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Abstract

The Riemann Zeta function is defined as

ζ(s) =
∞∑

n=1

1

ns
, Re(s) > 1.

This thesis presents a new and exceedingly simple method of analytic contin-
uation of ζ(s) to the whole complex plane. This method involves an applica-
tion of the binomial theorem. As a consequence, we give a simple inductive
proof of the well known formula

ζ(1− k) = −Bk/k,

where Bk is the k-th Bernoulli number. This technique is capable of wider
generalization. We will consider the series

ζ(s, z) =
∞∑

n=0

1

(n + z)s

where z is a complex number in a much larger domain:

D′ = {z ∈ C} \ {z ∈ R : z ≤ 0}

We will derive the analytic continuation for z in the larger complex domain
by the method mentioned above and thereby extend the classical result

ζ(1− k, a) = −Bk(a)

k

for 0 < a < 1 to all a ∈ D′, where Bk(x) denotes the k-th Bernoulli polyno-
mial. More generally, we will consider series of the type

∞∑
n=0

(n + zn)−s, {zn} being a sequence in D,

iii
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where D is the cut unit disc

D = {z ∈ C : |z| < 1} \ {z ∈ R : −1 < z ≤ 0} .

We will also consider poly-Hurwitz zeta functions defined as

ζ(s1, s2, . . . , sr; x1, x2, . . . , xr) =
∞∑

n=0

(n + x1)
−s1 . . . (n + xr)

−sr ,

for 0 < xi ≤ 1. The above series absolutely converges for Re(s1+· · ·+sr) > 1.
Using methods similar to the one mentioned above, we will be able to obtain
a meromorphic continuation to Cr.
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Chapter 1

Introduction

The Riemann Zeta function is defined as

ζ(s) =
∞∑

n=1

1

ns
,

where s is any complex variable, satisfying Re(s) > 1. This function was
studied by Riemann in 1859. He wrote a paper in which he described the ζ
function as the main tool to prove the prime number theorem. He observes
that the above series is connected to prime numbers via the Euler product:

∞∑
n=1

1

ns
=
∏(

1− 1

ps

)−1

,

where the product is over all primes p.
In the same paper, Riemann shows that ζ(s) admits an analytic contin-

uation for all s ∈ C apart from s = 1, where it has a simple pole. He also
derives the functional equation

Γ
(s

2

)
ζ(s)π−

s
2 = Γ

(
(1− s)

2

)
ζ(1− s)π−

(1−s)
2 .

The proof presented in this thesis is an application of the Poisson Summation
formula, and closely follows Riemann. I will follow the proof as treated in
[M2].

In the third chapter of this thesis, we will study the analytic continuation
of the Riemann zeta function. We will use a simple and elegant summa-
tion technique to analytically continue the ζ function. I have followed the
treatment as outlined in [MR].

1



2 CHAPTER 1. INTRODUCTION

One of the main contributions of this thesis is a new and exceedingly
simple method for the analytic continuation of ζ(s). This method involves
an application of the binomial theorem. For this proof, we will also need the
Hurwitz Zeta function, which is defined as

ζ(s, x) =
∞∑

n=0

1

(n + x)s
,

where x is a real number such that 0 < x ≤ 1. This series converges ab-
solutely for Re(s) > 1. In this thesis, we present a new method of analytic
continuation for ζ(s, x).

We will also give a new proof of the identity

ζ(1− k) = −Bk

k
,

where the Bernoulli numbers Bn are defined by the power series

t

et − 1
=

∞∑
n=0

Bn
tn

n!

In the fourth chapter, we will introduce the Hurwitz zeta function

ζ(s, x), x ∈ R, 0 < x ≤ 1,

first studied by Hurwitz in 1882. In his paper, he obtained an analytic
continuation of ζ(s, x) to the whole complex plane apart from s = 1, where
it has a simple pole. Hurwitz thus unified the treatment of ζ(s) and the
study of the classical Dirichlet L-functions L(s, χ) by observing that

L(s, χ) = k−s

k∑
r=1

χ(r)ζ(s,
r

k
),

where χ is any Dirichlet character mod k and

L(s, χ) =
∞∑

n=1

χ(n)

ns
, Re(s) > 1.

In the fourth chapter, we will study ζ(s, z) for a complex number z in
domain D, where D is the cut unit disc

D = {z : |z| < 1} \ {z ∈ R : −1 < z ≤ 0}.
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We will be able to generalise our new method for analytically continuing
ζ(s) to obtain an analytic continuation of ζ(s, z) by applying the binomial
theorem.

This will enable us to prove that

ζ(1− k, z) = −Bk(z)

k
, (1.1)

where Bk(z), the k-th Bernoulli polynomial is defined as

Bk(z) =
k∑

j=0

(
k

j

)
Bjz

k−j.

This idea originates in the paper[MR], albeit for real values of z, 0 < z ≤ 1.
By a slight modification to our arguments, we can also define ζ(s, z) for z
belonging to an even larger domain

D′ = {z ∈ C} \ {z ∈ R : z ≤ 0} .

It will be shown that ζ(s, z), z ∈ D′ can be analytically continued to the
whole complex plane except s = 1 where it has a simple pole. Furthermore,
equation (1.1) holds for all z ∈ D′.

In the last chapter, we will define the Generalised Hurwitz zeta series

ζ(s, Λ) =
∞∑

n=0

1

(n + zn)s
,

where Λ is a sequence {zn}, zn ∈ D, and study some applications to regular-
ized products.

We also consider poly-Hurwitz zeta functions defined as

ζ(s1, s2, . . . , sr; x1, x2, . . . , xr) =
∞∑

n=0

(n + x1)
−s1 . . . (n + xr)

−sr ,

for 0 < xi ≤ 1. By the same methods, we will obtain analytic continuation
for these functions and prove as a consequence that

ζ(1− k1, 1− k2, . . . , 1− kr; x1, . . . , xr)

is a polynomial in x1, x2, . . . , xr with rational coefficients (given by Bernoulli
numbers). We may also consider these zeta functions for xi ∈ D and thereby
get a generalization of equation (1.1).
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Chapter 2

Preliminaries

2.1 Objectives

The aim of this chapter is to introduce some fundamental definitions and
results which will be required to prove the main results presented in this
thesis.

2.2 The binomial theorem for complex expo-

nents

For the sake of completeness, we first review the binomial theorem, which
states that: [LA], page 59

Lemma 2.2.1 If |z| < 1 and α is any complex number, then

(1 + z)α =
∞∑

r=0

(
α

r

)
zr.

Here, (
α

r

)
=

α(α− 1) . . . (α− r + 1)

r!
, α ∈ C

This lemma will be applied to prove the analytic continuation of the zeta
function to the whole complex plane in chapter 3.

5



6 CHAPTER 2. PRELIMINARIES

2.3 The Euler summation formula

The following result is very useful, and is referred to as the technique of
partial summation.

Theorem 2.3.1 Suppose {an}∞n=1 is a sequence of complex numbers and f(t)
is a continuously differentiable function on [1, x]. Set A(t) =

∑
n≤t an. Then,

∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt.

