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FACTORING NEWPARTS OF JACOBIANS OF CERTAIN

MODULAR CURVES

M. RAM MURTY AND KANEENIKA SINHA

(Communicated by Wen-Ching Winnie Li)

Abstract. We prove a conjecture of Yamauchi which states that the level N
for which the new part of J0(N) is Q-isogenous to a product of elliptic curves is
bounded. We also state and partially prove a higher-dimensional analogue of
Yamauchi’s conjecture. In order to prove the above results, we derive a formula
for the trace of Hecke operators acting on spaces Snew(N, k) of newforms of
weight k and level N. We use this trace formula to study the equidistribution
of eigenvalues of Hecke operators on these spaces. For any d ≥ 1, we estimate
the number of normalized newforms of fixed weight and level, whose Fourier
coefficients generate a number field of degree less than or equal to d.

1. Introduction

For a positive integer N, let Γ0(N) denote the set of all matrices in SL2(Z)
such that N divides the lower left entry and let X0(N) denote the quotient of
the extended upper half plane by the action of Γ0(N). It can be viewed as an
algebraic curve defined over Q. Let J0(N) denote the Jacobian variety of X0(N).
For a positive divisor M of N, let NewM denote the set of normalized newforms of
weight 2 with respect to Γ0(M) and, for each f(z) =

∑∞
n=1 an(f)e

2πinz ∈ NewM ,
let Kf = Q({an(f)n≥1}). By the work of Shimura [21], one can associate to each
f ∈ NewM an abelian variety quotient Af of J0(N) such that if f and f ′ ∈
NewM are Galois conjugates, then Af is Q-isogenous to Af ′ . (We denote this
as Af ∼Q Af ′ .) Later, Ribet [17] showed that each Af is Q-simple. Ribet also
observed (see Proposition 3.2 of [2]) that the converse is true; that is, for f and
f ′ ∈ NewM , Af ∼Q Af ′ only if f and f ′ are Galois conjugates. Thus, by the work
of Ribet and Shimura, we have the decomposition

J0(N) ∼Q

⊕
M |N

⊕
f∈NewM/GQ

A
nf

f ,

where GQ = Gal(Q/Q), nf denotes the number of positive divisors of N/M, and the
dimension of Af is equal to [Kf : Q]. For a fixed positive integer d, the problem of
determining all levelsN for which all Q-simple factors of J0(N) are of dimension less
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than or equal to d has been well investigated. By a result of Serre (see Theorem 7
of [20]), we know that there are only finitely many levels N for which this happens.
In [5], Cohen listed all the odd N ’s for the case d = 1, that is, all the N ’s such
that all Q-simple factors of J0(N) are elliptic curves. Building on Cohen’s work,
Yamauchi [22] listed all the N ’s (even and odd) such that all Q-simple factors of
J0(N) are elliptic curves. In [15], we made Serre’s result effective; that is, for any
d ≥ 1, we found an effectively computable constant B(d), which depends only on d
such that if all Q-simple factors of J0(N) are of dimension ≤ d, then N ≤ B(d).

In this article, our focus is on the newpart of J0(N), denoted as Jnew
0 (N), for

which we have the decomposition

Jnew
0 (N) ∼Q

⊕
f∈NewN/GQ

Af .

In [22], Yamauchi conjectured that if Jnew
0 (N) is Q-isogenous to a product of elliptic

curves, then N is bounded above by 1800. In section 5 of this paper, we essentially
prove this conjecture in the following theorem:

Theorem 1. If Jnew
0 (N) is Q-isogenous to a product of elliptic curves, then N is

bounded above by an absolute and effectively computable constant.

We can formulate a higher dimensional analogue of Yamauchi’s conjecture, as
follows:

Conjecture 2. For any d ≥ 1, there are only finitely many positive integers N
such that Jnew

0 (N) is Q-isogenous to a product of Q-simple abelian varieties of
dimension less than or equal to d.

