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1 Introduction

Definition 1 Given a non-zero polynomial P(x) € Clz]| and a positive integer
k, the k-higher Mahler measure of P is defined by
1

dx
P)i=— log" | P(2)|—
mi(P) = o e og” |P(z)]—,

or, equivalently, by
1 .
my(P) ::/ log" | P(e*™1%)|d6.
0

We observe that for & = 1, my(P) is the classical (logarithmic) Mahler
measure given by

n

m(P) :=log|a| + z:logJr |r;|, for P(x) = aH(x —rj)

j=1 i=1

where logt t = log max{1,t} for a non-negative real number ¢. This object first
appeared in a 1933 paper by Lehmer [9] in connection with a method for con-
structing large prime numbers. A generalization to multivariable polynomials
appeared in a work by Mahler [10] (who was interested in tools for tran-
scendence theory) about 30 years later. The generalization to higher Mahler
measures was recently considered in [6] for the first time.

Higher Mahler measures of polynomials are usually very hard to compute,
even for simple linear polynomials in one variable. However, the investigation
carried out in [6] reveals direct connections between these measures and spe-
cial values of zeta functions and polylogarithms. In the case of the classical
Mahler measure, analogous relations with special values of L-functions have
been explained by Deninger [4] and others in terms of evaluations of regulators
in the context of Beilinson’s conjectures. One of the motivations for consid-
ering higher Mahler measures (in addition to classical Mahler measures) is
that they yield different periods from the ones that we obtain from the usual
Mahler measure thus revealing a more complicated structure for the regulator
(see [7] for more details).

One of the tools for studying general k-higher Mahler measures is the
following:

Definition 2 For a finite collection of non-zero polynomials Py, ..., P, € Clx],
their multiple Mahler measure is defined by
1 dx

m(Pr,...,P) = 3mi ), l_llog\Pl(l’N---10g|Pl(93)\?~

Our main interest in this note is the case of P(x) € Z[z] but we consider
other cases as well, such as products of cyclotomic polynomials. We recall the
following well-known theorem of Kronecker [5]:



Theorem 3 Let P(x) = H;L:1(37 —r;) € Zlz]. If |r;| <1 for each j, then the
T;°s are zero or roots of unity.

An immediate consequence of Kronecker’s theorem is that for a non-zero
polynomial P(x) € Z[z], m(P) = 0 if and only if P is monic and is a product
of powers of x and cyclotomic polynomials.

Lehmer [9] asked the following question: Given € > 0, can we find a poly-
nomial P(x) € Z[z] such that 0 < m(P) < €?

This question is still open!. The smallest known measure greater than 0 is
that of a polynomial that he found in his 1933 paper:

m(z'® + 2% — 2" — 2% — 2% — 2 — 23 + 2+ 1) = 0.1623576120. ...

A polynomial P(z) is said to be reciprocal if P(z) = +2¢P (:1:_1) where d =
deg P. Notice that the above polynomial is reciprocal. Lehmer’s question was
answered negatively by Breusch 2 in [1] for nonreciprocal polynomials.

Lehmer’s question has attracted considerable attention in the last few
decades, as it has connections beyond number theory, such as entropies of
dynamical systems and to polynomial knot invariants.

In this note, we explore the analogue of Lehmer’s question for my, for & > 1.
We investigate lower bounds and limit points for higher Mahler measures and
the value of ms and mg at cyclotomic polynomials.

Our main results are the following:

Theorem 4 If P(x) € Z[z] is not a monomial, then for any h > 1,

LQ)h, if P(x) is reciprocal,
map(P) > (13 h f Pla) P

(2—8) , if P(x) is non-reciprocal.
This theorem is significant because the lower bound it provides is general and
unconditional. Unlike well-known results regarding the lower bound for m(P),
the above theorem is not restricted by the behavior of the coefficients, degrees,
or the reducibility properties of P(x). In particular, this result implies that
Lehmer’s question has a negative answer for may,.

A careful study of the proof of Theorem 4 reveals that mq(P) for P re-
ciprocal is minimized when P(xz) is a product of monomials and cyclotomic
polynomials. Therefore, it is of interest to find out explicit values of 2-higher
Mahler measures of cyclotomic polynomials. In this direction, we prove the
following theorem.

Theorem 5 For a positive integer n, let ¢,(x) denote the n-th cyclotomic
polynomial and ¢ Euler’s function. Then

w2 (m, n)p([m, n])(—1)rt 7 orm.m)
m(¢m(x)7¢n(x)) = 19 H b,

12 [m, n)?
plmn,pt(m,n)

1 See [13] for a recent general survey on the status of this problem.

2 Later Smyth worked on this problem independently in [12] and found the best possible
constant.



where r(x) denotes the number of distinct prime divisors of x and the product
is taken over prime numbers p. In particular, for m = n, we get

72 p(n)27 (")

ma(on(2)) = T3 2

This theorem allows us to compute mq(P) for P any product of cyclotomic
polynomials. This naturally leads us to investigate the 3-higher Mahler mea-
sure of such polynomials. We therefore prove the following theorem which
relates mg(P) to ¢(3) and the polylogarithm.

Theorem 6 If P(x) has all its roots on the unit circle, in other words, if P(x)
has the form

P(x) = [ [ (z — ™),

j=1
with 0 < ay; <--- < a, <1, then
3 9
ms(P) = —3n ¢(3)—3n Z Cs3(2m(ay — ay))
1<k<i<n

-3 Z So(2m (e — a)) (n(aq —ag) — (1 —k)),

1<k<I<n

where

Colt) = Z cos(nt) and  Sylt) = Z sin(nt)

nt

are the Clausen functions given by real and imaginary parts of the classical
polylogarithm Li, (62”“) defined by

o0

Lig(z) = ;7

n=1
in the unit disk.

Lehmer’s question can be rephrased as whether 0 is a limit point for values
of m. We generalize Lehmer’s question by asking if 0 is a limit point for values
of mogy1 for k£ > 1. In this context, we prove the following.

Theorem 7 Let P,(x) = 221 For h > 1 fized,

r—1

lim mth(Pn) =0.

Moreover, this sequence is nonconstant.



We obtain, in this way, a positive answer for Lehmer’s question for maop1.

Section 2 contains a proof of Theorem 4, which relies upon a lower bound
for mso for products of cyclotomic polynomials. We obtain some explicit formu-
lae for mo for cyclotomic polynomials and their products in Section 3, thereby
proving Theorem 5. Section 4 contains some partial results towards ms for cy-
clotomic polynomials. In particular we prove Theorem 6 in this section. Section
5 presents results about limiting points for my. We first consider an mgs-version
for Theorem 7 in 5.1. A fundamental ingredient in the proof of Theorem 7 is
a theorem of Boyd and Lawton which shows that the Mahler measure of a
multivariable polynomial arises as a limit of Mahler measures of polynomials
of one variable. In 5.2 we discuss a generalization of Boyd-Lawton theorem
and prove the limit of Theorem 7. In Section 5.3 we prove that these sequences
are non identically zero. Finally, Section 6 includes a discussion about future
questions and a table with values of mo(P) for the reciprocal non-cyclotomic
polynomials P of degree less than or equal to 14 and m(P) < 0.25. We observe
that all the polynomials in the table have lower values of ms than Lehmer’s
degree 10 polynomial.

2 A lower bound for 2h-Mahler measures

In this section, we prove Theorem 4. In order to do that, we first find a lower
bound for ms of products of cyclotomic polynomials.