Proof. Suppose first that x is a natural number.
Then, ∑

n≤x

anf(n) =
∑
n≤x

A(n)f(n)−
∑
n≤x

A(n− 1)f(n)

=
∑
n≤x

A(n)f(n)−
∑

n≤x−1

A(n)f(n + 1)

= A(x)f(x)−
∑

n≤(x−1)

A(n)

∫ n+1

n

f ′(t)dt

= A(x)f(x)−
∑

n≤(x−1)

∫ n+1

n

A(t)f ′(t)dt,

since A(t) is a step function.
We observe ∑

n≤(x−1)

∫ n+1

n

A(t)f ′(t)dt =

∫ x

1

A(t)f ′(t)dt.

Thus, the result has been proved if x in an integer. If x is not an integer, an
observation that

A(x){f(x)− f([x])} −
∫ x

[x]

A(t)f ′(t)dt = 0

completes the proof. �
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Corollary 2.3.2 Suppose A(x) = O(xδ). Then, for Re(s) > δ,
∞∑

n=1

an

ns
= s

∫ ∞

1

A(t)

ts+1
dt.

Hence, the Dirichlet series converges for Re(s) > δ.

Proof. By Theorem 2.3.1, taking f(n) = n−s, we get,∑
n≤x

an

ns
=

A(x)

xs
+ s

∫ x

1

A(t)

ts+1
dt.

For s fixed, Re(s) > δ, we have,

lim
x→∞

A(x)

xs
= 0

as we know that A(x) = O(xδ). Thus,
∞∑

n=1

an

ns
= s

∫ ∞

1

A(t)

ts+1
dt.

�

In the special case an = 1, it follows that

Corollary 2.3.3 For Re(s) > 0,

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx,

where {x} = x− [x].

Proof. From above, ∑
n≤x

1

ns
= s

∫ x

1

[t]

ts+1
dt.

Thus,

ζ(s) = s

∫ ∞

1

[x]

xs+1
dx

= s

∫ ∞

1

1

xs
dx− s

∫ ∞

1

{x}
xs+1

dx

=
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx,

and the latter integral converges for Re(s) > 0. �
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2.4 Poisson Summation formula

Theorem 2.4.1 Let F ∈ L1(R). Suppose that the series
∑

n∈Z F (n + v)

converges absolutely and uniformly in v, and that
∑

m∈Z |F̂ (m)| < ∞, where

F̂ (m) =
∫∞
−∞ F (x)e−2πimx. Then,∑

n∈Z

F (n + v) =
∑
n∈Z

F̂ (n)e2πinv.

The following proof closely follows the treatment in [M2].
Proof. The function

G(v) =
∑
n∈Z

F (n + v)

is bounded, measurable and periodic with period 1.
The Fourier coefficients of G are

cm =

∫ 1

0

G(v)e−2πimvdv

=

∫ 1

0

(∑
n∈Z

F (n + v)

)
e−2πimvdv

=
∑
n∈Z

∫ 1

0

F (n + v)e−2πimvdv

=
∑
n∈Z

∫ n+1

n

F (x)e−2πimxdx

=

∫ ∞

−∞
F (x)e−2πimxdx

= F̂ (m).

Since ∑
n∈Z

|F̂ (m)| < ∞,

we can represent G by its Fourier series∑
n∈Z

F (n + v) =
∑
n∈Z

F̂ (n)e2πinv.

�
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Corollary 2.4.2 With F as above,∑
n∈Z

F (n) =
∑
n∈Z

F̂ (n).

Proof. Set v = 0 in Theorem (2.4.1). �

We observe that since

f̂(t) =

∫ ∞

−∞
f(x)e−2πixtdx,

therefore,

̂f(t + a) =

∫ ∞

−∞
f(x + a)e−2πixtdx

= e2πiat

∫ ∞

−∞
f(y)e−2πiytdy

= e2πiatf̂(t).

Similarly,

f̂(
t

a
) =

∫ ∞

−∞
f
(x

a

)
e−2πixtdx

= a

∫ ∞

−∞
f(y)e−2πiy(at)dy

= af̂(at).

Thus, we have shown that

Proposition 2.4.3 ̂f(t + a) = e2πiatf̂(t) and f̂( t
a
) = af̂(at).

It can be shown that ([M2], page 308)

Proposition 2.4.4 For F (x) = e−πx2
, F̂ (u) = e−πu2

.

Proof. We have to show that∫ ∞

−∞
e−πx2

e−2πixudx = e−πu2

.



10 CHAPTER 2. PRELIMINARIES

In other words, we have to show that∫ ∞

−∞
e−π(x+iu)2dx = 1 (2.1)

We will first prove equation (2.1) for u = 0 and then show that the value of
the integral

∫∞
−∞ e−π(x+iu)2dx is independent of u. This will prove equation

(2.1).
When u = 0, we have the integral

I =

∫ ∞

−∞
e−πx2

dx.

We note that

I2 =

∫ ∞

−∞
e−πx2

dx

∫ ∞

−∞
e−πy2

dy

=

∫ ∞

−∞

∫ ∞

−∞
e−π(x2+y2)dxdy

=

∫ ∞

0

re−πr2

dr

∫ 2π

0

dθ,

by making the polar substitution x = r cos θ, y = r sin θ.
Since

I2 =

∫ ∞

0

2πre−πr2

dr = 1,

and I > 0, we deduce I = 1.
Also note that

∂

∂u

∫ ∞

−∞
e−π(x+iu)2dx =

∫ ∞

−∞

(
∂

∂u
e−π(x+iu)2

)
dx

= i

∫ ∞

−∞

(
∂

∂x
e−π(x+iu)2

)
dx

=
[
ie−π(x+iu)2

]x=∞

x=−∞
= 0.

Thus, the value of the integral is independent of u. Since I = 1, equation
(2.1) is proved.

�

Thus, from Propositions 2.4.3 and 2.4.4, we get
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Proposition 2.4.5 For F (x) = e−π t2

x , F̂ (x) = x1/2e−πt2x.

Thus, by Poisson summation formula,

Corollary 2.4.6
∑

n∈Z e−n2 π
x = x

1
2

∑
n∈Z e−n2πx.

2.5 Properties of the Gamma function

While proving the functional equation of the Riemann zeta function, we will
require some properties of the Gamma function Γ(s), as outlined in [Ap].

For Re(s) > 0, we have the following integral representation:

Γ(s) =

∫ ∞

0

xs−1e−xdx.

Γ(s) can be continued beyond the line σ = 0, and is analytic everywhere
in the s-plane except for simple poles at the points s = 0,−1,−2, . . . with
residue (−1)n

n!
at s = −n.

Γ(s) also has the representation

Γ(s) = lim
n→∞

nsn!

s(s + 1) · · · · · (s + n)
.

for s 6= 0,−1,−2, . . .