Let p be a prime number. In [19], Royer proved that for any sufficiently large
number N coprime to p, Jnew

0 (N) has a Q-simple factor of dimension �
√
log logN,

where the implied constant depends on p. This immediately implies that for any
d ≥ 1, there are only finitely many N ’s not divisible by p such that all Q-simple
factors of Jnew

0 (N) are of dimension less than or equal to d. This result for the case
p = 2 was also independently proved by Lim [12]. However, neither Royer’s nor
Lim’s results are effective. In the direction of Conjecture 2, we prove the following
theorem in section 5:

Theorem 3. Let p be a fixed prime. For any integer d ≥ 1, if N is coprime to p
and Jnew

0 (N) is isogenous to a product of Q-simple abelian varieties of dimension
less than or equal to d, then N is bounded above by a constant B(p, d) that depends
only on p and d. More precisely,

log 2N ≤ 311206d224d
2

pd
2/2 log p.

Remark 4. The correct way to interpret the value of Royer’s result and Theorem 3
is that if we fix a prime p, then Conjecture 2 holds for positive integers N coprime
to p. The advantage of Theorem 3 over Royer’s result is that it clearly reveals
the dependence of the bound for N on p and d. This explicit bound enables us to
address Yamauchi’s conjecture (for the case d = 1) for all N. If we take p = 2,
Theorem 3 leads to an effective upper bound for all odd N ’s in Conjecture 2,
that is, an effective version of Lim’s result. The constant in Theorem 1 obtained
by our current methods turns out to be much larger than the one conjectured by
Yamauchi. We relegate the sharpening of this constant to future work.



FACTORING NEWPARTS OF JACOBIANS 3483

In the next section, we state some results that lead to Theorems 1 and 3 and are
also of independent interest.

2. Preliminaries

Let S(N, k) be the space of cusp forms of weight k (k ≥ 2 is an even integer)
with respect to Γ0(N) and, for any integer n ≥ 1, let Tn(N, k) be the n-th Hecke
operator acting on S(N, k). Let s(N, k) be the dimension of S(N, k). Let p be
a fixed prime and let (kλ, Nλ) be a sequence of pairs of positive integers with
Nλ+kλ → ∞ provided that p does not divide Nλ and kλ is even. By the theorem of
Deligne proving the Ramanujan-Petersson inequality, we know that the eigenvalues
of Tp(Nλ, kλ) lie in the interval

[−2p
kλ−1

2 , 2p
kλ−1

2 ].

In his celebrated 1997 paper [20], Serre proved that with Nλ + kλ → ∞ as above,
the family of eigenvalues of the normalized p-th Hecke operator

T ′
p(Nλ, kλ) =

Tp(Nλ, kλ)

p(kλ−1)/2

is equidistributed in the interval [−2, 2] with respect to the measure

μp =

{
p+1
π

(1−x2/4)1/2

(p1/2+p−1/2)2−x2 dx if x ∈ [−2, 2]

0 otherwise.

In [15], we proved the following effective version of Serre’s equidistribution theorem
(see [15], p. 701). Let N be a positive integer and let p be a prime not dividing
N. Let {λp,i}1≤i≤s(N,k) denote the eigenvalues of Tp(N, k). For an interval [α, β] ⊂
[−2, 2] and for any positive integer M ≥ 1,∣∣∣∣∣

{
#i :

λp,i

p
k−1
2

∈ [α, β]

}
− s(N, k)

∫ β

α

μp(x)

∣∣∣∣∣
� s(N, k)

M + 1
+ (p3M/22ν(N)σ0(N)

√
N log p)M logM,

where ν(N) denotes the number of prime divisors of N and σ0(N) denotes the
number of positive divisors of N. This effective version of Serre’s theorem has
several applications. Most notably, in [15] we estimate, for a given d and prime
p not dividing N, the number of eigenvalues of Tp of degree less than or equal to
d. We then determine an effectively computable constant Bd such that if J0(N)
is isogenous to a product of Q-simple abelian varieties of dimensions less than or
equal to d, then N ≤ Bd.