Theorem 8 If P(x) is a product of cyclotomic polynomials and monomials,
but is not a single monomaial, then
2
ma(P) > 7
Before proving this, recall the following theorem from [6] (Theorem 7):

Theorem 9 For0<a <1,

. 2 1
m(l—z,1—e?™g) = % <a2 —oz—|—6> .
We also need the following property:

Lemma 10 If P(x) has all its roots on the unit circle, in other words, if P(x)
has the form

Pla) = [[ (=),

with 0 < o < 1, then



Proof. By applying Theorem 9, we can express mo(P) in terms of the argu-
ments «;:

m2(P) — Z m(l — eQm‘aJx’ 1— ezm'akx) _ Z m(l—z,1— 6271-1‘|aj—ak.|x)

1<jh<n 1<jh<n
2
s 1
=5 > ((Oéj—%)Q—laj—akHG)-
1<j5,k<n

Proof.[Theorem 8]: Since log |x| = 0 on the unit circle, the monomial factors
do not change the value of mq(P). Thus, we may assume that P(x) can be
written as

P() ({E—l x+1bH 2771&7

with 0 <oy <+ < gy, <1 with a; =1 — ag,41—;. In addition, a,b € {0,1}
as they account for the fact that we may have an odd number of factors x — 1
and/or z + 1 in the product. Using that m(x + 1,z — 1) = —g—z and Lemma
10, we obtain

ma(P) = ama(x — 1) + bmo(z + 1) 4+ 2abm(x + 1,z — 1)

2n 2n
+2am |z —1 H 2™ | 4 2bm |z + 1, H e2mia)
j=1 j=1

j=1
72 [a+b—ab 2n 1
=5 : —|—2az<aj—a7+6)
j=1
2n 1 2 1 1 2n
+2bz ((aj — 2) — oy — 2‘ +6> +4n2a?
j=1 j=1
2n?
_ Z (Qajak =+ |O[j OZ}CD + T
1<j,k<2n
w2 a+b—ab
:7 T a+b) Za —2aZaj—4b Z o +bn
j=n+1
2n 2n
+4n2a?—2 Z aja k—ZZjaj—l—ZZQn—&—l—j
j=1 1<j,k<2n

2n(n+a+b))
).



Because of a; =1 — agp41—5, we have that Z?Zl oj = n. This implies that

j=n+1
n(2n —4a+5b) a+b—ab
3 * 6 '

2 2n 2n 2n
m2(P):% 2(a+b+2n)2a?—4b Z aj—42jaj
j=1 g=1

+2n(n+1)+

Let o := o with 1 <j <nsothat 0 <o < % In this case, we define

gla) :=2(a+b+2n)(®+ (1 —a)?) —4(ja+ 2n+1—7+b)(1 —a))
d(a+b+2n)a® +4(1 — 2j —a)a+ 45 + 2a — 2b — 4n — 4.

Since we have a quadratic equation, the minimum of g(«) is achieved with
o= 2l Thyg

2(atb+2n)”

(a+2j—1)?
a+b+2n

We use the bound on g(«) in order to obtain

2 = (a+2j—-1)2
— P) > ——————+45+2a—-2b—4n—4
7r2m2( )_jzl< a+b+2n Tt "

gla) > — +4j+4+2a—2b—4n —4.

n(2n —4a+5b) a+b—ab
+
3 6
2": 452 N 4b+2n+1)7  (a—1)2
a+b+2n a+b+2n a+b+2n

+2n(n+1)+

j=1
n(dn—2a+b+6) a-+b—ab
- +
3 6
_ 2n(n+1)@2n+1) 2(b+2n+Dn(n+1) (a— 1)%n
N 3(a+b+2n) a+b+2n a+b+2n
n(dn—2a+b+6) a+b—ab
- +
3 6
_2n(n+1)Bb+4n+2)  (a— 1)%n
N 3(a+b+2n) a+b+2n
n(dn —2a+b+6) a+b—ab
- +
3 6
_1!
=5

where the last equality is valid for any of the four cases with a,b € {0,1}.
Thus,

3
(V)

ma(P) > — = 0.8224670334 .. ..

1

[\



O

Remark 11 Observe that the previous proof only uses the fact that P is recip-
rocal with roots on the unit circle. Therefore, Theorem 8 applies to this family
of polynomials.

In order to prove Theorem 4, we extend Theorem 8 to reciprocal polyno-
mials:

Theorem 12 If P(x) € Z[x] 1is reciprocal, then

2
P)>—.
ma(P) 2 13
We will need the following result which is Remark 9 in [6]:
Lemma 13 Fora,b e C,

1 ReLis(ab) if |al, |b] <1,
m(1l —ax,1 —bx) = { L ReLiy(b/a) if la| > 1,1b] <1,

3 ReLiy(1/ab) + log|allog|b|  if |al,|b] > 1,
where Liy is the dilogarithm function.

Proposition 14 Let1y,..., Ty be fived real numbers in [0,1) and ¢y, ..., cpr >
0. The function

M
Y cos(2mnT;)
f(yla"'7yM Z Z J 2

attains its minimum in [0, 1] at a point where y; € {0,1} for each i.

Proof. For a fixed 7 € [0,1), we first study the function

2. y™ cos(2mnT)
S
n=1

in the interval [0, 1]. In this interval, g(y) attains its minimum either at the
end points or when ¢'(y) = 0. However,

/ _ = 2T
9'(y) = ; p

n=1

1 i y™ cos(2mnT)

= —710g|1 —ye

Thus, we get a critical point when ’1 — ye%”’ = 1, that is, when

(1 —ycos(2r7))? + (ysin(277))* =1



and therefore, yo = 2 cos(2w7). We need to determine what kind of point yo
is. Observe that

1 ) 1 y627ri7‘
" _ 2miT
g (y)—?logh—ye |+y2Re<1—ye2””>'

Thus,

1 LT —2miT 1
g (yo) = ?Re (y0e®™ 7 (1 = yoe>™7)) = —5 (yo cos(2n7) — y) = —5 < 0.

0

<
S|

Then, yp is a (local) maximum point for g(y). Therefore, the minimum for
g(y) in [0, 1] is either at y = 0 or y = 1. Since each ¢; > 0, we conclude that in
the interval [0,1]M, f(y1,...,yar) attains its minimum at a point where each
1y; is either 0 or 1. [

Remark 15 From the above analysis it also follows that if f(y1,...,ym) >
flay,...,an) for all (y,...,yn) € (0,1)M, then each a; € {0,1}.

Proof.[Theorem 12]. Let P(z) be a reciprocal polynomial in Z[z]. If P is not
monic, we can write P(z) = CQ(z) with C € Z and

mao(P) = log2 C + 2log Cm(Q) + m2(Q) > ma(Q),

where we are using that C' > 1 in the inequality.
Therefore we can assume that P is monic. Thus we write

J
P(z) = (z — 1)*(z 4+ 1)° H(a: —rj)(r — rj_l)

Jj=

where |r;| < 1. We write r; = pjezm*‘i with 0 < p; < 1. Here we need to
clarify what for p; = 0 the product (z —r;)(z — r;l) should be interpreted as
the product z - 1. It is important to understand that Lemma 13 is still valid
in these cases since Liz(0) = 0.

In addition, a,b € {0,1} as they account for the fact that we may have an

odd number of factors z — 1 and/or « + 1 in the product.

Then
J
ma(P) = ama(x — 1) + bma(x + 1) + 2abm(x + 1,2 — 1) + QaZm(ac -1,z —rj)
j=1
J
+20) m(e—La—ry) Y mle g w )

1<j1,j2<J

j=1
1 -1 -1
+ Y me—rte—r) 42 Y m(r e o).
1<j1,j2<J 1<51,52<J
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Using that m(z + 1,z — 1) = 7727—2 and applying Lemma 13,

J

2
ma(P) = (a+b— ab)71L2 +(a+b) Y ReLis(r))
j=1
+ Y (2ReLiy(r;,75,) +log|r;, | log |rj,]) .

