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Multiple Hurwitz Zeta Functions

M. Ram Murty and Kaneenika Sinha

ABSTRACT. After giving a brief overview of the theory of multiple zeta functions, we derive the analytic
continuation of the multiple Hurwitz zeta function
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using the binomial theorem and Hartogs’ theorem. We also consider the cognate multiple L-functions,
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where x1, ..., xr are Dirichlet characters of the same modulus.

1. Introduction

In a fundamental paper written in 1859, Riemann [34] introduced his celebrated zeta function that now
bears his name and indicated how it can be used to study the distribution of prime numbers. This function
is defined by the Dirichlet series

oo
1
8)=) —
n=1 n’
in the half-plane Re(s) > 1. Riemann proved that ((s) extends analytically for all s € C, apart from s =1
where it has a simple pole with residue 1. He also established the remarkable functional equation

ridor () = w0 - ()

and made the famous conjecture (now called the Riemann hypothesis) that if ((s) = 0 and 0 < Re(s) < 1,
then Re(s) = 3. This is still unproved.
In 1882, Hurwitz [20] defined the “shifted” zeta function, ((s;x) by the series

$ o1
~ (n+x)°
for any z satisfying 0 < z < 1. Thus, {(s;1) = ((s).

This Hurwitz zeta function, originally defined for Re(s) > 1, can also be extended analytically for all
s € C, apart from s = 1, where it has a simple pole with residue 1. In his study of ((s;z), Hurwitz was
motivated by the problem of analytic continution of Dirichlet L-functions. For any Dirichlet character x
(mod q), we may write

L) =2 — o S ya)c(sia/e)

n
a(mod q)
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so that the analytic continuation for the Hurwitz zeta function gives us the same for the L(s,x). Thus,
Hurwitz confined his attention for z rational lying in the interval (0, 1).

In this paper, we will indicate a method by which the analytic continuation of {(s;x) can be easily
derived from the continuation of {(s). In fact, our derivation also gives the analytic continuation of {(s).
The continuation of {(s; ) can be enlarged to complex values of z in the cut complex plane C\(—o0,0]. For
instance, we will show that for such complex z, the formula
Bk (z)

k
is still valid for any natural number k > 2. Here Bj(z) is the k-th Bernoulli polynomial. This formula is
well-known for z real with 0 < z < 1.

The method of analytic continuation we will outline is applicable to a wider context of the theory of
multiple Hurwitz zeta functions and more generally to the problem of analytic continuation of series of the
form

C1—Fk,2)=—

Z anl “en anr
>SS (n1 + ;1:1)51 . (nT + -'Er)sT .
Such series have also been studied by various authors (see [10] and [28], for example). As David Bradley
pointed out to us, our method appears in a nascent form in a paper of Stark [36] where it is used to rederive
Dirichlet’s class number formula.
The study of special values of the Riemann zeta function has motivated the study of multiple zeta values
(MZV’s) or the multiple zeta functions defined as:

C(81y ey 8p) = Z %
ni>ng>->n,.>1 e

Originally, the special values when s; > 2 and sa, ..., s, > 1 with s; integral for 1 <4 < r, have been the
main focus of attention. In this situation, the sum s; + s + - -+ + s, is called the weight of ((sy, ..., s-) and
r is called its length (or sometimes depth).

The reader may find several excellent expositions of the theory of MZV’s in the literature. There are
two aspects of the theory: algebraic and analytic. For the algebraic aspect, we recommend Cartier [11],
Waldschmidt [39] or Zudilin [43]. For the analytic side, we suggest Matsumoto [25]. Even though some
special cases of the theory were studied by Euler, their formal definition and study emerges in the work of
Hoffman [18] as well as Zagier [41].

Tt is easy to see that this series converges absolutely for Re(s;) > 1 for 2 <4 < r and Re(s;) > 1 and so,
one can consider the problem of analytic continuation.

This question has been studied by several authors. The earliest work seems to be that of Atkinson
[6] in his studies of the mean values of the Riemann zeta function. He derived the analytic continuation
of ((s1,s2) using the Poisson summation formula. Perhaps not aware of this work, Matsuoka [29] in 1982
derived the analytic continuation of ((s,1) and Apostol and Vu [5] in 1984 again studied the case r = 2.
In both papers, the main tool was the Euler -Maclaurin summation formula. Fixing s,, ..., s, Arakawa and
Kaneko [3] showed that ((sq, s2, ..., r) can be analytically continued as a function of s; to the whole complex
si-plane. The general case of continuation to C" seems to have been independently addressed by Zhao [42]
and Akiyama, Egami and Tanigawa [1].