In this paper, we restrict our attention to the eigenvalues of Tp acting on
Snew(N, k), the space of newforms of weight k and level N. We denote the di-
mension of Snew(N, k) by snew(N, k). In [20], Serre also shows that the eigenvalues
of T ′

p acting on Snew(Nλ, kλ) are equidistributed with respect to μp. We obtain
precise error terms in the effective equidistribution of eigenvalues of Tp acting on
Snew(N, k) and apply our effective results to study the factorization of Jnew

0 (N).
We first compute a formula for the trace of Tn acting on Snew(N, k), which

we denote as Tnew
n (N, k). This is an important ingredient in obtaining effective

equidistribution results. Although a formula for snew(N, k) is now known by the
work of Martin [13], the trace formula for Tnew

n (N, k) in closed form has so far
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not been computed. It is therefore worthwhile to fill this gap in the literature. In
section 3, we prove the following theorem:

Theorem 5. Let n be a positive integer coprime to N. The trace of the Hecke
operator Tnew

n (N, k) is given by{
n(k/2−1) · k−1

12 NB1(N) if n is a square,

0 otherwise

−1

2

∑
t∈Z, t2<4n

�k−1 − �k−1

�− �

∑
f

hw

(
t2 − 4n

f2

)
B2(N)f

−
∑′

d|n
0<d≤

√
n

dk−1B3(N)d +

{
μ(N)

∑
t|n t if k = 2,

0 otherwise,

where

• B1(N) is a multiplicative function such that for a prime power pr,

B1(p
r) =

⎧⎪⎪⎨
⎪⎪⎩
1− 1

p if r = 1,

1− 1
p − 1

p2 if r = 2,(
1− 1

p

)(
1− 1

p2

)
if r ≥ 3.

• � and � are the zeroes of the polynomial x2 − tx+ n.
• The inner sum in the second term runs over all positive divisors f of t2−4n
such that (t2 − 4n)/f2 ∈ Z is congruent to 0 or 1 mod 4.

• hw(Δ) is the class number of the imaginary quadratic order of discriminant
Δ divided by 2 (resp. 3) if the discriminant is −4 (resp. −3).

• For a positive integer f, B2(N)f is a multiplicative function of N such that

B2(p)f =

{
p− 1 if p|f,
−1 +

(
t2−4n

p

)
otherwise,

where
(

∗
p

)
denotes the Legendre symbol. If N = pr for some r ≥ 2 and

pb||f, then

B2(p
r)f =

r∑
i=r−2

σ−1
0 (pr−i)

ψ(pi)

ψ(pi−min{i,b})
M(t, n, pi+min{i,b}),

where

ψ(N) = N
∏
p|N

(
1 +

1

p

)
,

σ−1
0 (N) denotes the Dirichlet inverse of σ0(N) and M(t, n, pi+min{i,b}) de-

notes the number of elements of (Z/piZ)∗ which lift to solutions of x2 −
tx+ n ≡ 0 mod (pi+min{i,b}).

• The prime on the summation in the third term of TrTnew
n (N, k) indicates

that if there is a contribution from the term d =
√
n, it should be multiplied

by 1/2.
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• B3(N)d is a multiplicative function of N such that for a prime power pr,

B3(p
r)d =

⎧⎪⎨
⎪⎩
−φ(p

r−2
2 ) if r is even and p

r−2
2 ||

(
n
d − d

)
,

φ(p
r
2 )− φ(p

r−2
2 ) if r is even and p

r
2 |
(
n
d − d

)
,

0 otherwise.