1<g1,52<J

By writing the dilogarithm in terms of its power series, we get

2 " cos(2mnp;)

J oo
mg(P):(a—i-b—ab)% m(P)? + (a + b) 227

1 i cos(zmn(is, — 1 )
2y 3 b et 0

1<j1,j2<J n=1

Thus, the problem of minimizing mz(P) reduces to the problem of mini-
mizing the terms in the above expression. First let us fix the arguments u;.
As a consequence of Proposition 14 and Remark 15, we see that the last term
involving a series reaches its minimum when p; € {0,1}. This condition also
minimizes the other term involving a series, although that term can be ignored
if @ = b = 0. This means that there are no roots with absolute value greater
than 1. This also minimizes the first term m(P)? which is nonnegative for
P(z) monic and zero if all the roots of P(x) are of absolute value (less than
or) equal to 1. Now if we allow the arguments j; to vary, the minimum ms(P)
is still attained when all the roots have absolute value in {0,1}. Since P is
reciprocal and its roots have absolute value 1, we can apply Theorem 8 and
Remark 11 to conclude that

3
[ V]

[\

In order to prove Theorem 4 we need to say what happens when P is not
reciprocal.

Lemma 16 If P(x) € Z[z] is nonreciprocal, then

N

ma(P) >

Sk

Proof. Let d = deg P, and consider Q(x) = z?P(2~!). Thus P(x)Q(x) € Z[z]
is reciprocal. Moreover, ma(P) = ms(Q) = m(P, @), thus,

ma(PQ) = mz(P) + 2m(P, Q) + m2(Q) = 4my(P).
We obtain the desired bound by applying Theorem 12 to PQ. O
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Remark 17 While the inequality in Theorem 12 is sharp (as ma(x—1) = 7{—;),
we do not know what happens with the inequality in Lemma 16. The best
polynomial we were able to find is

ma(x® 4+ 2z + 1) 2 0.3275495729 . . .,

while = = 0.2056167583 . . .

We will use the bound for mq(P) in order to find a bound for mqy (P).
Proposition 18 For any nonzero polynomial P(x) € C[z],

1.
man(P) > ma(P)",

map (P) > m(P)?".
Proof. Part 1. For any positive integer h, let f and g be functions such that

1 d 1 d
— |f|h—x < 00 and — |g|h/(h*1)—x < 00.
2 2

e |z|=1 X e |z|=1 X

Then, by Hélder’s inequality, we get that

h h—1
1 dx 1 dx 1 _dx
o | 109 ) < (gm [ W) (5 [ laMeEE)
T |z|=1 X 21 |z|=1 X 211 |z|=1 x

(2)
In particular, taking f(z) = log? |P(z)| and g(x) = 1, we get that

mg(P)h S mzh(P).

Part 2. On the other hand, by taking f(z) = log|P(x)| and g(x) = 1, and
taking 2h instead of h in (2) we get that

m(P)Qh’ < mgh(P).
(]

Proof. [Theorem 4]. By combining Theorem 12, Lemma 16, and Part I of
Proposition 18 we obtain that,

2\ P

3

, if P(x) is reciprocal,

man(P) > ma(P)h >

!
NN

(7)
(%)

, if P(x) is non-reciprocal.

=
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Remark 19 By Part 2 of Proposition 18, if we assume that the lowest positive
value of m(P) is for Lehmer’s degree 10 polynomial, then for any P(zx) € Z[z]
with m(P) > 0,

ma(P) > (0.1623576120.. .. )2 22 0.0263599941 . . ..

However, Theorem 4 provides us with an unconditional and stronger lower
bound 0.2056167583 ... for ma(P) (and map(P)).

Analogously, we can use the result of Smyth to find a different bound in
Lemma 16. Smyth [12] proved that for P € Z[x] nonreciprocal,

m(P) > m(2® —x —1) = 0.2811995743 . . ..
This can be combined with Part 2 of Proposition 18 to obtain

ma(P) > (0.2811995743...)2 = 0.0790732005 . . . ,

but this bound is less than Z—; and therefore weaker.

3 Explicit formulae for 2-Mahler measures of cyclotomic
polynomials

While the classical Mahler measure for products of cyclotomic polynomials
is uninteresting, we have seen that the same is not true for higher Mahler
measures. In this section we show how to evaluate mqy(P) for such polynomials.
We notice that any product of cyclotomic polynomials can be written as

P() = [ =1,

i=1

where we allow negative exponents. Therefore, we can compute mo(P) if we
understand m(z® — 1,2° — 1).

We start by proving the following useful result, which is also of independent
interest.

Proposition 20 For any two positive coprime integers a and b,

a—1b—1

S(a,b) :=

J

k_J

a

B 2a%b% —3ab+a? + b2 —1
N 6ab ‘

(=

k=0

I
o

Proof. First we observe that the term inside the absolute value is positive
when % < k. For fixed j, this happens for k = b —1,..., {%JJ + 1, that is,

3.
for b — {%J — 1 values of k. On the other hand, it is negative when k =
0,..., {%J, that is, for L%]J + 1 values of k. Thus, % appears with negative

sign for b — L%JJ — 1 values of k and with positive sign for L%JJ + 1 values of
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k. Putting this into the equation (together with the same analysis for k), we
obtain,

Assume without loss of generality that a > b. Let j; be such that {%J =1

and \‘@J =[—1.Then 0 =jo < j1 < -+ < jp—1 < jp = a. Thus,

j=0 =1 j=Ji—1 k=0
b Ji—1 b—1

2 2 ak

== E -1 § i1 2 ar

- (-1 2 Jj+ 5 k { 5 J
=1 J=ji—1 k=0

Notice that for [ > 0,

a a

which implies that j; = L%J + 1. Thus, the above computation equals

o128 [2) 2 2]

Because of Y07 |4 | = @=10=1 “he above equals

R L %i VJ

k=0

CERC a2;1)(b—1)_(11bzlqcﬂ ak) Z b2 .

k=0

Il
o

Observe that because (a,b) = 1, as the term k runs through all the residues

modulo b, so does the term b (%€ — | 22 ]) . Thus, the above expression is equal
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to
(a—1D)QRa-1)(b-1) ib71k2—|— gbile
2a ab2 kZZO b2 kzzo
_(@=1)@2a-1)(b-1) N (a2 —1)(b—1)(2b—1)
2a 6ab '
Finally,

S(a,b) = (a—1)+(b—1)2—2(a—1)(b—1) N (a—l)(b—l)éic;b—a—b—l)
0

From the above proposition, we deduce the following theorem:

Theorem 21 For any two positive integers a and b,

72 (a,b)?

a_l 5_1:7
mt = Lat =) ==

Proof. First assume that (a,b) = 1. Applying Lemma 10, we observe that

m(z® —1,2° — 1)

I
w‘ﬁ
M1
I
SN
|
Q|

Therefore, applying Proposition 20, we have

m(z® — 1 1) = ﬂj 2a2b% + a? + b% — 3ab 3 2a%b% —3ab+a? + 5% -1
’ ) 6ab 6ab
71'2
~ 12ab

For general a and b it suffices to notice that the change of variables y = 2(%:?)

will not affect the Mahler measure, and thus

m(xa_be_l):m(xﬁ—l’x(T}:b)—1).

From Theorem 21, we deduce the following proposition.
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Proposition 22 For a positive integer n, let ¢, (x) denote the n-th cyclotomic
polynomial and p be the Mobius function. For any two positive integers m and

) mon@one) = T3 X u (G )u(f) el

dy|m,da|n

Proof. We recall that for any positive integer n,

2" —1= Hgbd(x).
d|n

Thus, by the multiplicative Mobius inversion formula, we get that

du(w) = [J (" — 1,

d|n
From the above and from Theorem 21,

mlom(@hon@) = 5 u(5)u () mlet - 1a® <)

dl\m,dg\n

7T2 m n (dl,d2)2
-5 ¥ u(i)e(n) S

d]"fﬂ,dQlTL

O

Proposition 23 Let p be a positive prime. We have the following transfor-
mations

1. Fork>1>1 and ptmn,

(Gyirn ()s Bpin (@) = —g (1 - ;) (G (@), b0 (2)).