The Gamma function satisfies two functional equations

Γ(s + 1) = sΓ(s) (2.2)

and

Γ(s)Γ(1− s) =
π

sin(πs)
(2.3)

It also satisfies a multiplication formula

Γ(s)Γ

(
s +

1

m

)
. . . Γ

(
s +

m− 1

m

)
= (2π)

m−1
2 m

1
2
−msΓ(ms) (2.4)

for all s and integers m ≥ 1.
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2.6 Bernoulli numbers and Bernoulli polyno-

mials

Summation of the first n natural numbers, or squares, or cubes, is an el-
ementary problem in number theory. It leads to the following well known
formulae,

S1(n) =
n−1∑
i=0

i =
(n− 1)n

2
,

S2(n) =
n−1∑
i=0

i2 =
(n− 1)n(2n− 1)

6
,

and

S3(n) =
n−1∑
i=0

i3 =
n2(n− 1)2

4
.

These formulae go back to Aryabhata in the 5th century A.D. who derived
the above formulae for k = 1, 2, 3 in his book Aryabhatiya. (see [?], page 38)

The generalization of above formulae to find the sum

Sk(n) =
n−1∑
i=0

ik

is connected with the work Ars Conjectandi of Jacob Bernoulli. We define
the Bernoulli numbers Bn by the series

t

et − 1
=

∞∑
k=0

Bk
tk

k!
.
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We consider the power series:

∞∑
k=0

Sk(n)
tk

k!
=

∞∑
k=0

tk

k!

n−1∑
j=0

jk

=
n−1∑
j=0

∞∑
k=0

(tj)k

k!

=
n−1∑
j=0

etj

=
ent − 1

t

t

et − 1

=
∞∑
i=1

niti−1

i!

∞∑
j=0

Bj
tj

j!

=
∞∑
i=0

ni+1ti

(i + 1)!

∞∑
j=0

Bj
tj

j!

Comparing coefficients of tk

k!
, we get

Sk(n) =
k∑

i=0

(
k

i

)
Bk−i

ni+1

i + 1
.

Thus Sk(n) is a polynomial in n of degree k + 1 involving the Bernoulli
numbers as its coefficients.

We also observe that
t

2
+

t

et − 1

is an even function of t. Thus, we deduce that Bk = 0 for k odd, k ≥ 3.

We also define the n-th Bernoulli polynomial as

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k.
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Note that

Sk(n) =
k∑

i=0

(
k

i

)
Bk−i

ni+1

i + 1

=
1

k + 1

k∑
i=0

k + 1

i + 1

(
k

i

)
Bk−in

i+1

=
1

k + 1

k∑
i=0

(
k + 1

i + 1

)
Bk−in

i+1

=
1

k + 1

k+1∑
i=1

(
k + 1

i

)
Bk+1−in

i

=
1

k + 1
(Bk+1(n)−Bk+1) .

Bernoulli polynomials will appear later as special values of Hurwitz zeta
functions.(see Chapter 4)

2.7 Characters mod k and L-Series

Consider the group (Z/kZ)∗ of coprime residue classes mod k.
A homomorphism

χ : (Z/kZ)∗ −→ (C)∗

into the multiplicative group of complex numbers is called a character mod
k. We extend the definition of χ to all natural numbers by setting

χ(n) =

{
χ(n(mod k)) if (n, k) = 1,

0 otherwise.
(2.5)

χ, as defined above, is a completely multiplicative function.
The character

χ0 : (Z/kZ)∗ −→ (C)∗

satisfying χ0(a) = 1 for all (a, k) = 1 is called the principal character.
The set of characters (mod k) forms a group of order ϕ(k), where ϕ is the

Euler ϕ− function. This has been explained in [M2].
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We observe that ∑
r(mod k)

χ0(r) = ϕ(k).

Lemma 2.7.1 If χ 6= χ0, then
∑

r(mod k) χ(r) = 0.

Proof. Since χ 6= χ0, there is a b(mod k) such that (b, k) = 1 and χ(b) 6= 1.
Then br runs through coprime residue classes mod k as r does. Thus,

s : =
∑

r(mod k)

χ(r)

=
∑

r(mod k)

χ(br)

= χ(b)s.

Thus,
s(χ(b)− 1) = 0.

Since, χ(b) 6= 1, therefore s = 0. �

Lemma 2.7.2 ∑
χ(mod k)

χ(n) =

{
ϕ(k) if n ≡ 1(mod k),

0 otherwise.
(2.6)

Proof. If n ≡ 1(mod k), then∑
χ(mod k)

χ(n) =
∑

χ(mod k)

1

= ϕ(k).

Otherwise, suppose n 6≡ 1(mod k) and (n, k) = 1.
Then, there is a character α such that α(n) 6= 1. (Refer to page 224 of

[M2])
Note that αχ ranges over all the characters mod k as χ does. Thus,

S : =
∑

χ(mod k)

χ(n)

=
∑

χ(mod k)

αχ(n)

= α(n)S.
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Since α(n) 6= 1, therefore S = 0. �

We now define the L-Series L(s, χ) for Re(s) > 1 as follows.

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

Notice that when χ is not principal,∑
n≤x

χ(n) = O(1).

So, by corollary 2.3.2, we obtain an analytic continuation of L(s, χ) for
Re(s) > 0.



Chapter 3

The Riemann-zeta function and
its generalisations

3.1 Analytic continuation of ζ(s) via partial

summation

We recall that the Riemann ζ function was originally defined by the Dirichlet
series

ζ(s) =
∞∑

n=1

1

ns
, Re(s) > 1.

In this section, we will prove the following theorem, using partial sum-
mation. This method has also been explained in [MR] and [Ap].

Theorem 3.1.1 ζ(s) extends to an analytic function for s ∈ C, apart from
s = 1, where it has a simple pole.

Proof. From corollary 2.3.3, by partial summation, we have

ζ(s) = s

∫ ∞

1

[x]

xs+1
dx

= 1 +
1

s− 1
− s

∫ ∞

1

{x}
xs+1

dx,

where {x} denotes the fractional part of x. This gives us the analytic con-
tinuation of ζ(s) for Re(s) > 0.

17
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Next, we write

ζ(s) = 1 +
1

s− 1
− s

∫ ∞

1

{x}
xs+1

dx

= 1 +
1

s− 1
− s

∞∑
n=1

∫ n+1

n

x− n

xs+1
dx

= 1 +
1

s− 1
− s

∞∑
n=1

∫ 1

0

u

(u + n)s+1
du.

Integrating the last integral by parts, we get

∞∑
n=1

∫ 1

0

u

(u + n)s+1
du =

1

2

∞∑
n=1

1

(n + 1)s+1
+

s + 1

2

∫ ∞

1

{x}2

xs+2
dx

and the second integral converges for Re(s) > −1. Thus

ζ(s) = 1 +
1

s− 1
− s

2
(ζ(s + 1)− 1)− s(s + 1)

2

∫ ∞

1

{x}2

xs+2
dx.

In this way, ζ(s) has been analytically continued in the half-plane

Re(s) > −1.