Henceforth, let p be a prime not dividing N. For any closed interval [α, β] ⊂
[−2, 2], let Enew(p,N, k, [α, β]) denote the number of eigenvalues (counted with
multiplicity) of the normalized Hecke operator T ′

p
new

(N, k) lying in the interval
[α, β]. Also, for any x ∈ [−2, 2], let us define θx ∈ [0, π] such that 2 cos θx = x. In
section 4, we prove the following theorems:

Theorem 6. For any interval [α, β] ⊂ [−2, 2] and for any positive integer M, we
have ∣∣∣∣∣Enew(p,N, k, [α, β])−snew(N, k)

∫ β

α

μp

∣∣∣∣∣ ≤ 4
snew(N, k)

M + 1
+ 19p2M+14ν(N)

+2
∑

1≤m≤M
min

(
θα − θβ

2π
,

1

mπ

)(
10p2m+14ν(N)+

∣∣∣∣snew(N, k)−NB1(N)
k − 1

12

∣∣∣∣ Cm
)
,

where, for every m ≥ 1,

Cm =

⎧⎪⎨
⎪⎩
0 if m is odd,
1
p if m = 2,

1
pm−2 − 1

pm if m ≥ 4 is even.

Theorem 7. Let {ap,i}, 1 ≤ i ≤ snew(N, k), denote the family of eigenvalues of

Tnew
p (N, k). For any α ∈ [−2p(k−1)/2, 2p(k−1)/2] and for any c > 3,

#{1≤ i≤snew(N, k) : ap,i=α}≤8csnew(N, k)
log p

log kN
+237

(
6c

(c− 3)e

)2
kN

(log kN)2
.

Theorem 8. For any positive integer d, let

snew(N, k, p)d = #{1 ≤ i ≤ snew(N, k) : [Q(ap,i) : Q] ≤ d}.

For any c > 3, we have

snew(N, k, p)d ≤ Cd,p,k

{
8csnew(N, k)

log p

log kN
+ 237

(
6c

(c− 3)e

)2
kN

(log kN)2

}
,

where

Cd,p,k = d2
d∏

i=1

(
2

(
d

i

)(
2p

k−1
2

)i

+ 1

)
.

Remark 9. The above bound is non-trivial only if we can choose p sufficiently small
so that Cd,p,k � (log kN)a for some a < 1.
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3. Eichler-Selberg trace formula and modifications

The Eichler-Selberg trace formula describes the trace of Tn acting on S(N, k).
Following the presentation of this formula in [11, p. 370], for every integer n ≥ 1,

Tr Tn(N, k) =
∑4

i=1 Ai(n,N, k), where Ai’s are as follows:

A1(n,N, k) =
k − 1

12
ψ(N)

{
n(k/2−1) if n is a square,

0 otherwise.

A2(n,N, k) = −1

2

∑
t∈Z, t2<4n

�k−1 − �k−1

�− �

∑
f

hw

(
t2 − 4n

f2

)
μ(t, f, n).

Here, �, �, f and hw(Δ) are as in Theorem 5 and

μ(t, f, n) =
ψ(N)

ψ
(

N
Nf

)M(t, n,NNf ),

where Nf = gcd (N, f) and M(t, n,NNf ) denotes the number of elements of
(Z/NZ)∗ which lift to solutions of x2 − tx+ n ≡ 0 mod NNf .

A3(n,N, k) = −
∑′

d|n,
0<d≤√

n

dk−1F (N)d,

where F (N)d is a multiplicative function of N defined as

F (N)d =
∑
c|N

gcd (c,N
c

)|n
d

−d

φ

(
gcd

(
c,
N

c

))
.

The prime on the summation defining A3(n,N, k), just as in Theorem 1, indicates
that if there is a contribution from the term d =

√
n, it should be multiplied by 1

2 .

A4(n,N, k) =

{∑
t|n, t>0 t if k = 2,

0 otherwise.

By the Atkin-Lehner decomposition [1], we know that

(1) S(N, k) =
⊕
d|N

⊕
a|(N

d )

ia,d(S
new(d, k)),

where, for positive integers a and d such that ad|N, ia,d denotes the embedding
f(z) → f(az) of S(d, k) into S(N, k). Thus,

s(N, k) =
∑
d|N

σ0

(
N

d

)
snew(d, k).