2. Fork>1 and ptmn,

(6 o (1), 6 (2)) = (1 - 1) (G (@), 60 (2)).

p p
Proof. Part 1. Using Proposition 22, we have

oyt =T (T ) u () et

di|p*m,d2|p'n

It is clear that only the terms with p*~! | d; and p'~! | dy are nonzero,

since otherwise the Mobius function factors yield zero. We write d; = p*~le;

and dy = p'~'es. Thus
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(Ot =Ty 5 () (1) L)

es ) ejegph—t
e1|pm,ez|pn

If p divides both e; and ey or p does not divide either of them, we get terms

of the form
()2
a f1 a f2) fifapk—t

with p 1 fi.
If, on the other hand, p divides exactly one of the e;’s, we get terms of the
form
_ (m> <n> (f1, f2)?
: fi : f2) fifaphiHt

Putting all of these ideas together, we obtain

film, f2|n

=2 (12 1) ml6m (o). ona)

p

which proves the first part of the proposition.
Part 2. Once again, by Proposition 22, we can write

mopn@) o) =T S w8 )u ()

di|p*m,da|n

As before, it is clear that p*~! | d; in the nonzero terms, and we can write

dq :pkilel.
()0 () Far
g 1 : dy)  frdapk

If p | e1, we obtain
m n\ (e1,dz)?
THN RN ) S 1
€1 da ) eidap
Thus,

risenter )= (15) 5w (e (i)

e1|m,dz|n

_ 1 (1_;) (G (@), 6u(2)),

pk:fl

with p1 fi.
If p 1 e1, we obtain
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proving the second part of the proposition. [

Proof. [Theorem 5] We write the prime factorizations of m and n as m =
plfl ...p’,f"qfl c.q and n = plf ...pi"tjl1 ...tJ, where all the exponents are
positive integers and the primes ¢’s are different from the primes ¢’s. Thus
r =r((m,n)). By applying Proposition 23, we obtain

m(¢m(£); ®n ($))

_ H (| (1- ;)) (_Wﬁ ( (- )) :1 ( (- ;)) ma(z — 1)

2 . i T mm{k i o G
- 52 (71) H max{k A} H H t]b H (1 o )

1= 1 1= 1q7f =1 "t plmn
= T grl(mmy (_qyrmytr(n) (727 ﬁQthi 11 <1 _ 1>
12 [m,n] 257 5 sl D
12 [m’n] plmn,pt(m,n) [ ,Tl]
O

4 Explicit formulae for 3-Mahler measures of some particular
polynomials

In this section, we address the case of m3(P) for P a product of cyclotomic
polynomials. Our starting point is Remark 10 from [6], which is the following
statement:

Proposition 24 We have

cos2m((k+1)3 — la)
El(k+1)
cos 2 ((k + m)a — mf3)
km(k 4+ m)

m(l —az,1 — ¥y 1 — ¥ Pz) = —

(]

—
IN
=

N

1

A

] 1

k,m
cos 2 (la + mp3)

) Im(l +m)

IN

lm

First, we express the above formula in terms of Clausen functions.
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Proposition 25 For 0 < a,( < 1, we have

om(l — z,1 — e2™ g, 1 — e2™Fz) = 5, (27(B — @))S2(278) + So(27(8 — ))S1(270)
—C3(2ma) + S127(a — 3))S2(27cx)
+S2(2m(a — ))S1(2mar) — C5(27)
+51(27ma)S2(276) + S2(2war) S1 (27 3)
—C3(2m(6 — ).

Proof. Our starting point will be the following elementary identity

‘zm<zl+m> - (z<1+1m>2 - 12<11+m>) * (m(zimv * m2<11+m>>

NAR
2m  Im2?2 )’

Z cos 2w la—i—mﬂ Z cos 27 ((I + m)a — mf3)

Notice that

o l(l+m = 2(l+m)

_ Z cos 27 (1 8)+ 1+ + Z cos2m((l 4+ m)(a— B) +15)
15im Troy 1S Bl 4m)

B Z cos2n(l(a — B) +kB) z cos 2w (ko)
1<Lk e 1<k K '

Using the fact that cos2w(l(a — 3) + kB) = cos(2wl(a — (§)) cos(2mkf) —
sin(27l(« — B)) sin(27kB), we can rewrite the previous identity as

cos(2ml(a — 3 cos(2mwk sin(27l(a — B sin(27k/3
Z(( ))Z( )_Z((l ))Z()

[ k2 k2
1<i 1<k 1<l 1<k

cos(2mka)
- Z i3

1<k

= C1(2n(a — B))Ca(278) — S1(27(ar — B))S2(27B) — C5(27ax).

By exchanging § and a — 3 and adding, we obtain

Z cos 27 (la + mp3) n Z cos 27 (la + mp3)

2 2
S Z(l+m) S 12(l+m)
cos 2w ((I + m)a — mp) cos 2w ((I + m)a — mp)
e T

= Cl(%(a — 0))C2(2mB) = S1(2m (o — 5))52(2mP)
+Cy(2m(a — B))C1(270) — S22 (a — 8))S1(276) — 2C5 (27 ).



19

Analogously we obtain

Z cos 2 (la + mf3) n Z cos 2m(la + mf3)

T R T
cos2m((l+m)s3 — l ) cos2m((l +m)B — la)
+ +
DT e e

= 01(277(5 —a))Cy(2ra) — S1(27(8 — a))S2 (27a)
+C2(27(8 — a))C1(27ma) — S2(27 (8 — «))S1(2me) — 2C5(273),

and

Z cos 2w ((l +m)B — la) n Z cos2m((l 4+ m)0 — la)
!

2
1<l,m (l+m) 1<l,m ! (l+m)
n Z cos 2w ((I + m)a — mp) n Z c0527r((12—|— m)a — mf)
1<l,m Z + m) 1<l,m m (l + m)

= C1(2ma)Co(2m8) + S1(2ma) S2(273)
+C2(27ma)C1(270) + S2(2ma) S1(275) — 2C3(27(8 — «v)).

On the other hand, we have

Z cos 2w (la + mp3) n Z cos 27 (la + mp3)

’m Im?
1<i,m 1<l,m
cos(2mla) cos(2mmf) sin(2nlar) sin(27mg)
- Z 2 Z m - Z 12 Z m
1<l 1<m 1<l 1<m
cos(2rla) cos(2mm/p) sin(27la) sin(2rm3)
+ Z I Z m2 N Z I Z m2
1<l 1<m 1<l 1<m

= Co(2ma)Cr(276) — S2(2m)S1 (27 3) + C1(2ma)Co(2w58) — S1(27mar) S2 (27 3).

As before, we can obtain similar identities by exchanging 8 and o — 3 and «
and 3 — a.