From above, we also infer that ζ(0) = −1
2
. Integration by parts leads to

similar representations in successively larger half-planes, as indicated below.

ζ(s) = 1 +
1

s− 1

−
m∑

r=1

s(s + 1) . . . (s + r − 1)

(r + 1)!
(ζ(s + r)− 1)

− s(s + 1) . . . (s + m)

(m + 1)!

∞∑
n=1

∫ 1

0

um+1

(u + n)s+m+1
du.

(3.1)

and the infinite sum on the right hand side converges for Re(s) > −m. �
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3.2 A new method of analytic continuation

of ζ(s)

The aim of this section is to derive the analytic continuation of the Riemann
zeta function by an even simpler observation than the one in the previous
section. The idea is to use the Hurwitz zeta function for x = 1/2. As a
consequence, we give a new inductive proof of the well known formula

ζ(1− k) = −Bk/k,

where Bk is the k-th Bernoulli number.

The technique is capable of wider generalization. In the last section of this
thesis, we will consider generalizations of the classical Hurwitz zeta function
and obtain analytic continuations for them. To derive the analytic continu-
ation of ζ(s), we will make use of the Hurwitz zeta function.

Now, fix 0 < x < 1.

Recall that the Hurwitz zeta function ζ(s, x) is defined by the series

ζ(s, x) =
∞∑

n=0

1

(n + x)s
, which converges absolutely for Re(s) > 1.

We notice that

−1

xs
+ ζ(s, x)− ζ(s) =

∞∑
n=1

(
1

(n + x)s
− 1

ns

)
.

The summand on the right hand side can be written as

1

ns

((
1 +

x

n

)−s

− 1.

)
Using the binomial theorem, we obtain

Proposition 3.2.1 If 0 < x < 1, then

−1

xs
+ ζ(s, x)− ζ(s) =

∞∑
r=1

(
−s

r

)
ζ(s + r)xr
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Proof. Since 0 < x < 1 and n ≥ 1, using binomial theorem, we get

(
1 +

x

n

)−s

=
∞∑

r=0

(
−s

r

)(x

n

)r

.

Thus, we write

− 1

xs
+ ζ(s, x)− ζ(s) =

∞∑
n=1

1

ns

∞∑
r=1

(
−s

r

)(x

n

)r

.

We note that by ratio test([Ru], page 66), the series of positive terms

∞∑
n=1

∣∣∣∣ 1

ns

∣∣∣∣
[
∞∑

r=1

∣∣∣∣(−s

r

)∣∣∣∣ ∣∣∣(x

n

)r∣∣∣]

converges for Re(s) > 1. So, we can interchange the order of summation to
get

−1

xs
+ ζ(s, x)− ζ(s) =

∞∑
r=1

(
−s

r

)
ζ(s + r)xr

�

The beauty of this proposition is that the right hand side is analytic for
Re(s) > 0. This is because for Re(s) > 0,∣∣∣∣∣

∞∑
r=1

(
−s

r

)
xrζ(s + r)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

r=1

(
−s

r

)
xr

∞∑
n=1

1

nσ+r

∣∣∣∣∣ , (3.2)

where σ = Re(s). Notice

σ + r > 1∀r ≥ 1.

Then, we note that∣∣∣∣∣
∞∑

r=1

(
−s

r

)
xr

∞∑
n=1

1

nσ+r

∣∣∣∣∣ ≤
∞∑

r=1

∣∣∣∣(−s

r

)∣∣∣∣ xr

∞∑
n=1

1

n1+σ

=
∞∑

r=1

C

∣∣∣∣(−s

r

)∣∣∣∣ xr,
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where

C =
∞∑

n=1

1

n1+σ
.

Once again, by ratio test,

∞∑
r=1

C

∣∣∣∣(−s

r

)∣∣∣∣ xr

is convergent.
Thus, by Weierstrass M-test, ([Ru], page 148),

∞∑
r=1

(
−s

r

)
xr

∞∑
n=1

1

nσ+r

is uniformly convergent for Re(s) > 0.
It follows that

∞∑
r=1

(
−s

r

)
ζ(s + r)xr

converges uniformly in every compact subset of the half plane

{s ∈ C : Re(s) > 0} .

Thus,
∞∑

r=1

(
−s

r

)
ζ(s + r)xr

is analytic for Re(s) > 0.
We will exploit this fact below. However, before we do this, let us note

that

ζ(s, 1/2) = 2s

∞∑
n=0

1

(2n + 1)s

= 2s(ζ(s)−
∞∑

n=1

1

(2n)s
)

= 2s(ζ(s)− 2−sζ(s))

= (2s − 1)ζ(s).

In this way, we get
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Lemma 3.2.2 ζ(s, 1/2) = (2s − 1)ζ(s).

This is the key observation that we will use to analytically continue ζ(s). In
Proposition 3.2.1, for x = 1/2, we get

−2s + ζ(s, 1/2)− ζ(s) =
∞∑

r=1

(
−s

r

)
(
1

2
)rζ(s + r).

Using Lemma 3.2.2, we deduce

Theorem 3.2.3

(2s − 2)ζ(s) = 2s +
∞∑

r=1

(
−s

r

)(
1

2

)r

ζ(s + r).

Since the right hand side converges for Re(s) > 0, we obtain an analytic
continuation of (2s − 2)ζ(s) in this region. It is immediate that this gives a
meromorphic continuation of ζ(s) for Re(s) > 0 with possible poles only at
s = 1 + 2πim

log 2
, where m is an integer. It is also interesting that we can use

Theorem 3.2.3 to derive (by induction) a meromorphic continuation of ζ(s)
to the entire complex plane. We do this below.

Note first that
∞∑

r=1

(
−1

r

)
(
1

2
)rζ(1 + r) =

∞∑
r=1

(−1)r(
1

2
)r

∞∑
n=1

1

nr+1

=
∞∑

n=1

1

n

∞∑
r=1

(
−1

2n
)r

= −2
∞∑

n=1

1

2n(2n + 1)
.

So,

lim
s→1

(2s − 2)ζ(s) = 2− 2
∞∑

n=1

1

2n(2n + 1)

= 2− 2
∞∑

n=1

(
1

2n
− 1

2n + 1

)
= 2 log 2.

So we obtain, as a corollary to Theorem 3.2.3, the following
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Corollary 3.2.4 (2s − 2)ζ(s) extends to an analytic function for Re(s) > 0
and

lim
s→1

(2s − 2)ζ(s) = 2 log 2.

Thus

lim
s→1

2s − 2

s− 1
(s− 1)ζ(s) = 2 log 2

so that
lim
s→1

(s− 1)ζ(s) = 1.

There is nothing special about ζ(s, 1
2
). Lemma 3.2.2 can be generalized as

follows :

Lemma 3.2.5

(ms −m)ζ(s) =
m∑

a=1

[
ζ(s,

a

m
)− ζ(s)

]
.