From this, we deduce that

snew(N, k) =
∑
d|N

σ−1
0

(
N

d

)
s(d, k),
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where σ−1
0 (m) denotes the inverse of σ0(m) with respect to Dirichlet convolution;

that is, σ−1
0 (N) is a multiplicative function defined as follows on prime powers:

σ−1
0 (pr) =

⎧⎪⎨
⎪⎩
1 if r = 0 or 2,

−2 if r = 1,

0 if r > 2.

This idea was utilised by Martin ([13], Theorem 1) to derive a closed-form and
computationally efficient formula for snew(N, k) from previously known formulae
for s(N, k). This inversion technique can also be used to derive an explicit formula
for Tr Tnew

n (N, k), using the Eichler-Selberg trace formula for Tr Tn(N, k), provided
n is coprime to N. We observe that if (n,N) = 1 and f(z) ∈ Snew(d, k) for some
d|N, then Tn has the same eigenvalue on f(z) as it does on ia,d(f). Thus, by the
Atkin-Lehner decomposition (1), we get that

(2) Tr Tn(N, k) =
∑
d|N

σ0

(
N

d

)
Tr Tnew

n (d, k).

Thus,

Tr Tnew
n (N, k) =

∑
d|N

σ−1
0

(
N

d

)
Tr Tn(d, k).

The following can be easily verified by checking them at prime powers:∑
d|N

σ−1
0 (N/d)ψ(d) = NB1(N),

∑
d|N

σ−1
0 (N/d)μ(t, f, d) = B2(N)f ,

∑
r|N

σ−1
0 (N/r)F (r)d = B3(N)d and

∑
d|N

σ−1
0 (N/d) = μ(N).

Combining the above facts, we are able to obtain
∑

d|N σ−1
0 (N/d)Ai(n, d, k) for

each i. This proves Theorem 5.

Remark 10. The idea of performing Möbius inversion on equation (2) was also
utilised by Hamer [9] to obtain the trace of T ∗

n(N, k), the Hecke operator Tn acting
on

S∗(N, k) =
⊕
d|N

Snew(N, k)

provided (n,N) = 1. She observes that equation (2) can also be written as

Tr Tn(N, k) =
∑
d|N

Tr T ∗
n(d, k).

She then obtains a trace formula for T ∗
n(N, k) for squarefree N by Möbius inversion.

Remark 11. For n = 1, the trace of Tnew
n (N, k) is equal to snew(N, k). Thus, Propo-

sition 5 for n = 1 gives the same formula as Theorem 1 of [13]. Since B3(N)1 = 0
if N is not a square, we immediately deduce that

(3)

∣∣∣∣snew(N, k)−NB1(N)
k − 1

12

∣∣∣∣ ≤
{√

N
2 + 7

122
ν(N) + 1 if N is a square

7
122

ν(N) + 1 otherwise.

We now state two results which will help us obtain explicit bounds on the terms
of the trace formula.
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Proposition 12. For a positive integer N > 0, let

H(N) =
∑
d2|N

hw

(
−N

d2

)
,

where the sum runs over all positive divisors d of N such that −N/d2 ∈ Z is
congruent to 0 or 1 (mod 4). Then,

∑
t2<4n

H(4n− t2) = 2σ1(n)− λ(n) +
1

6
,

where

λ(n) =
∑
d|n

min
(
d,

n

d

)
and σ1(n) =

∑
d|n
d>0

d.

Proof. The above recursion formula is due to Kronecker and Gierster (see [6],
pp. 108 and 127). It was also proved by Eichler (see [7], equation (6)) by in-
terpreting the numbers H(N) in terms of the number of fixed points of Hecke’s
correspondences on the Riemann surface X0(2). We have stated this formula as it
appears in Theorem 5.3.8 of [4]. �

Proposition 13. Suppose a and b are integers such that a2 − 4b �= 0. Given an
integer K, the number of solutions mod K of the congruence x2−ax+b ≡ 0mod K
is less than or equal to 2ν(K)

√
|a2 − 4b|.