By combining the previous results, we obtain the desired formula:

B Z cos2m((k +1)B8 —la) Z cos 2m((k +m)a — mp3)

5 kl(k+1) S km(k +m)
B Z cos 27 (la + mp3)
= Im(l+m)

= 251(27r(ﬁ —))S2(273) + 252 (27 (B — «))S1(278) — 2C3(27«)
428127 (a — B))S2(2mx) + 252 (27 (o — B))S1(2wa) — 2C3(273)
+2851(27a) S2 (27 8) + 253 (27a)S1 (27w 8) — 2C5 (27 (8 — «)).
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We are now ready to prove Theorem 6:
Proof. [Theorem 6] We express ms(P) in terms of the arguments «;:

mz(P) = E m(1 — ¥ iy, 1 — 2™y 1 — 2Ty
1<),k 1<n
= g m(l—xz,1-— e2milor—aj)p 1 — 627”(0476”)56).
1<),k 1<n

We now apply Proposition 25

2ms(P) = — Y (Cs(2m(ak — ;) + Ca(2m(cu — ) + Ca(2m(ct; — cu)))
1<5,k,1<n
+ Z (S1(27m(aq — o)) S2(2m (e — 5)) + S2(2m(oy — )51 (27 (aq — o))
1<5,k,1<n

+5’1(27r(ak - Ozl))SQ(Qﬂ'(Ozk - Oéj)) + 52(271—(0% - Ctl))Sl(Q’iT(Oék - aj))
+512m(ar — a;))S2(2m (o1 — a)) + Sa(2m(ar — a;)) 5127 (1 — o))

=-=3n Y Cs2r(a —ay))

1<k,<n
+3 Z (51(27{'(0&[ 70&]@))52(2’/T(Oq *Oéj)) +SQ(27T(Oél 70&]6))51(2’/T(Oq 7Otj)))
1<4,k,l1<n
=-3n > C32r(a—ap)+6 Y Sa2m(ar—ax) > Si(2m(ar — ).
1<k,l<n 1<k,l<n j=1

We will use the following formula

—TI'(’Y—%)O<’}/<1,
S1(2my) =4 - =0 =0, (3)
—7r(7+%) -1 <v<0,

which can be deduced from the fact that S;(27y) = Im(—log(1 — e2™)).
Thus,

—%mg(P) . (2 (u—an))+ 27 Sy (2 (cu—ap)) an(al NP Sl

‘ 2 2
1<k,i<n 1<k,I<n j=1

Notice that >3, <, S2(2m(cq — ay)) = 0 because S>(27m(ar — ay)) cancels
with Sa(27(ax — aq)). Then

2 = I-1 n-1
—§m3(P) =n Z Cs3(2m(aq — ag)) + 27 Z Sa(2m (g — ag)) | noy — Zaj - + 5
1<k,I<n 1<k,I<n j=1

=n Y  Cs@m(a—on))+2r Y SH(2m(en — ax)) (nay —1).

1<k,l<n 1<k,I<n
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By exchanging k with [ and taking the semi-sum, we obtain
2
—§m3(P) =n Z C3(2m(ay —ag)) +7 Z Sa(2m(aq — ag)) (n(oq — o) + k —1)
1<k,i<n 1<k,I<n

=n2¢(3) +2n Z C3(2m(aq — ay))
1<k<iI<n
> Sa@m(ar — ax)) (n(ar — ax) = (1= k).

1<k<I<n

O

Theorem 26 Let (a,b,c¢) = 1. For integers d,m, let d,, = ﬁ and mq =
@y Let m be another integer such that (d,m) | n. Then we denote by

[d 0], the unique integer between 0 and mg — 1 such that it is the solu-
tion to the equation d,x = n(mod mgy). With this notation we have

—2m(z® —1,2° — 1,2° — 1)

1 1 1
= abc ([a, o + b, o + B a]3) ¢(3)

—1 —1
T oo cot (ﬂ-[abb]%m) T oo cot (7-(-[0’6!7:&“1)
2c(a, b) “~— h? 2b(a,c) “— h?
batch catbh
1 -1
. > cot (Wi[bc C];b ah) . o cot (777[% i:b Ch)
2a(b,c) ~— h? 2¢(b,a) “— h?
cptah aptch
1 ~1
T oo cot (ﬂ-[(’aa]l%bh> T oo cot (W[Cbl}%ah)
2b(c,a) “— h? 2a(c,b) “—~ h? '
actbh betah

Proof. First notice that the assumption that (a,b,c¢) = 1 is not restrictive,
a b c
since we have that m(z%—1,2°—1,2°~1) = m (x @be) — 1, g@be —1 glabe — 1).

By applying the same ideas as in Lemma 10,

a—1b—1c—1
om(z® — 1,2% — 1,2° — 1) Z Z Zm —e2riilay 1 — 2mik/by 1 _ e2mil/ey)
§=0 k=0 1=0
a—1b—1c—1
— 2m 1—2,1— eZﬂ'ik/b—QTrij/ax’ 1— eZ‘n’il/c—Qﬂ'ij/ax)
§=0 k=0 1=0
a—1b—1c—1

S, k1)

<
I
o
B
Il
o
~
I
o
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By applying Proposition 25, we obtain that each term in the sum is
l
+Ss | 27 —
k
—C.lon 2=
))-e (= (s

U
<
-
=

Il
&

N

[N

3
TN
|
SRS

Q. o ™™ O
\_/\_//—\
N
n
Pt
S
N
S
o~ O =

Q| =~

~

~
\
e

/~
Do
3

/~

ISR
\

Now assume that é > % =Zor

st = -ms (2 (L)) (-2 1) e (oe (- 2)) -0

By considering similar analysis for other cases, we finally get

—2m(z® —1,2° — 1,2° — 1)

where, Hy (g, %) for £ < ¥ denotes the number of rational numbers of the

form % with m € Z that belong to the interval [Z,%] with the following

s’ v
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conventions: the cases in which 2 =~ and % = 7 are counted with weight %
instead of 1, and Hy (%,%) = —Hg (£,%). It is not hard to see that

o (2, 2) < & 4] 1) - [4]

s v 2

We will also use the following notation

la] + [a] :{a—LaJ—;agzz,

lafe=a— " 0 a€Z,

whose Fourier series is

{a}, = 7% Z sin(Q;rozh)'

h=1
We first study the terms of (4) with Cs. In this case we get
1

W ACHCR)

5 Thcheon (') S cos @r'2) + Thoin (') Y sin (2r'2)

n3

Here we have used that ZZ;E sin (271'%") =0 for any n, EZ;B cos (27T%”) =0
for btn and Y ,_pcos (2rk2) = b for b | n
Regarding the terms of (4) with S, we obtain,

S5 (e (5 1) ({2 {2))
gtsin 2r (b= ) ({8}, - (£,

n2

:f: S ko sin (27 (5) n) {5}, 301y cos (2 (1) ) — Dop—gsin (27 (§) n) 351, cos (27 (¢) n) { %1},

n2

_iZZ;ECOS (27 (5) n) {5}, 0y sin (2 (£) n) — Sh—p cos (27 (§) n) iy sin (27 (£) m) {4},

n2

n2
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We evaluate I,; len (277( ) ) {%}2 If bjn we get zero. If not, we apply

the Fourier series for {-}2 and obtain

L R o

1
Z Zk osin (27 (§) n) sin(2r %k h)
h

sz o(cos (£ (n — ah)) — cos (%(n—«—ah))).

2h

The inner finite sum is different from zero only if b | (n — ah) or b | (n + ah),
in other words, ah = £n (mod b). Notice that this is only possible if (a,b) | n.
Thus, we assume that n = (a,b)m. We write this as h = +[a, 'm]s, + b4
where 7 is an integer that is either nonnegative or positive depending on the
sign for the first term. Thus we get

b—1 [e's)
) k;) ) {ak} b 1 1 1
E sin (27 (- |n)y— = + E -
P ( (b b J, o [a _1m]ba “— rby + [ab_lm]ba rb — [ab_lm]b

btn,(a,b)|n

Zilfié&@w(’z—i))(%—{fh)

We now write m = ch in the first term and m = bh in the second term. This
can be done since (a,b,c) = 1. Then

-1

[ag "mb, _ [ag 'Jo,ch

ba ba

[ —

a _ p2

)
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and analogously in the second term. Thus equation (5) equals

1 —1
1 > cot (7‘(‘7[% b]ab“Ch) 1 % cot (777[&0 C]:“bh>
2c(a, b) “— h? 2b(a,c) “— h? '
bateh cafbh

Finally, we get

—2m(z® —1,2° — 1,2° — 1)

a, b] [b7 6]3 [07 a
1 B
po cot(plfet) o (rloelath)
2c(a,b) & 2 T 2 2
baten catbh
—1 »
77 o oot (W[bcc]%ah) T > cot (77[%617;%)
_ 2a(b, C) hz:; h2 - 20([)7 CL) 2 T
cptah aptch
T > cot (ww) - o cot (FW)
—2b(C, a) ; h2 - 2a(c, b) - — 2
actoh betah

This concludes the proof of Theorem 26. [J

We can immediately deduce some particular formulae.