Proof.

m−s

m∑
a=1

ζ(s,
a

m
) =

m∑
a=1

∞∑
n=0

1

(mn + a)s
= ζ(s)

Thus,

msζ(s) =
m∑

a=1

ζ(s,
a

m
)

Thus,

(ms −m)ζ(s) =
m∑

a=1

[
ζ(s,

a

m
)− ζ(s)

]
.

�

The interesting feature of Lemma 3.2.5 is that the right hand side is analytic
for Re(s) > 0 by Proposition 3.2.1 and the remark afterwards. Hence, by the
same logic as used in the remarks following Theorem 3.2.3, we deduce that
ζ(s) extends to a meromorphic function for Re(s) > 0 with possible poles at
s = 1 + 2πik

log m
, k ∈ Z. Choosing m = 3, we find that the only possible poles of

ζ(s) lie in {
1 +

2πik

log 3
: k ∈ Z

}
∩
{

1 +
2πil

log 2
: l ∈ Z

}
= {1} .
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This shows that ζ(s) extends to an analytic function for Re(s) > 0 except
for a simple pole at s = 1. From proposition 3.2.1 and Lemma 3.2.2, we have

(2s − 2)ζ(s) = 2s +
∞∑

r=1

(
−s

r

)
ζ(s + r)2−r. (3.3)

Let us now assume that ζ(s) is analytic for Re(s) > −(m− 1), m ∈ N.
Equation (3.3) can be rewritten as

(2s − 2)ζ(s) = 2s +
m∑

r=1

(
−s

r

)
2−rζ(s + r) +

∞∑
r=m+1

(
−s

r

)
2−rζ(s + r).

If Re(s) > −m, then
m∑

r=1

(
−s

r

)
2−rζ(s + r),

being a finite sum of analytic functions is analytic.
From arguments following Proposition 3.2.1, we deduce that

∞∑
r=m+1

(
−s

r

)
2−rζ(s + r)

is analytic for Re(s) > −m.
So, assuming that ζ(s) has an analytic continuation in the half plane

Re(s) > −(m− 1), m ∈ N

we have shown that ζ(s) can be analytically continued in the region

Re(s) > −m.

Thus, by induction, we see that ζ(s) extends analytically for all s ∈ C, except
for a simple pole of residue 1 at s = 1.

This gives us an elementary proof of Theorem 3.1.1.

3.3 A new derivation of ζ(1− k) = −Bk
k

We now use the derivation in the previous section to obtain a new proof of
the formula

ζ(1− k) = −Bk

k
, k ≥ 2.
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Since
t

exp(t)− 1
+

t

2

is an even function, the Bernoulli numbers for odd subscripts ≥ 3 vanish,
and we can write the above formula as

Theorem 3.3.1

ζ(1− k) = (−1)k−1Bk/k, k ≥ 1.

Proof.
Observe that equation (3.3) can be written as

(2s − 2)ζ(s) = 2s − s
ζ(s + 1)

2
+

∞∑
r=2

(
−s

r

)
ζ(s + r)2−r

where we see that the right hand side is analytic for Re(s) > −1. We may
substitute s = 0 in the above formula and deduce that

ζ(0) = −1

2
.

Since B1 = −1
2
, the above theorem holds for k = 1.

We proceed by induction on k.
Suppose the result holds for all m ∈ N, m < k.
We note that for r = k, ζ(1− k + r) has a simple pole of residue 1. So,

lim
r→k

(r − k)ζ(1− k + r) = 1.

Then,

lim
r→k

(
k − 1

r

)
1

2r
ζ(1− k + r) = − 1

2kk
.

Also, if r > k, the term (
k − 1

r

)
1

2r
ζ(1− k + r)

vanishes, since ζ(1−k + r) is analytic. Thus, if we put s = 1−k in Theorem
(3.2.3), we obtain the recurrence

(21−k − 2)ζ(1− k) = 21−k +
k−1∑
r=1

(
k − 1

r

)
1

2r
ζ(1− k + r)− 1

2kk
. (3.4)
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Then, by induction hypothesis and the fact that ζ(0) = B1, we get

ζ(1− k + r) = (−1)k−r−1 Bk−r

k − r
, 1 ≤ r ≤ (k − 1).

So, the right hand side of equation (3.5) becomes

21−k +
k−1∑
r=1

(
k − 1

r

)
1

2r
(−1)k−r−1 Bk−r

k − r
− 1

2kk

= 21−k +
1

k

k−1∑
r=1

(
k

r

)
1

2r
(−1)k−r−1Bk−r −

1

2kk

= 21−k +
1

k

k∑
r=0

(
k

r

)
1

2r
(−1)k−r−1Bk−r −

1

k
(−1)k−1Bk.

(3.5)

Thus, we get

(21−k − 2)ζ(1− k) = 21−k − (−1)k−1Bk

k
− 1

k

k∑
r=0

(
k

r

)
1

2r
(−1)k−rBk−r.

Let us define cks as follows.

∞∑
k=0

ck
xk

k!
=

∞∑
k=0

xk

2kk!

∞∑
k=0

(−1)kBk
xk

k!
. (3.6)

Then, ck =
∑k

r=0

(
k
r

)
1
2r (−1)k−rBk−r for every k ≥ 1.

Note that

∞∑
k=0

ckx
k

k!
= exp(

x

2
)

(−x)

exp(−x)− 1

= x exp
(x

2

)
+

x

exp(x
2
)− exp

(−x
2

) .
Now, coefficient of xk

k!
in x exp(x

2
) is k

2k−1 .

We have to determine the coefficient of xk

k!
in

x exp
(x

2

)
+

x

exp(x
2
)− exp

(−x
2

) = x exp
(x

2

)
+

ix

2

(
sin(

ix

2
)

)−1
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Recall from [Co](page 88) that

(sin(x))−1 = x−1 +
∑
m≥1

B2m(−1)m+1(22m − 2)
x2m−1

(2m)!

Using this formula, we can deduce that

ix

2

(
sin(

ix

2
)

)−1

= 1−
∞∑

k=1

B2k(2
2k − 2)

(x

2

)2k 1

(2k)!

Thus, if k is even ,

ck =
k

2k−1
−Bk

2k − 2

2k

As a result,

(21−k − 2)ζ(1− k)

= 21−k − (−1)k−1Bk −
1

k

{
k

2k−1
−Bk

(2k − 2)

2k

}
= (2− 21−k)

Bk

k

that is, ζ(1− k) = −Bk

k

If k is odd ,

ck =
k

2k−1
.

Thus

(21−k − 2)ζ(1− k) = −(−1)k−1Bk

k
.

In particular, if k = 1, then ζ(0) = −1
2

= B1

If k ≥ 3, then ζ(1− k) = 0 = Bk for k odd.
The theorem for m = k follows from the different cases considered above

.
Thus, we have proved our result by induction . �

Corollary 3.3.2 ζ(s) = 0 for s = −2n, n ∈ N.
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Proof. We know that Bk = 0 for odd k ∈ Z, k ≥ 3. Thus,

ζ(−2n) = − B2n+1

2n + 1
= 0.