Proof. This proposition forms the content of Huxley’s paper [10]. �

From Propositions 12 and 13, we deduce the following:

Proposition 14. Let p be a prime not dividing N. Then, for any m > 0,∣∣∣∣∣Tr T ′
pm

new
(N, k)−NB1(N)

k − 1

12

{
p−m/2 if m is even

0 otherwise

∣∣∣∣∣≤8p2m+14ν(N)+pm/2+1.

Proof. Inserting Proposition 13 in B2(N)f , we deduce that

|B2(N)f | ≤ 4ν(N)ψ(f)
√
4n− t2.

Combining this estimate for B2(N) with Proposition 12, we get that∣∣∣∣∣∣
1

2

∑
t∈Z, t2<4n

�k−1 − �k−1

�− �

∑
f

hw

(
t2 − 4n

f2

)
B2(N)

∣∣∣∣∣∣ ≤ 8n
k+1
2 4ν(N)σ0(n).

We also observe that for any n > 1,∑′
d|n

0<d≤√
n

dk−1B3(N)d ≤
∑
d|n

0<d≤
√

n

dk.

In particular, taking n = pm, m ≥ 1 and dividing by (pm)
k−1
2 , we prove Proposi-

tion 14. �
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4. Effective equidistribution results

Let us consider the compact set [0, 1] of R. Let A1, A2, · · · be a sequence of finite
nonempty multisets of [0, 1] with #An → ∞ as n → ∞, where #An denotes the
cardinality of An. We say that {An} is equidistributed with respect to a measure
μ if for every A ⊆ [0, 1],

lim
n→∞

#{t ∈ An : t ∈ A}
#An

= μ(A).

Let e(x) := e2πix. Suppose that the Weyl limits of this sequence,

cm = lim
n→∞

1

#An

∑
t∈An

e(mt),

exist for every m ∈ Z and
∑N

m=1 |cm|2 = o(N). Then, by a generalization of the
Wiener-Schoenberg theorem (see [14], Theorem 11.3.3, p. 181) the measure μ is
given by F (−x)dx, where F (x) =

∑∞
m=−∞ cme(mx). Let ||μ|| be the supremum of

|F (x)| for x ∈ [0, 1]. In [15], we proved the following all-purpose effective equidis-
tribution theorem:

Theorem 15. For any I = [a, b] ⊆ [0, 1], let NI(V ) := #{t ∈ AV : t ∈ I} and let
DI,V (μ) := |NI(V )− V μ(I)|. Then,

DI,V (μ) ≤
V ||μ||
M + 1

+

M∑
m=−M
m �=0

(
1

M + 1
+ min

(
b− a,

1

π|m|

)) ∣∣∣∣∣
V∑

n=1

e(mxn)− V cm

∣∣∣∣∣ ,
if V and M are natural numbers.

For a prime p not dividing N, let

{
ap,i

p
k−1
2

}
, 1 ≤ i ≤ snew(N, k), denote the family

of eigenvalues of T ′
p
new

(N, k). For each i, choose θp,i ∈ [0, π] such that

ap,i

p
k−1
2

= 2 cos θp,i.

We study the distribution of the sequence ± θp,i
2π (mod 1) (1 ≤ i ≤ snew(N, k)). The

Weyl limits, in this case, are

cm = lim
N+k→∞
(p,N)=1
k even

1

2snew(N, k)

snew(N,k)∑
i=1

{
e

(
mθp,i
2π

)
+ e

(
−mθp,i

2π

)}

= lim
N+k→∞
(p,N)=1
k even

1

2snew(N, k)

snew(N,k)∑
i=1

2 cos(mθp,i).

For m = 1, ∑
i

2 cos(mθp,i) = Tr T ′
p
new

(N, k),

and for m ≥ 2,∑
i

2 cos(mθp,i) = Tr T ′
pm

new
(N, k)− Tr T ′

pm−2

new
(N, k).
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Thus, from Proposition 14 and equation (3), we deduce that the Weyl limits cm’s
are given by c0 = 1, cm = 0 for m odd; and for m even,

cm =
1

2

(
1

p|m|/2 − 1

p(|m|−2)/2

)
.

