanujan [21] gave the following bounds:

d(N) �
√

3N, d(N) � 8(3N/35)1/3, d(N) � 96(3N/50050)1/4

valid for all values of N . Nicolas and Robin [19] have shown that

d(N) � C log N/ log log N
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with C = 21.6. In particular, this implies

ν(N) � log N

5 log 2
for N � e1024, (17)

an estimate that will be useful below. If we use Ramanujan’s second bound with exponent 1/3 and
make crude estimates, it is easily seen that

2N1/2d(N) � 48
kN

log kN
,

for all values of N .
Now let us consider (15) and the second term in it. Choosing M = [(log kN)/3 log p] and (17), we

get that the second term is bounded by

9(kN)7/10.

Now using Lemma 27, we see that this is bounded by

15kN

log kN
.

Putting everything together, we obtain

Theorem 29. For a fixed α, the number of i � r for which θi = α is bounded by

3s(N,k)

log kN
+ 63

kN

log kN
,

provided N � e1024 .

We remark that these are very crude estimates and that finer estimates can be easily obtained
with more care. Also, in certain cases, the estimates become substantially smaller. For example, the
case when N is prime, leads to improved bounds as does the case when N is squarefree. For instance,
in the latter case, the third term in (15) can be replaced by 2ν(N)+1 since f (N) = 2ν(N) in this case.
Moreover, when k = 2, which is a case of special interest, further simplifications can be made.

15. Hecke eigenvalues of bounded degree

With the help of the results of the previous section, one may estimate for any d � 1, the number
of eigenvalues ap,i ’s which are algebraic integers of degree d. We do so by first recording the following
observation:

Proposition 30. For a positive integer d, and a real number M > 0, the number of algebraic integers α of
degree d and H(α) � M is at most

C(d, M) := d
d∏

i=1

(
2

(
d

i

)
Mi + 1

)
,

where H(α) is the maximum of the absolute values of all conjugates of α.
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Proof. Since α is an algebraic integer of degree d such that all its conjugates have absolute value less
than or equal to M, the characteristic polynomial of α is of degree d and its coefficients are among a
restricted set of integers. More precisely, if

f (x) = xd + b1xd−1 + b2xd−2 + · · · + bd, bi ∈ Z,

is the minimal polynomial of α and α = α1,α2, . . . ,αd, say, are the conjugates of α, then by com-
paring the coefficients of

xd + b1xd−1 + b2xd−2 + · · · + bd

and

(x − α1)(x − α2) · · · (x − αd),

and using the upper bound for the conjugates of α, we deduce that for every 1 � i � d,

|bi | �
(

d

i

)
Mi .

Since bi is an integer, the number of possible values that bi can take is

2

(
d

i

)
Mi + 1.

Thus, the characteristic polynomial of α is one among

d∏
i=1

(
2

(
d

i

)
Mi + 1

)

possible polynomials. Therefore, the number of possible values that α can take under the given re-
strictions is less than or equal to

d
d∏

i=1

(
2

(
d

i

)
Mi + 1

)
. �

For every 1 � i � r, let K p,i = Q(ap,i). Let α = ap,i for some i such that [K p,i : Q] = d where d � 1.

Then, the conjugates αω of α are such that

∣∣αω
∣∣ � 2p

k−1
2 .

Thus, taking

M = 2p
k−1

2

in Proposition 30, we deduce that ap,i can take at most l values, where

l = d
d∏

i=1

(
2

(
d

i

)(
2p

k−1
2

)i + 1

)
.

By combining the above information with Theorem 4, we deduce Theorem 5.
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We now define

Ki := Q
({an,i}(n,N)=1

)
.

Ki is a finite extension of Q. For every d � 1, we define

s(N,k)d := #
{

1 � i � r: [Ki : Q] = d
}
.

In Theorem 5 of [26], Serre shows that for every d � 1,

s(N,k)d = o
(
s(N,k)

)
as N + k → ∞.

For a fixed prime p not dividing N, if we let

s(N,k, p)d = #
{

1 � i � r:
[
Q

(
ap( f i)

) : Q
]
� d

}
,

then, clearly

s(N,k)d � s(N,k, p)d.