�

3.4 An identity involving ζ(2n)

This section is based on [GW]. In this paper, G.T.Williams presented, among
other things, a new method of evaluating ζ(2n). His method is elementary
and involves manipulations of the defining series.

He proves the following

Theorem 3.4.1

ζ(2)ζ(2n− 2) + ζ(4)ζ(2n− 4) + . . . ζ(2n− 2)ζ(2) = (n +
1

2
)ζ(2n).

This convolution serves to give ζ(2n), recursively, as a rational multiple of
(ζ(2))n.
Proof. The left hand side is the limit, as N →∞, of

N∑
ν=1

N∑
µ=1

{ 1

µ2

1

ν2n−2
+

1

µ4

1

ν2n−4
+ · · ·+ 1

µ2n−2

1

ν2
} (3.7)

Here, N is a positive integer. Summing the geometric series within braces,
and taking note of the exceptional case when µ = ν, this becomes∑

ν

∑
µ

′ν2−2n − µ2−2n

µ2 − ν2
+ (n− 1)

∑
ν

1

ν2n
. (3.8)

Throughout this proof, all sums run from 1 to N and an accent on the
inner sum indicates that the index(in this case, µ) does not take on the value
of the index of the outer sum (ν here.)

Ignoring the term on the far right, (3.4) is equal to∑
ν

∑
µ

′ ν2−2n

µ2 − ν2
+
∑

ν

∑
µ

′ µ2−2n

ν2 − µ2
. (3.9)
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Inverting the order of summation in the second double sum, and noting
that the condition µ 6= ν is the same as the condition ν 6= µ, (3.5) can be
written as

2
∑

ν

1

ν2n−2

∑
µ

′ 1

µ2 − ν2
(3.10)

Combining the above equations, we find that equation 3.3 can be written as

(n− 1)
∑

ν

1

ν2n
+ 2

∑
ν

1

ν2n−2

∑
µ

′ 1

µ2 − ν2
. (3.11)

Now,

2ν
∑

µ

′ 1

µ2 − ν2
=

∑
µ

′ 1

µ− ν
−
∑

µ

′ 1

µ + ν

= −
N+ν∑
µ=1

1

µ
+

1

ν
+

N−ν∑
µ=1

1

µ
+

1

2ν

=
3

2ν
−
{

1

N − ν + 1
+ · · ·+ 1

N + ν

}
.

When we substitute this into (3.7), we get that (3.3) is equal to

(n +
1

2
)
∑

ν

1

ν2n
−
∑

ν

1

ν2n−1

(
1

N − ν + 1
+ · · ·+ 1

N + ν

)
(3.12)

Finally,

1

N − ν + 1
+

1

N − ν + 2
+ · · ·+ 1

N + ν
<

2ν

N − ν + 1
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and so

0 <
∑

ν

1

ν2n−1

(
1

N − ν + 1
+ · · ·+ 1

N + ν

)
< 2

∑
ν

1

ν2n−2
.

1

N − ν + 1

≤ 2
∑

ν

1

ν(N − ν + 1)

=
2

N + 1

∑
ν

(
1

ν
+

1

N − ν + 1

)

=
4

N + 1

N∑
ν=1

1

ν

<
4

N + 1
(1 + log(N))

We observe that
4

N + 1
(1 + log(N)) → 0

as N → ∞. The above statement and equation (3.8) taken together give us
the theorem.

�

3.5 Functional equation of the Riemann zeta

function

We now derive the functional equation of the Riemann Zeta function.
ζ(s) satisfies the functional equation

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s)

The functional equation can be written in a number of ways. Changing
s into 1− s and using the functional equation for Γ(s), it becomes

ζ(1− s) = 21−sπ−s cos
(πs

2

)
Γ(s)ζ(s).
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It can also be written in the symmetric form

π−
s
2 ζ(s)Γ

(s

2

)
= π−(1−s)/2ζ(1− s)Γ

(
1− s

2

)
and we will prove the functional equation in the above form.

We define the Θ function as

Θ(z) =
∑
n∈Z

e−πin2z, z ∈ C, Im(z) > 0.

Now, define ω(y) = Θ(iy). Thus,

ω(x) =
∑
n∈Z

e−πn2x

and

ω

(
1

x

)
=
∑
n∈Z

e−πn2/x.

We know, from corollary (2.4.6), that

ω

(
1

x

)
= x1/2ω(x).

Now,

Γ
(s

2

)
=

∫ ∞

0

e−tts/2dt

t
.

Put t = n2πx. Then,

Γ
(s

2

)
=

∫ ∞

0

e−n2πxnsπs/2xs/2dx

x
.

⇒ π−s/2n−sΓ
(s

2

)
=

∫ ∞

0

e−n2πxxs/2dx

x

For Re(s) > 1,

π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞

0

(
∞∑

n=1

e−n2πx

)
xs/2dx

x
.
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Note that 1 + 2
∑∞

n=1 e−n2πx =
∑∞

n=−∞ e−n2πx. So,

∞∑
n=1

e−n2πx =
ω(x)− 1

2
.

Let us set W (x) = ω(x)−1
2

.

Now,

π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞

0

xs/2

(
ω(x)− 1

2

)
dx

x

=

∫ ∞

0

xs/2W (x)
dx

x

=

∫ ∞

1

xs/2W (x)
dx

x
+

∫ 1

0

xs/2W (x)
dx

x

=

∫ ∞

1

xs/2W (x)
dx

x
+

∫ ∞

1

x−s/2W

(
1

x

)
dx

x
.

Now,

W

(
1

x

)
=

ω
(

1
x

)
− 1

2

=
x1/2ω(x)− 1

2

=
x1/2{2W (x) + 1} − 1

2

= −1

2
+

1

2
x1/2 + x1/2W (x).

Thus,∫ ∞

1

W

(
1

x

)
x−s/2dx

x

=

∫ ∞

1

(
−1

2
+

1

2
x1/2 + x1/2W (x)

)
x−s/2dx

x

= −1

s
+

1

s− 1
+

∫ ∞

1

x(1−s)/2W (x)
dx

x
.
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Hence,

π−s/2Γ
(s

2

)
ζ(s)

=

∫ ∞

1

xs/2W (x)
dx

x
+

∫ ∞

1

x(1−s)/2W (x)
dx

x
+

1

s− 1
− 1

s

=

∫ ∞

1

(
xs/2 + x(1−s)/2

)
W (x)

dx

x
+

1

s− 1
− 1

s
.

Thus, it follows from above that

π−
s
2 ζ(s)Γ

(s

2

)
= π−(1−s)/2ζ(1− s)Γ

(
1− s

2

)
This is Riemann’s derivation of the analytic continuation of ζ(s) and

functional equation.
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Chapter 4

The Hurwitz zeta function

4.1 Classical Hurwitz zeta function

In the last chapter, we defined the Hurwitz zeta function :

ζ(s, a) =
∞∑

n=0

1

(n + a)s
,

where we fix 0 < a ≤ 1. The above series converges absolutely for Re(s) > 1.
For Re(s) > 1, partial summation gives us

ζ(s, a) = s

∫ ∞

0

[x]

(x + a)s+1
dx.