We also observe that for any m ≥ 1,∑
i

2 cosmθp,i − 2snew(N, k)cm

=

⎧⎪⎨
⎪⎩
Tr T ′

p
new

(N, k) if m = 1,

Tr T ′
p2

new(N, k)− snew(N,k)
p if m = 2,

Tr T ′
pm

new
(N, k)− Tr T ′

pm−2

new
(N, k) + Cmsnew(N, k) if m ≥ 3,

where the Cm’s are as defined in Theorem 6.
By substituting the above information in Theorem 15, we get that for any [α, β] ⊂

[−2, 2] and for any M ≥ 1,∣∣∣∣∣Enew(p,N, k, [α, β])− snew(N, k)

∫ β

α

μp

∣∣∣∣∣ ≤ 2snew(N, k)

M + 1

+
∑

1≤|m|≤M

(
1

M + 1
+min

(
θα − θβ

2π
,

1

π|m|

)) ∣∣∣∣∣
∑
i

2 cosmθp,i − 2snew(N, k)cm

∣∣∣∣∣
≤ 2snew(N, k)

M + 1
+19p2M+14ν(N)+

2

M+1

(
2

p
− 1

pM/2

)∣∣∣∣snew(N, k)−NB1(N)
k−1

12

∣∣∣∣
+ 2

M∑
m=1

min

(
θα − θβ

2π
,

1

mπ

)(
11p2m+14ν(N) +

∣∣∣∣snew(N, k)−NB1(N)
k − 1

12

∣∣∣∣
)
Cm.

This proves Theorem 6. Thus, for a fixed α ∈ [−2p(k−1)/2, 2p(k−1)/2] and for any
M ≥ 1,

#{1 ≤ i ≤ snew(N, k) : ap,i = α} ≤ 4
snew(N, k)

M + 1
+ 19p2M+14ν(N).

By a result of Ramanujan (see equation (200) of [16]), we know that

σ0(N) ≤ 8

(
3N

35

)1/3

.

Since 2ν(N) ≤ σ0(N), we deduce that

4ν(N) ≤ 64

(
3N

35

)2/3

.

For any c > 3 we choose

M + 1 =

[ 1
c log kN

2 log p

]
.

By elementary calculus, we know that log x ≤ xa/ae, for any a > 0 and x ≥ 1.
Thus,

(kN)
2
3+

1
c ≤

(
6c

(c− 3)e

)2
kN

(log kN)2
.
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Thus, for any c > 3,

#{1≤ i≤snew(N, k) : ap,i=α}≤8csnew(N, k)
log p

log kN
+ 237

(
6c

(c− 3)e

)2
kN

(log kN)2
.

This proves Theorem 7. We now recall the following proposition from [15]:

Proposition 16. For a positive integer d and a real number K > 0, the number of
algebraic integers α of degree d and H(α) ≤ K is at most

d∏
i=1

(
2

(
d

i

)
Ki + 1

)

where H(α) is the maximum of the absolute values of all conjugates of α.

Proof. This is Proposition 30 of [15]. �

If α is an eigenvalue of Tnew
p (N, k), then the absolute values of all conjugates of

α are bounded above by 2p(k−1)/2. Thus, taking K = 2p
k−1
2 in Proposition 16, we

deduce that if α is an eigenvalue of Tnew
p (N, k) such that [Q(α) : Q] ≤ d, then α

can take at most

Cd,p,k = d2
d∏

i=1

(
2

(
d

i

)(
2p

k−1
2

)i

+ 1

)

values. This, combined with Theorem 7, proves Theorem 8.
By the work of Atkin and Lehner [1], Snew(N, k) has a unique basis, say,

{fi}1≤i≤snew(N,k), consisting of normalized newforms. For any such form fi(z) =∑∞
n=1 an(fi)e

2πinz, let

Ki = Q({an(fi)}n≥1).