From the previous theorems, we can derive an upper bound for s(N,k, p)d. The estimate for
s(N,k, p)d has a factor of pKd log p in the numerator, where Kd is a positive integer depending on d.

Thus, we can derive a non-trivial upper bound for s(N,k)d if we can find a sufficiently small prime p
which does not divide N. How small is sufficiently small?

For N odd, we can choose p = 2 and deduce that for every d � 1,

s(N,k)d � s(N,k,2)d � d2
d∏

i=1

(
2

(
d

i

)(
2

k+1
2

)i + 1

)(
3s(N,k)

log 2

log kN
+ 63kN

log kN

)
,

provided N � e1024.

16. Dimensions of simple QQQ-factors of J0(N)

The results of the previous section have applications to the following question:
Let J0(N) be the Jacobian of the modular curve X0(N). Then, by the work of Shimura and Ribet

(see [22]), J0(N) is Q-isogenous to a product of Q-simple abelian subvarieties,

J0(N) ∼
∏

j

A j,

where, for every j, E j = Q ⊗ EndQ(A j), and [E j : Q] = dim A j . From the work cited above, we note
the following property:

Remark 31. The number of A j ’s of dimension d is equal to s(N,2)d
d .

As noted by Serre in [26], his equidistribution theory implies that there are finitely many values
of N such that J0(N) is isogenous to a product of Q-simple abelian varieties of bounded dimension.
Our results lead to an immediate effective determination for every value of d. Indeed, in such a case,
we have s(N,2) = s(N,2)d and for N odd, we obtain the inequality
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s(N,2) � dC(d,2
√

2)

(
3s(N,2)

log 2

log 2N
+ 126N

log 2N

)
from which an effective determination of N is easily obtained. One can extend this result when N is
even also. This is done as follows.

We follow the reasoning on p. 89 of [26]. By the above calculation, we have shown that there is an
effectively computable constant C > 2 such that if p∗ > C is prime, then J0(p∗) has a simple factor
of dimension > d. Let p∗ be the smallest prime > C . By Bertrand’s postulate, C < p∗ < 2C . Now let
us consider J0(N). If p∗|N , then as S(N,2) contains S(p∗,2) and as this inclusion does not change
the fields Ki , we see that J0(N) has a simple factor of dimension > d. If p∗ is coprime to N , then by
virtue of p∗ < 2C , we can use the bound derived earlier to deduce that there is an effective bound
for all N in general. This gives an effective bound in all cases. This proves Theorem 6.

Since we have been careful to be effective at every stage, we can write down an explicit (albeit
humongous) estimate in the following way. Suppose that J0(N) decomposes as a product of Q-simple
abelian varieties of dimension at most d. We will bound all of the prime powers that can divide such
an N . From estimate (16), we get

r � C(d,2
√

3)

(
r

M + 1
+ (68)33M/2 + 4

√
N

)
,

for any choice of M . Choosing M + 1 = 2C(d,2
√

3), we get

r

2
� C(d,2

√
3)

(
(68)33C(d,2

√
3) + 4

√
N

)
.

From Corollary 15, we know that r � 3N
200 , so that

3N

400
− 4C(d,2

√
3)

√
N � 68C(d,2

√
3)3C(d,2

√
3).

If

3
√

N

400
− 4C(d,2

√
3) � C(d,2

√
3),

we obtain the bound

N � (68)236C(d,2
√

3).

In other words, this proves

Theorem 32. If J0(N) is isogenous over Q to a product of Q-simple abelian varieties, then any prime power
dividing N is bounded by

max

(
(68)236C(d,2

√
3),

105

9
C(d,2

√
3)2

)
.