As in section 3.1, integration by parts leads to the formula

ζ(s, a) =
a1−s

s− 1
−

m∑
r=1

s(s + 1) . . . (s + r − 1)

(r + 1)!

(
ζ(s + r, a)− a−s−r

)
+

s(s + 1) . . . (s + m)

(m + 1)!

∞∑
n=1

∫ 1

0

um+1

(u + n + a)s+m+1
du

(4.1)

The infinite sum on right hand side converges for Re(s) > −m. Thus, the
method used for Riemann zeta function generalizes to give the analytic con-
tinuation of the Hurwitz zeta function ζ(s, a) for real values of a between 0
and 1.

However, we can consider the Hurwitz zeta function for complex values
of a, provided we are careful that log(a) is well-defined. We do this below

35
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and derive an analytic continuation of ζ(s, a). As before, we can inquire into
the nature of the special values ζ(1 − k, a). This turns out to be −Bk(a)/k
for appropriate complex values of a.

4.2 Hurwitz zeta function ζ(s, a) for complex

values of a

Our new method to analytically continue ζ(s), explained in section 3.2, is a
versatile method because it enables us to analytically continue ζ(s, a), where
a belongs a much larger complex domain D, where

D = {z : |z| < 1} \ {z ∈ R : −1 < z ≤ 0}

We consider the series

ζ(s, z) =
∞∑

n=0

1

(n + z)s

where z is a complex number. The summand is to be interpreted as

exp(−s log(n + z))

and therefore, for the logarithm to be defined, we need to have z not lie on
the negative real axis. We note that

−1

zs
+ ζ(s, z)− ζ(s) =

∞∑
n=1

(
1

(n + z)s
− 1

ns

)
.

Writing the summand as

1

ns

((
1 +

z

n

)−s

− 1

)
and using the binomial theorem, we obtain

Theorem 4.2.1 For z ∈ D, we have

−1

zs
+ ζ(s, z)− ζ(s) =

∞∑
r=1

(
−s

r

)
ζ(s + r)zr.
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Since the right hand side converges for Re(s) > 0, we obtain an analytic con-
tinuation of ζ(s, z) in this region. Analogous to remarks made after theorem
3.2.3, we can derive, by induction the following result.

Theorem 4.2.2 The function ζ(s, z) for z ∈ D is analytic in the whole
complex plane except for a simple pole at s = 1.

Furthermore, given any non-zero complex number z not lying in the neg-
ative real axis, we can find a positive integer m such that |z| < m. Now,

− 1

zs
+ ζ(s, z)− ζ(s) =

m−1∑
n=1

1

ns

((
1 +

z

n

)−s

− 1

)
+

∞∑
n=m

1

ns

((
1 +

z

n

)−s

− 1

)
Since, |z| < m, therefore

∣∣ z
n

∣∣ < 1∀n ≥ m.
Thus, applying binomial theorem to the second term on the right hand

side and by a change in the order of summation, we obtain a modification of
Theorem 4.2.2.

Theorem 4.2.3 Let

D′ = {z ∈ C} \ {z ∈ R : z ≤ 0} .

Then, given z ∈ D′, ∃m ∈ N such that

− 1

zs
+ζ(s, z)−ζ(s) =

m−1∑
n=1

1

ns

((
1 +

z

n

)−s

− 1

)
+

∞∑
r=1

(
−s

r

)
zr

(
ζ(s + r)−

m−1∑
n=1

1

ns+r

)
.

Since the right hand side is analytic for Re(s) > 0, we obtain an analytic
continuation of ζ(s, z) in this region. Thus, by induction, we can derive that
the function ζ(s, z), for z ∈ D′ is analytic in the whole complex plane except
for a simple pole at s = 1.

4.3 Derivation of ζ(1− k, z) = −Bk(z)
k

We now prove the following result:

Theorem 4.3.1 For z ∈ D′,

ζ(1− k, z) = −Bk(z)

k
, k ∈ Z, k ≥ 2.
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Proof. We first prove the theorem for z ∈ D. From Theorem 4.2.1, we have

−1

zs
+ ζ(s, z)− ζ(s) =

∞∑
r=1

(−1)r (s)(s + 1) . . . (s + r − 1)

r!
ζ(s + r)zr (4.2)

In equation (4.2), put s = 1 − k and observe that if r > k, then the sum
vanishes, since ζ(1− k + r) is analytic.

At r = k, ζ(1− k + r) has a simple pole of residue 1. Thus,

lim
r→k

(r − k)ζ(1− k + r) = 1.

This implies that

lim
r→k

(−1)r (1− k)(2− k) . . . (r − 1− k)(r − k)

r!
ζ(1− k + r) =

(−1)k

k!
(−1)k−1(k − 1)!

= −1

k
.

So,

− 1

z1−k
+ ζ(1− k, z)− ζ(1− k) =

k−1∑
r=1

(
k − 1

r

)
ζ(1− k + r)zr − zk

k
. (4.3)

Thus,

ζ(1− k, z) = zk−1 + ζ(1− k) +
k−1∑
r=1

(
k − 1

r

)
ζ(1− k + r)zr − zk

k

= zk−1 + ζ(1− k)−
k−2∑
r=1

(
k − 1

r

)
Bk−r

k − r
zr + ζ(0)zk−1 − zk

k

=
zk−1

2
+ ζ(1− k)− 1

k

k−2∑
r=1

(
k

r

)
Bk−rz

r − zk

k

= −B1z
k−1 − Bk

k
−B0

zk

k
− 1

k

k−2∑
r=1

(
k

r

)
Bk−rz

r

= −1

k

k∑
r=0

(
k

r

)
Bk−rz

r

= −Bk(z)

k
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More generally, let z ∈ D′. From Theorem 4.2.3, we have

− 1

zs
+ ζ(s, z)− ζ(s) =

m−1∑
n=1

1

ns

((
1 +

z

n

)−s

− 1

)
+

∞∑
r=1

(
−s

r

)
zrζ(s + r)

−
∞∑

r=1

(
−s

r

)
zr

(
m−1∑
n=1

1

ns+r

)
.

(4.4)

In the above equation, we put s = 1− k where k ∈ Z, k ≥ 2.

Then, we get the following equation :

−zk−1 + ζ(1− k, z)− ζ(1− k) =
m−1∑
n=1

1

n1−k

((
1 +

z

n

)k−1

− 1

)
+

k−1∑
r=1

(
k − 1

r

)
ζ(1− k + r)zr

− zk

k
−

k−1∑
r=1

(
k − 1

r

)
zr

m−1∑
n=1

1

n1−k+r
.

(4.5)

Now, the first term on the right hand side in equation 4.5 is

m−1∑
n=1

1

n1−k

[
k−1∑
r=0

(
k − 1

r

)( z

n

)r

− 1

]

=
m−1∑
n=1

1

n1−k

[
k−1∑
r=1

(
k − 1

r

)( z

n

)r
]

=
k−1∑
r=1

(
k − 1

r

)
zr

m−1∑
n=1

1

n1−k+r
.