Corollary 27 1. For positive integers a and b with (a,b) = 1,

2 +a? T = cot (Wﬁ)
a _ b _ b_{y=_Z2"" = " \"a)
m(z® —1,2° — 1,2° — 1) 527 ¢(3) + 5% ; ER

ath
2. For an odd integer d, we have

m(x — 1,2 — 1,22 — 1)

d+1)h
94 d3 T < cot (77%) 7 cot (71'( Qd) )
= e S D> —

3 -
SANT: Ls p2 8 £ h?
df2h dth
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Here are some particular cases
b b 3
m(x—1,2° — 1,2 — 1) = —%§(3),

5
2_1 b—l b—l - _ =
29 ™
- 3 + —
18bC() 21/3b

33 T
—ﬁf(3) + %L(Z X—4)-

m(’r3717xb717xb71) = L(2aX—3)7

m(z* — 1,2 —1,2° - 1) =

Here L(s, x) denotes the Dirichlet L-series in the corresponding character Y,
e, L(s,x) = > oy Xr(;f).

5 Limiting values for my

In [2], Boyd suggests a different point of view for the study of Lehmer’s ques-
tion. He proposes the study of the set

L = {m(P) : P univariate with integer coefficients} C [0, 00).

(Boyd writes this in terms of the Mahler measure M(P) = ¢™*) but we will
keep everything in terms of the logarithmic Mahler measure for consistency.)
The idea is that Lehmer’s question can be translated as whether 0 is a limit
point of L. In fact, as Boyd points out, if 0 is a limit point of L, then L is
dense in [0,00). A negative answer to Lehmer’s question yields a much more
interesting L. Presumably, L is not closed, since L consists of logarithms of
algebraic numbers, but zy = %( (3) is a limit point of L and we do not
expect zg to be the logarithm of an algebraic number. If the above is true and
if Lehmer’s question has a negative answer, then one could ask about other
limit points for L.
In this section, we proceed to study limits of some sequences in

Lopy1 = {map41(P) : P univariate with integer coefficients},

with special focus on 0 as a limit point. Namely, we will show that we can
obtain certain values (including 0) as limit of sequences {map+1(Py)}n where
P, € Z[z].

By a generalization of a result of Boyd and Lawton (Theorem 30), my
of any multivariate polynomial is a limit of a sequence of mj of univariate
polynomials. Therefore, the set

L?;}H_l = {map+1(P) : P multivariate with integer coefficients},

is included in the closure of Lop41. We will see that Lehmer’s question has a
positive answer for moyp1 for h > 1. Thus, following Boyd, th 41 can not be
a closed set.
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5.1 Limiting values for mg

In order to find limit points of mg of certain sequences of polynomials, we will
need the following result.
Lemma 28 1. Letr € Z, r #0 and p € Z. Then
rh
ro L cot (W?>
lim — ——— =((3).
Jim = —r— =)

h=1
pirh

2. Let p € Z be odd. Then

A & cot (wi(p;;)h)

lim — Y " ——— =2 = ((3).

p—0o0 p Pt h2
pth

Proof. Part 1. Observe that cot(z) < 1 for 0 < z < m. Thus, for 0 < h < E,

we can write
( rh) P
cot | m— | < —.
P rhm

Moreover, for p t h, we have that
h

cot (WT) ’ < B.
D m

ra & cot (Tf%) r cot (77%) r cot (w%)
R LR

P h? P P

Thus,

h=1 1<h<® Leon
pirh T
1 1
<Yt
1<h<® L<h

On the other hand, lim, oz cot(z) = 1. Given € > 0, take p large enough

such that h
T p
T— | > —(1—
cot < p ) rhw( 2

for any 0 < h < \/p. Let H = |/p|. Then

h h h
ro > cot (w%) o H cot (7‘(%) . S cot (77%)
2 : 2 - § :72 T § : 2
pi= b pi= h p

ptrh ptrh ptrh

v
—
|
o
M=
%=
IE
M2
%
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Taking the limit when p — oo, we conclude that

) rh
r cot <7T » )

lim — Z —— =((3).

p=eo P 4 h?
ptrh
Part 2
4 22 cot (W(P+;)h) Ar i cot (W(p;;)h) L > cot (ﬂi(p;;)h)
2 - 52 52
P = h P h P h
pth 2|h,pth 2th,pth

(6)
For the first term, we let h = 2j. For the second term, we observe that, for
0<h<p,

(p+1h T hmw p+h 2p
cot (7r o co B + % cot (7 o < o . h)’

and for p 1t h,
cot (W@H)h)‘ )
2p us

Thus, equation (6) equals

00 +1)j (p+1)h o (p+1)h
- Z cot (W(I]TJ) . . Z cot (WPT) . A Z cot (W p2p )
™ - 2 T 2 T 2
P j P52, h P h
oo cot( )
S*Z +8 Z +hh2+8zh2
1<h<p p<h
p'f] pth
o cot (77;)
s - Z -2 )+8 Z
T 5

Similarly, we can write

Ar 2 cot (7r (p;;)h) 7r i cot, (w%) Z
AN N P SENT NP Pr0) -8
2 — 2 12"
p h=1 h p Jj=1 j p<h h
pth pti pth

By taking the limit when p — oo and using Part 1, we conclude the proof. [J

We will now compute mgs for some sequences of polynomials and take their
limits. This process will provide us with limit points for the values of mg as

well as infinitely many polynomials P with positive and negative values of
ms (P )
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1. Consider the family of polynomials z;:ll. From part 1 of Corollary 27, we

have that
P —1
m3(x—1> =mg(z? — 1) —mgz(x — 1)+ 3m(a? — 1,2 — 1,2 — 1)
—3m(aP —1,2P — 1,z — 1)
h
o 2+p ™ s COt( p)
=3 5z <O 5; ot 5C0)
pth
00 h
9 —6-3p" 3, 37 cot (ﬂp)
2p2 h=1 h2
pth
Thus,
pLHolcm?’(xl) pggo 2p? ¢(3) + 2 g h2
pth
. (9p—6-3p° 3p
i (E= ) + e
= 0.

Thus, 0 seems to be a limit point for Ls.

. Now, let us focus on the case of (z? —1)(x — 1). Again, we apply part 1 of

Corollary 27, in order to obtain

mg (¥ —1)(z — 1)) = ma(2? = 1) + mz(x — 1) +3m(2? — 1,2 — 1,2 - 1)
+3m(zP — 1,27 — 1,z — 1)

2—|—p3

— 3 — — — —_— —
) = S5O+ 5 30— = 500
pih
 —6p*—9p—6— 3p3<(3) N 31 o Cot (”;;)
- 2p2 2 h=1 h?
p?h
Thus,
—6p> —9p—6-3 3m o= cot (7
lim mg (2 —1)(@ — 1) = lim [ = iy )
p—00 p—00 2 — h
i
6p2 — 9p — 6 — 3 3
i (PO ) )

—3¢(3).
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Thus, —3¢(3) seems to be a limit point for Lz. In addition, we obtain
infinitely many polynomials P such that ms(P) < 0.