Ki is a finite extension of Q. For any integer d ≥ 1, we define

snew(N, k)d = #{1 ≤ i ≤ snew(N, k) : [Ki : Q] = d}.
Clearly, for any prime p not dividing N,

d∑
r=1

snew(N, k)r ≤ snew(N, k, p)d.

In particular, taking c = 20 in Theorem 8, we deduce that for every d ≥ 1,

(4)

d∑
r=1

snew(N, k)r ≤ Cd,p,k

(
160snew(N, k)

log p

log kN
+ 1617

kN

(log kN)2

)
.

We observe that

Cd,p,k ≤ d224d
2
(
p

k−1
2

) d(d+1)
2

,

and for N ≥ 2 (see, for example, Theorem 3.1(g) of [3]),

φ(N) ≥ N log 2

log 2N
.

Moreover, by a result of Halberstadt and Kraus ([8], Proposition B.2.(b)),
3φ(N)/200 ≤ snew(N, 2) for all N ≥ 61. From this, we deduce that

2N

(log 2N)2
≤ 2

log 2

φ(N)

log 2N
≤ 400

3 log 2

snew(N, 2)

log 2N
.
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Thus, putting k = 2 in equation (4), we get

(5)

d∑
r=1

snew(N, 2)r ≤ 311206d224d
2

(
√
p)d

2

log p
snew(N, 2)

log 2N
.

The inequality in (5) for the case k = 2 can be applied to prove Theorems 3 and 1.
We describe this application in the next section.

5. Newparts of Jacobians of modular curves

We know that the dimension of Jnew
0 (N) is equal to snew(N, 2). Also, by the work

of Ribet and Shimura, the number of Q-simple factors of Jnew
0 (N) of dimension d is

equal to snew(N, k)d/d. Thus, if J
new
0 (N) is Q-isogenous to a product of Q-simple

abelian varieties of dimension less than or equal to d, then

snew(N, 2) =

d∑
r=1

r
snew(N, 2)r

r
.

Combining this with equation (5), we deduce that if p does not divide N and all
Q-simple factors of Jnew

0 (N) are of dimension less than or equal to d, then

(6) snew(N, 2) ≤ 311206d224d
2

pd
2/2 log p

snew(N, 2)

log 2N
.

This proves Theorem 3. As an immediate consequence of this theorem, we observe
that if d is the largest dimension of the Q-simple factors of Jnew

0 (N), then

log 2N ≤ (Cp)
d2

,

where Cp is a constant depending on p. Thus, the largest dimension of the Q-simple
factors of Jnew

0 (N) is �p

√
log logN. This proves a result previously obtained by

Royer ([19], Theorem 1.1) using different methods. However, Royer’s result was not
effective. The advantage of Theorem 3 is that it explicitly shows the dependence
of this implied constant on p. This explicit determination has an important appli-
cation. We note that if all Q-simple factors of Jnew

0 (N) are elliptic curves, then
taking d = 1 in equation (6), we get that for any prime p not dividing N,

log 2N ≤ 4979296p1/2 log p.

How small a prime p can we choose which does not divide N? If N is odd, we
choose p = 2 and deduce that log 2N ≤ 4979296

√
2 log 2. If N is even, the prime

number theorem tells us that for a sufficiently large N, there is a prime p < 2 logN
not dividing N. Using effective bounds for the Chebyshev functions (see equation
(5.2) in Theorem 6 of [18]), one can show that for N > 1, 319, 007, there is a prime
p < 1.1 logN not dividing N. Thus, we have

(logN)1/2

log logN
≤ D

for an absolute constant D. This proves Theorem 1. However, our bound for N is
clearly much larger than 1800. In future work, we would like to refine the constants
in our estimates in order to yield a better bound.

We also observe that the above idea does not prove Conjecture 2 for d > 1. This
is because if we choose p ≤ 1.1 logN, the inequality

log 2N ≤ 311206d224d
2

(1.1 logN)d
2/2 log(1.1 logN)
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gives us an upper bound for N only if d2/2 < 1, that is, only if d = 1. We relegate
addressing Conjecture 2 in full generality to future research.
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