Thus, equation 4.5 reduces to equation 4.3.

Since equation 4.3 holds for all z ∈ D′, our result is proved.

�

The idea of this proof originates in [MR].
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4.4 L-Series and its relation to ζ(s, x)

If χ is a character mod k, we rearrange the terms in the series for L(s, χ)
according to the residue classes mod(k). That is, we write

n = qk + r, 1 ≤ r ≤ k, q = 0, 1, 2, . . .

and obtain

L(s, χ) =
∞∑

n=1

χ(n)

ns

=
∞∑

q=0

k∑
r=1

χ(qk + r)

(qk + r)s

=
k∑

r=1

1

ks

∞∑
q=0

χ(r)(
q + r

k

)s
= k−s

k∑
r=1

χ(r)ζ(s,
r

k
).

Theorem 4.4.1 For the principal character χ0, the L-function L(s, χ0) is

analytic everywhere except for a simple pole at s = 1 with residue ϕ(k)
k

.

If χ 6= χ0, L(s, χ) is an entire function of s. Furthermore, if we define the
generalized Bernoulli polynomial Bn,χ, by

Bn,χ = kn−1

k∑
r=1

χ(r)Bn(r/k),

then,

L(1− n, χ) = −Bn,χ

n
.

Proof. From Lemma 2.7.1, we have the the following

∑
r mod k

χ(r) =

{
0 if χ 6= χ0,

ϕ(k) if χ = χ0.
(4.6)
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Since ζ(s, r/k) has a simple pole at s = 1 with residue 1, the function
χ(r)ζ(s, r/k) has a simple pole at s = 1 with residue χ(r). Therefore

Res
s=1

L(s, χ) = lim
s→1

(s− 1)L(s, χ)

= lim
s→1

(s− 1)k−s

k∑
r=1

χ(r)ζ(s,
r

k
)

=
1

k

k∑
r=1

χ(r)

=

{
0 if χ 6= χ0,
ϕ(k)

k
if χ = χ0.

Moreover,

L(1− n, χ)

=
k∑

r=1

χ(r)kn−1ζ(1− n,
r

k
)

= −
k∑

r=1

χ(r)kn−1Bn(r/k)

n

= −Bn,χ

n
.

This proves our theorem.
�
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Chapter 5

Generalised Hurwitz zeta series

5.1 Generalization of the Hurwitz Zeta Func-

tion

In this chapter, we make a few final remarks about how the definition of
ζ(s, z) for complex z can be extended more generally to define what we call
the Generalized Hurwitz zeta function. This function has applications in a
more general theory of regularized products of certain sequences satisfying a
few basic axioms[JL]. A basic example has been presented below.

Let Λ be a sequence {zn}, zn ∈ D.
We define the Generalized Hurwitz Zeta function

ζ(s, Λ) =
∞∑

n=0

(n + zn)−s.

This series is absolutely convergent for Re(s) > 1. As a further generalization
of Proposition 3.2.1, we obtain

Proposition 5.1.1

ζ(s, Λ) =
1

(z0)s
+ ζ(s) +

∞∑
r=1

(
−s

r

) ∞∑
n=1

zr
n

ns+r
.

Define

Lr(s) =
∞∑

n=1

zr
n

ns+r

43
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where s ∈ C, r ∈ N. The above series converges absolutely for Re(s) > 1− r.
It immediately follows that ζ(s, Λ) is analytic for Re(s) > 0 except at s = 1
where it has a simple pole.

Then, we consider the derivative

ζ ′(s, Λ) = −
∞∑

n=1

log(zn + n)

(zn + n)s

Putting s = 0 formally, we find

ζ ′(0, Λ) ∼ −
∞∑

n=1

log(zn + n)

If we assume that L1(s) analytically extends to s = 0, then ζ(s, Λ) has an
analytic continuation at s = 0.

Therefore,

exp(−ζ ′(0, Λ)) ∼
∞∏

n=1

(n + zn)

We thus obtain an interpretation of the infinite product {n + zn}, which
is called a regularized product. The notion is useful in certain cases to give
meaning to the determinant of a linear operator T with eigenvalues given by
a sequence {λn}∞n=1. Thus, we may define

det T =
∞∏

n=1

λn

where the infinite product is defined via the formalism above. Namely, let

Z(s) =
∞∑

n=1

(λn)−s.

Suppose Z(s) admits an analytic continuation for Re(s) ≥ 0.
Then, as

−Z ′(s) =
∞∑

n=1

(log λn)λ−s
n

we formally have

−Z ′(0) =
∞∑

n=1

log λn.

Hence, we may interpret exp(−Z ′(0)) as the determinant of the operator T.
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5.2 Poly-Hurwitz zeta functions

We define poly-Hurwitz zeta functions as follows

ζ(s1, s2, . . . , sr; x1, x2, . . . , xr) =
∞∑

n=0

(n + x1)
−s1 . . . (n + xr)

−sr ,

for 0 < xi ≤ 1. This series absolutely converges when Re(s1+s2+· · ·+sr) > 1.
Now, let

ζ∗(s1, s2, . . . , sr; x1, x2, . . . , xr) =
∞∑

n=1

(n + x1)
−s1 . . . (n + xr)

−sr ,

Then,

ζ∗(s1, s2, . . . , sr; x1, x2, . . . , xr) =
∞∑

n=1

1

ns1
.

1

ns2
. . .

1

nsr

(
1 +

x1

n

)−s1

. . .
(
1 +

xr

n

)−sr

=
∑

j1,...,jr

(
−s1

j1

)(
−s2

j2

)
. . .

(
−sr

jr

)
xj1

1 . . . .xjr
r A,

where A = ζ(s1 + s2 + · · ·+ sr + j1 + · · ·+ jr).
Using methods similar to those used in previous sections, we can obtain

a meromorphic continuation of this function to Ck. For example, let r = 2.
We will try to find the value of

ζ∗(s1, s2; x1, x2)

when si = 1− ki, ki ∈ Z, ki ≥ 1.
Then, by Theorem 3.3.2,

ζ∗(1− k1, 1− k2; x1, x2) =

k1−1∑
j1=0

k2−1∑
j2=0

(
k1 − 1

j1

)(
k2 − 1

j2

)
xj1

1 xj2
2 ζ(1− k1 + 1− k2 + j1 + j2)

= −
k1−1∑
j1=0

k2−1∑
j2=0

(
k1 − 1

j1

)(
k2 − 1

j2

)
xj1

1 xj2
2

Bl(j1,j2)

l(j1, j2)
,

where l(j1, j2) = k1 + k2 − 1− j1 − j2.
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More generally, we can show that

ζ(1− k1, 1− k2, . . . , 1− kr; x1, x2, . . . , xr)

is a polynomial in x1, x2, . . . , xr with rational coefficients given by Bernoulli
numbers. We may also consider these functions for xi ∈ D. This gives us a
further generalization of (1.1).
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