3. We now look at the case a = 1, b = 4 and ¢ = 2d with d odd. Applying part
2 of Corollary 27 and observing that for an odd integer d, [27!]; = %
we get

)

2
my () ot = 1) a6 1) = St - 1)
F3m(at — 1,224 — 1,220~ 1)
+3m(z? — 1,2 — 1,22 - 1)
+12m(2* — 1,z — 1,2 — 1)
—6m(x4 R L 1)
+12m(2* — 1,z — 1,z — 1)
—6m(a:2d - 17332(1 —Lr— 1)

12t 11— 1)

_ _;C(g) _ %g(?,) +12¢(3)

 6+3d° 3@":%

15
—¢®) B+

_%g(;&) +6mL(2, X-a) + %C(i’*)

31 1243 ©_ cot (71’2%) 9
_Tg(:s) + 67 ; e + ﬁ<(3)
2dth

97 1+ 33 31 o= cot (122)
+E ST

9 + 3d — 54d? — 48d°
_ C(3) 4 6mL(2,x_4)

4d?
31 = cot (7h) o cot (134)
+Z;T+6W;T
dth 2dth
30 &L cot (W%) 3 2, cot (W%>
—IZT—jo'

1 h=1
o dth
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Thus

, (@ — 1) — 1)\ . (94 3d—54d> — 4843
i ms ( (x—1)2 = Jm 4d2 ¢3)

31 o= cot (72)
+67TL(23 X*4) + Z hz::l T
dth

~—

. i cot (WQ—’Z) 37 <X cot (7‘(‘%

h? 4 h?
h=1 h=1
2dth dth

3 cot (wi(d;;)h>

2 h?
h=1
dth

(9 + 3d — 54d? — 4843

= lim

d—oo

- (3)

+6mL(2,x_4) + %dc(?))
+12d¢(3) — %dc(?)) - 38654“(3))

27
= 67L(2, X-a) — 5 ((3) = 10377764969 ...

Thus, 67 L(2, x—4) — 2—27 (3) seems to be a limit point for Lz. In addition,
we obtain infinitely many polynomials P such that ms(P) > 0.

4. Tt is not generally hard to find positive limit points for mg(P), for example,
one can take the sequence (z™ + 3)(x + 3). It is clear that mg((z™ + 3)(z +

3)) > log*4 > 0.

5.2 Limit values for higher Mahler measures

Analogously to the Mahler measure for one variable, the Mahler measure of

a non-zero multi-variable polynomial P(z1,...,z,) € Clzy,...,x,] can be
defined as
1 dxq dx,
m(P) ::7,/ / log |P(x1,...,Tn)|— ... .
(2m)" S|z =1 |2 |=1 Ty Tp
This generalization can be extended to the multiple (and higher) Mahler
measure. Let Pp,..., P, € Clzy,...,2,] be nonzero polynomials. Then, we
define m(Py,...,P) as
1 dzy dx,

(2mi)™

T1 Tn

/ / log|Pi(x1,...,2n)] ... log|P(z1,...,20)|— ... —.
|z1]=1 |zn|=1

Boyd [3] conjectured the following important statement, which was completely
proved by Lawton [8].
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Theorem 29 Let P(xy,...,2,) € Clz1,...,2,] and v = (r1,...,ry), r; €
Z~o. Define Pp(x) as
Pr(x) = P(xﬁ’.”’xrn)’

and let
q(r) =min{ H(s) : s = (s1,...,8,) €EZ", s # (0,...70),283'7“]' =0,,
j=1

where H(s) = max{|s;| : 1 <j <n}. Then

lim m(P,) = m(P).
q(r)—o0
It is a simple exercise to generalize the techniques of Lawton to prove
an analogous result for multiple Mahler measures. That is, under the same
conditions as above, one can show

Theorem 30 Let Py,...,P € C[zy,...,x,], and v as before. Then
lim m(Piy,...,Py) =m(Py,...,P).

q(r)—o0
As an immediate application of Theorem 30, we get that for any a > 1,

lim m(z® — 1,22 — 1,22 — 1) =m(zx — 1)ma(y — 1) =0
p—oo

and
lim m(z® — 1,2 — 1,27 — 1) = ma(x — I)m(y — 1) = 0.

p—oo
Thus, the limits from Section 5.1 follow from this. An advantage of Theo-

rem 30 over the techniques in Section 5.1 is that it gives us the limits of my of

these sequences for all values of k. For example, we immediately obtain that

n
lim map+1 (3’3 — 1) =0.
n—00 z—1
We will prove in the next subsection that the above sequence (for h > 0

fixed) is nonconstant. While 0 is a limit point of mgp11, what can be said
about positive and negative values? As in the case of mg, it is not hard to see
that my(z + 3) > log" 2 > 0. Using Theorem 30 we can see that the sequence
map+1((2™+3)(x+3)) has a positive limit. As for negative limits, the sequence
maop+1((z™ — 1)(x — 1)) provides a good example. To see this, we apply the
following result from [6] (Theorem 3):

Theorem 31 Forl € Z>1,

1\l
my(z —1) = > (2123,l!((b1,...,bj),

bit-+b;=l,b;2>2

where

1

1<pi<--<p; P1 -+ -Pj



33

From Theorem 30, we get that

HILH;O mant1((z" —1)(z — 1)) = mapp1((y — 1)(z — 1))

2h+1

=2 <2hz~+ 1) mi(y — V)mapt1-i(x —1).

=0

Moreover, Theorem 31 tells us that m;(x — 1) < 0 for odd [ and my(z—1) > 0
for even [, that is, each term on the right hand side of the above equation is
negative. Thus, map1((2™ — 1)(x — 1)) has a negative limit.

fu

On a different note, observe that I3 is a limiting value for my, since, by
Theorem 19 (iv) in [6], we have that me(x +y +2) = 71‘—; Thus

2
lm mo(z" +2z+2)= —.

5.3 A proof that certain sequences are nonconstant

As usual, Theorem 30 does not say anything about the sequence of values
Map 41 (m;:ll ), which in principle could be constant (and therefore, identically

zero). This is precisely the case with h = 0.
Fortunately, we have the following result.

Theorem 32 Leth > 1 fized and P, (z) = z::ll. Then the sequence map11(FPy)
1§ nonconstant.

The idea of this proof was provided to us by Kannan Soundararajan. We will
need some auxiliary results first.

Lemma 33 Let o, m € Z with m positive. Let

o
1] 1]

L4 Al =a
Then, for a # 0,

2 Imlog™ ! |af
o

To(a) = (1+0 (log™?|al)).
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Proof. First notice that T,,, («) = T;,, (— ), so we can assume that « is positive.
By multiplying and dividing by ¢ + - - - + ¢,,, = a, we obtain that

—_

T@=1 ¥ GRS S )T - )

21, m €Lsq ] 14;€Z40
1+ tHm=a

I
R
]
@,
o]
[=}

_g)

| |
/\

2c
ZTm 10(— +ZTm 1(1— + ZTmfl(a_ Z Tm 104— )

{=—oc0 {=a+1 {=2a+1

Aganm—%mH@+%awl
§=0

Now observe that T} (o) = ‘al for ac # 0. We proceed by induction. Assume
that the statement is true for m. Then

Trg1(a) = 2(m +1) ZTm -t 1(Tm(0) + Tn(a))

<.
I
o

m—1 -

m—1 m—1
: j(1+0(10g72j))—m+12 mlog «
J o @

2(m+1)

2™~ log

|
.MQ

(1 + 0 (10g72 a))

<
Il
—

We now replace the above sum with the integral of w (with exponent

m — 3 for the error term). This replacement introduces another error term of
) (%) We deduce that

2m 1 1 m—1 1 m—2 2777471 1 1 m—1
= EL2D o (BEZ12) L (20) P gy

= W log™ a (140 (log™* a)) .