In the special case d = 1, the complete effective determination of N can be found in [5,32].
We now indicate how these ideas lead to the proof of Corollary 7. First suppose that N is odd. Let

t be the largest dimension of the Q-simple factor of J0(N). Then,

s(N,2) �
∑
d�t

dC(d,2
√

2)

(
s(N,2)

log 2

log 2N
+ 126N

log 2N

)
.
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An easy estimation using Stirling’s formula leads one to

log 2N 
 Ct2
,

for some constant C > 0. Thus, t � √
log log N . This completes the proof in the case of N odd. For

the general case, we write N = 2a N0, with N0 odd. If N0 � Nε for some ε > 0, then, as J0(N0) is
a subvariety of J0(N), we again deduce the result from the previous argument. If N0 � Nε , then
2a � N1−ε . Letting t be the largest dimension of the Q-simple factor of J0(2a), we obtain as before

s
(
2a,2

)
�

∑
d�t

dC(d,2
√

3)

(
s
(
2a,2

) log 3

log 2a+1
+ 126

2a+1

log 2a+1

)

and arguing as before, we deduce the result.
Let us now consider the problem of determining all the prime values N for which J0(N) is

isogenous to a product of elliptic curves defined over Q. We can get sharper results if we proceed
differently. For example, if we apply Theorem 26 with N an odd prime, M = 6, p = 2, we find using
the lemmas and theorems of Section 12 that N � 59081.

A crude (but similar) estimation yields that if J0(N) is isogenous to a product of Q-simple abelian
varieties of dimension at most 2 and N is prime, then

N � 22153(409) + 97.

17. Curves over finite fields

Let C be a curve of positive genus over the finite field Fq of q elements. As in [26], we denote by
g = g(C) the genus of C and n(C,qm) the number of points of C over Fqm . We have

n
(
C,qm) = qm + 1 −

g∑
i=1

πm
i + πm

i ,

where π1,π1, . . . ,πg ,π g are the eigenvalues of the Frobenius endomorphism acting on C . We set

xi(C) = q−1/2(πi + π i), i = 1, . . . , g.

By a classical result of Weil, the xi ’s belong to Ω = [−2,2]. We define θi(C) ∈ [0,π ] by xi(C) =
2 cos θi(C).

Now let Cr with r = 1,2, . . ., be a family of curves of genus gr . We are interested in the distribution
of the points xi(Cr), i = 1,2, . . . , gr , as r → ∞. This is equivalent to the study of the distribution
of ±θi(Cr)/2π (mod 1). By our earlier discussion, we must consider the sums

gr∑
i=1

2 cos mθi .

Thus, if the Weyl limits

cm := lim
r→∞

1

gr

r∑
2 cos mθi(Cr) (18)
i=1
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exist, and ∑
m

|cm| < ∞, (19)

then there is a measure μ with respect to which the xi(Cr)
′s are equidistributed in Ω . Conversely, if

these numbers are equidistributed with respect to some measure, then the above Weyl limits exist.
Actually, in this context, one has a sharper theorem. The second condition (19) is unnecessary.

Indeed, in [26], it is shown that if f (x) is a non-negative function, bounded and even on [−1,1], and
its Fourier coefficients cm are � 0 for m 	= 0, then its Fourier series is absolutely convergent. In fact,∑

m 	=0

|cm| � 1.

Serre deduces this via a clever use of the Féjer kernel. Applying this to our context, we see that

cm = − lim
r→∞

n(Cr,qm)

gr
� 0.

Thus, rewriting Proposition 5 and Theorem 8 of [26] with our refinements, we have

Theorem 33. Assume that the limits (18) exist. Then,

∞∑
m=1

cm

qm/2
� 1.

Setting

F (x) = 1 −
∞∑

m=1

cm

qm/2
cosmx,

and μ = π−1 F (x)dx, we have for any [α,β] ⊆ [−2,2],
∣∣∣∣∣#{

1 � i � gr: xi ∈ [α,β]} − gr

β∫
α

μ

∣∣∣∣∣
� gr‖μ‖

M + 1
+ 2

∑
1�m�M

(
1

M + 1
+ min

(
b − a,

1

πm

))∣∣∣∣∣
gr∑

i=1

e
(
mθi(Cr)

) − cm gr

∣∣∣∣∣.
In the case of J0(N) over Fp , we have a family of curves whose genus s(N,2) tends to infinity as