Proposition 34 Let j, k € Z>1. There is a positive constant C(j, k) such that

n 1 log? ~t
U = 3 G (140 (log " ).
I P ez |£1| |EJ+]¢| n
1oy Lit+k€L20
L4t +n2J+1+ Hnljy =0
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Proof. We have that

UL =3 Tj(na)Ti(~a)

a€l
o~ 207 1jlog’ !
2%} jﬁfa‘ 9 (1 4 0 (log 2 nal)) Tu(a).
a=1

We only need to study the behavior when n goes to infinity. Therefore, we
do not need to have a in the error term. We write log’ ' [na| = log? ™! |n| +
O(log’ % |n|) and we obtain

., j—1 oo
e ) ch(ya) (1+0 (log™"n)).

a=1

Notice that Ty («) > 0 by construction, and so is C(j, k). O

Proof.[Theorem 32] By writing the integral and using Fourier expansions, we
obtain

1 —_ 627r1'n9 -1
mant1(Pn) = / log * om0 1 do
0 e -1
2h+1 1
2h+1 . ) ) . )
— Z < + )(_1)] / log] |6271'19 _ 1‘ 10g2h+17‘7 |627mn9 _ 1| do
J 0

J=0

Jj=0 J £1€Z 20 L2€Z 2o
2h+1 -
- Z <2h ; 1) e U(g)thl j
y 2h+1 75 —=J°
A

By Proposition 34, the term with the highest weight in n is for j = 2h. Notice
that the condition h > 1 is necessary because otherwise we obtain a formula
that does not depend on n. Thus, we have

(2h 4+ 1) log?" 1 n _
m2h+1(Pn) = —WC(2h7 1)7 (1 + O (log ! n)) .
Therfore, map41(P,) behaves like a nonzero constant times log ' n Len n

goes to infinity. This implies that the sequence can not be identically zero. [

The discussion in this section proves Theorem 7.

J
2h+1 1 2mil1 60 2minls 0
2h + 1> . / 1 e 1 1 e 2
E . _1)d _Z E _z E
< =D 0 2 |41] 2 €]

2h+1—j

do
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6 Discussion on the values of my(P)

We will once again focus our attention on the set

Lj, = {m(P) : P univariate with integer coefficients}.

For k = 2, we have

2
Ly = {my(P) : P univariate with integer coefficients} C {18, oo> .

In this context, the first noticeable difference between m(P) and mq(P) is
that the cyclotomic polynomials are interesting in terms of mq(P). We have
explored this phenomenon in this note. Many questions remain, however, and
in particular, the question of what happens with the reciprocal noncyclotomic
polynomials -the ones that are interesting in the case of the classical Mahler
measure- is presumably as interesting and difficult as in the case of the classical
Mabhler measure. In particular, equation (1) and Proposition 18 suggest that
a natural object to study is ma(P) — m(P)?.

The following table records the noncyclotomic polynomials of degree less
or equal than 14 with m(P) < 0.25. The data has been obtained from the gen-
erator in Mossinghoff’s website [11]. We observe that the smallest polynomial
(in the table) in terms of mg(P) is not the degree-10 polynomial of Lehmer,
but #1° + 2% — 2° + 2 + 1. In fact, all the polynomials in the table have my(P)
smaller than Lehmer’s polynomial. This result comes from the fact that the
term m(P)? in equation (1) seems considerably smaller than the other terms,
and therefore, the contribution of m(P) to the value of mo(P) is relatively
small for polynomials of small m(P).
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P(z)

m(P)

m2<P>

2+ a® -t + a3 +1
204 2® —a" — b — S —at -3 +1
20— b 25—zt 41
e+ a" b+ 23+ 1
20— a8 4 a® — 2241
20+ " S 241
20+ — S 41
224 0 — g8 T b St 241
212 4 11 4 210 4 9 06 4 03 L 2 4 0y
224t — 2" —2b -S4+ 1
2124 210 4 g7 g6 4 05 4 2 1
22 420 o 4 a® 227 428 2% ot a2 41
e+l — 10— " — 428 41
P14 12 4 T a2 4
Pl 12 4 g1 00 0T 05 4 03 02 4
R U o A R LR L L R A |
et 4B — " S 41
P13 12 9 08 0T 46 05 4 02 4 a1

P44 13 g1l 703

0.2473585132
0.1623576120
0.1958888214
0.2073323581
0.2320881973
0.2368364616
0.2496548880
0.2052121880
0.2156970336
0.2239804947
0.2345928411
0.2412336268
0.1823436598
0.1844998024
0.2272100851
0.2351686174
0.2368858459
0.2453300143
0.2469561884

1.0980813745
1.7447964556
1.2863292447
1.2320444893
1.1704950485
1.1914083866
1.0309287773
1.4738375004
1.5143823478
1.2059443050
1.2434560052
1.6324129051
1.3885013172
1.3845721865
1.4763006621
1.4352060397
1.2498299096
1.3362661982
1.3898540050

Analogously, we can translate the speculations about Lo to the case of Lgj,

h
with h > 1, a set that satisfies Lo C [(Z;) 7oo).

On the other hand, we have proved that Lojy1 (for A > 0) has positive and

negative values. By taking powers, it is easy to build sequences of polynomials
whose map 41 tend to either co or —oo. We have also seen that 0 is a limit point.
Notice that this last fact is related to meop41 being nontrivial on cyclotomic
polynomials, something that is not true in the case of the classical Mahler
measure.

In conclusion, we see that my(P) has very different behavior depending on
the parity of k. We expect that my(P) for & > 1 is nontrivial for cyclotomic
polynomials, and that this fact answers Lehmer’s question for & > 1.

Acknowledgements We would like to thank David Boyd for his feedback on this work
and Kannan Soundararajan for his interest and his ideas on how to prove that sequences of
values of high Mahler measures are not identically zero. Finally we would like to thank the
referee for many helpful suggestions that have greatly improved the exposition of this note.



38

References

1. R. Breusch, On the distribution of the roots of a polynomial with integral coefficients.
Proc. Amer. Math. Soc. 2 (1951), 939-941.

2. D. W. Boyd, Speculations concerning the range of Mahler’s measure. Canad. Math.
Bull. 24 (1981), no. 4, 453-469.

3. D. W. Boyd, Kronecker’s theorem and Lehmer’s problem for polynomials in several
variables. J. Number Theory 13 (1981), no. 1, 116-121.

4. C. Deninger, Deligne periods of mixed motives, K-theory and the entropy of certain
Z™-actions. J. Amer. Math. Soc. 10 (1997), no. 2, 259-281.

5. L. Kronecker, Zwei Sétze tiber Gleichungen mit ganzzahligen Coefficienten. J. Reine
Angew. Math. 53 (1857), 173-175.

6. N. Kurokawa, M. Lalin and H. Ochiai, Higher Mahler measure and zeta functions. Acta
Arith. 135 (2008), no. 3, 269-297.

7. M. Lalin, Higher Mahler measure as a Massey product in Deligne Cohomology. To
appear in Low-Dimensional Topology and Number Theory. Abstracts from the workshop
held August 15-21, 2010. Organized by Paul E. Gunnells, Walter Neumann, Adam S.
Sikora, and Don Zagier. Oberwolfach Reports. Oberwolfach Rep. 2010.

8. W. Lawton, A problem of Boyd concerning geometric means of polynomials. J. Number
Theory 16 (1983), no. 3, 356-362

9. D. H. Lehmer, Factorization of certain cyclotomic functions. Annals of Math. 2 vol. 34
(1933) 461-479.

10. K. Mahler, On two extremum properties of polynomials. Illinois J. Math. 7 (1963)
681-701.

11. M. Mossinghoff, Lehmer’s Problem, Polynomial Searches (by Gavin Taylor)
http://www.cecm.sfu.ca/ mjm/Lehmer/search/.

12. C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic
integer. Bull. Lond. Math. Soc. 3 (1971), 169-175.

13. C. J. Smyth, The Mahler measure of algebraic numbers: a survey. Number theory and

polynomials, 322-349, London Math. Soc. Lecture Note Ser., 352, Cambridge Univ.
Press, Cambridge, 2008.