N tends to infinity. The previous sections imply that there is a measure νp such that the angles of
Frobenius are equidistributed with respect to this measure. Indeed, a direct calculation of the limits
leads to an immediate determination of the measure, which (not surprisingly) turns out to be μp
(defined earlier) so that we have for N coprime to p, the following estimate:

∣∣∣∣∣#{
1 � i � s(N,2): xi ∈ [α,β]} − s(N,2)

β∫
α

μp

∣∣∣∣∣ 
 s(N,2) log p

log N
,

where the implied constant is absolute and effectively computable.
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18. The case of regular graphs

As in Serre [26], a graph X is a pair (V , E) with V consisting of vertices and E a set of “arrows”
together with two maps: the “origin” map o : E → V and the “inverse” map E → E given by y �→ y.
Thus, if we think of edges as ordered pairs of vertices and y = (a,b) then o(y) = a and y = (b,a). We
also define the “tail” of y, denoted t(y) = o(y). We say X is regular of degree k if ∀v ∈ V , the set of
edges with origin v has size k. For suggestive reasons, we will write k = q + 1.

If m is a positive integer, a walk of length m is a sequence

y = (y1, . . . , ym)

consisting of m edges yi ∈ E satisfying t(yi) = o(yi+1) for 1 � i < m. We define o(y) = o(y1) and
t(y) = t(ym). A walk is closed if o(y) = t(y). A walk is said to be without backtracking if yi+1 	= yi for
1 � i < m. A closed walk is called a circuit if it is without backtracking and ym 	= y1. In other words,
yi+1 	= yi for all i modulo m.

If fm is the number of closed walks of length m which are without backtracking, then it is not
difficult to see that

fm − Cm =
∑

1�i<m/2

(q − 1)qi−1Cm−2i . (20)

Indeed, if y = (y1, . . . , ym) is a closed walk without backtracking, and this is not a circuit, then it
must be of the form y1z y1 where z = (y2, . . . , ym−1) is a closed walk without backtracking of length
m − 2. For a fixed z, there are q − 1 choices for y1 if z is a circuit and q choices if z is not a circuit.
Thus, we have the recursion

fm − Cm = (q − 1)Cm−2 + q( fm−2 − Cm−2).

Iteration gives (20).
Now let X be as above, a regular graph of degree q + 1. We let C X be the group of 0-chains of X .

That is, C X is the Z-module of functions on V with values in Z. If x ∈ V , let δx be the function given
by δx(u) = 1 if u = x and 0 otherwise. Then, the set of δx as x ranges over elements of V is a basis
for C X . The endomorphism T : C X → C X given by

T (δx) =
∑

y∈E: o(y)=x

δt(y)

enjoys a role analogous to the Hecke operator T p . The matrix of T with respect to the basis δx : x ∈ V
is called the adjacency matrix of X . Analogously, we define the operators Θm ∈ End(C X ) by

Θm(δx) =
∑

y

δt(y),

where the sum is over walks y = (y1, . . . , ym) without backtracking with origin x and length m.
Clearly, Θ1 = T . Thus,

T Θm = Θm+1 +
{

q + 1 if m = 1m

qΘm−1 if m > 1.
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We put T ′ = T /
√

q, and Θ ′
m = Θm/qm/2. Our goal is to study the equidistribution of the eigenvalues

of the (normalized) adjacency matrix T ′ . It is clear that Tr(Θm) = fm . We use this observation below.
The above recursion leads to the formal identity

∞∑
m=0

Θ ′
mtm = 1 − t2/q

1 − tT ′ + t2
.

(Note that there is a typo in (104) of [26]. The T should be a T ′ in the formula.) As in [26], we can
define Xn,q(x) by the power series

∞∑
n=0

Xn,q(x)tn = 1 − t2/q

1 − xt + t2
.

We also define Xn(x) by

∞∑
n=0

Xn(x)tn = 1

1 − xt + t2
.

This is the generating function for the Chebychev polynomials of the second kind. An easy induction
argument shows that

Xn(x) = sin(n + 1)φ

sin φ
,

where x = 2 cos φ. Clearly, Xn,q(x) = Xn(x) − q−1 Xn−2(x) for n � 2. Thus, Θ ′
m = Xm,q(T ′). If we let

Ym(x) = Xm(x) − Xm−2(x) for m � 2, then as in [26], we deduce that

Tr
(
Ym(T ′)

) = Cmq−m/2 −
{

(q − 1)q−m/2|V | if m is even,

0 if m is odd.
(21)

This result gives us the determination of the requisite Weyl sums.
Indeed, the eigenvalues lie in the interval Ωq . If we write the eigenvalues as xi , with 1 � i � |V |,

then setting λi = 2xi/ωq , we may write λi = 2 cos φi for some unique φi ∈ [0,π ]. The equidistribution
of the xi ’s is equivalent to the equidistribution of the φi ’s. To determine their equidistribution, we
need to study the sums

∑
i

2 cos mφi .

With our notation above, this is the same as the study of

∑
i

Ym(λi).

Now let Xi be a family of regular graphs of degree k = q + 1. Let Ti be the adjacency matrix of Xi .
All the eigenvalues of T ′

i lie in the interval Ωq = [−ωq,ωq] where ωq = q1/2 + q−1/2. This interval
contains [−2,2]. We let xi be the family of eigenvalues of T ′

i and view them as elements of Ωq . Let
Cm,i be the number of circuits of Xi . We have
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Theorem 34. The following are equivalent.

(a) There is a measure νq on Ωq such that the xi ’s are equidistributed with respect to νq.
(b) For all m � 1, the limits

γm := lim
i→∞

Cm,i

|V i|
exist.

Suppose now that the limits exist and let [α,β] ⊆ Ωq. Then, the number of eigenvalues of Ti that lie in [α,β]
is equal to

|V i |
β∫

α

νq + �,

where

|�| � ‖νq‖|V i|
M + 1

+ 2
∑

1�m�M

min

(
1

M + 1
+ min

(
b − a,

1

πm

))∣∣∣∣ Cm,i − γm|V i |
qm/2

∣∣∣∣.
Proof. The first part of the result is contained in [26]. The second part follows from our effective
treatment of equidistribution theory. �
19. Concluding remarks

It would be interesting to further investigate the order of the error term in Theorem 2. If one could
improve the error term substantially, then one can show that

s(N,k)d 
 Nα

with α < 1. Serre asks [26, p. 89] if any α > 0 is permissible. The case d = 1 and k = 2 corresponds to
the counting of elliptic curves with conductor N . Indeed, thanks to the famous Shimura–Taniyama–
Weil conjecture, now proved by the work of Wiles, Taylor–Wiles and Breuil–Conrad–Diamond–Taylor
(see [2]), in the special case k = 2 and d = 1, estimating s(N,k)d is equivalent to counting the number
of isogeny classes of elliptic curves defined over Q and of conductor N. In this connection, Brumer
and Silverman [3] have shown that s(N,2)1 
 N1/2+ε for any ε > 0. This has been subsequently
improved by various people. Lillian Pierce, in [20], has obtained a bound of the form O(N27/56) and
Helfgott and Venkatesh in [12] got the further improvement O(N .22377+ε). As indicated in [3], the
celebrated Birch and Swinnerton–Dyer conjecture along with the generalized Riemann hypothesis for
L-series attached to elliptic curves imply an estimate of O(Nε) for any ε > 0.

Another avenue of investigation is to improve the constants in our estimates. This would have
important consequences for numerical computation. For example, the effective determination of all
values of N for which J0(N) is isogenous to a product of simple abelian varieties each of dimension
� 2 has not been carried out. Our theorem gives an effective bound for N but it is another matter to
actually determine all the finite values of N for which this holds.

An important direction for further work is the improvement of estimates in several contexts. For
instance, substantial improvements in the error terms in the study of equidistribution of eigenvalues
of T p acting on S(N,k)new can be derived. There are other natural subspaces of S(N,k) on which
T p acts and one can derive equidistribution laws in these contexts as well. We have not discussed
these questions here to keep the size of this paper to reasonable length. However, we plan to address
these questions in [18].
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