In this paper, we will study the multiple Hurwitz zeta function:

1
C(sly"'asﬂxl:"'amf‘) = Z

) (ny +21)5t -+ (ny + 2,.)5 >

as well as the cognate multiple L-functions of Goncharov [17]:

x1(n1)xz(nz) - - - xr(nr)
L(81y ey 803 X1y -y Xr) = Z TR e

Sn
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where x1, x2, ---, X are Dirichlet characters (of necessarily the same modulus). The analytic theory of the
multiple Hurwitz zeta function has been studied by Akiyama and Ishikawa [2], who derived the meromorphic
continuation to C". The authors in [2] used the Euler-Maclaurin summation formula to obtain their results.
Our goal in this paper is to show that this in fact is a simple consequence of the meromorphic continuation
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of the multiple zeta function. We will not be able to discuss the interesting algebraic and combinatorial
aspects of multiple Hurwitz zeta functions and consequently refer the reader to [9] and [30].

We should point out that terminology and notation vary in the literature concerning multiple zeta
functions. For example, some authors have the summations in the reverse order with n; < ng < --- < n,..
With our notation, there are some advantages. For instance, one can show [25] that the multiple Hurwitz
zeta function converges absolutely in the region defined by

Re(s1) >1, Re(si+s2)>2, --- Re(si+---+s5)>r.
In some papers, MZV’s are also called Euler-Zagier sums.
2. An overview of MZV’s

The study of MZVs has opened up fascinating connections to physics and other branches of mathematics.
For an elaboration of these connections, the reader may consult Cartier [12] or Zagier [41] for the details.
The theory has classical roots. For example, the 1734 theorem of Euler states that

20(2k) = (-1)*"!(2m)”
where B,, designates the n-th Bernoulli number. He deduced this from the fact that
sinmt ﬁ 1 ﬁ
Tt n?)’
n=1

By comparing coefficients of 2™ of both sides of this formula, we see immediately that

71_2m
2,.,2)= ———.
(22 = G
m
Another pretty formula, conjectured by Zagier [41], is
27?4"
3,1,---,3,1) = ———.
C( 7 ) 7 ) ) (4n+2)!
2n

This was proved by Borwein, Bradley, Broadhurst and Lisonek [9]. Their proof was based on the identity

cosh 7wt — cos 7t

o0
1 3,1,---,3, D)t =
+nz:1<(7 ) 7 ) ) 7T2t2

2n

In this repertoire of formulas, we can also observe that the infinite product

cosst= 11 (1~ =177

n=1

leads to the following special value of the multiple Hurwitz zeta function:

C(2,..,2,-1/2,...,—1/2) =

m m

7.r2m

2m)!”

Recently, many identities between MZV’s have been found (see for example, [43] or [8]). One expects
that all of these identities can be “explained” by a theory we will briefly outline below.

For one thing, it is hoped that the study of the MZV’s will enhance our understanding of ((2k + 1), for
k =1,2,.... In these cases, we know from the 1978 work of Apéry [4] that ((3) is irrational, and from the
recent 2000 work of Rivoal [35], Ball [7] and Zudilin [44] that infinitely many of these are irrational. One even
has some quantitative information. For example, it is known that the Q-space spanned by ¢(3), {(5), -.., {(a)
has dimension > loga. Recently, Zudilin has shown that one of ((5), ((7),¢(9),((11) is irrational and that
for some j € [5,69], the three numbers 1,((3),((j) are linearly independent over Q. It is conjectured that
the numbers

m,((3),¢(5), ...

are algebraically independent over Q.
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On the other hand, there are integral formulas for the MZV’s describing them as “periods.” A formula
of Chen allows us to express a product of such integrals again as a linear combination of “shuffles” of
the integral. One can also derive the so-called “stuffle” relations arising from the series representations of
MZV’s. One conjectures that these essentially exhaust all possible relations among the MZV’s. We give a
more precise description below.

For example, for k a natural number greater than 1, we have the k-dimensional integral

dt, dtp_1 dty,
C(k) = / dh et
1>t1>>5,>0 U1 k-1 1— 1tk
as is easily verified by direct integration. Also,
dt; dty dts
.= | W Toh 1ot
1>t1>t2>t3>0 U1 — 2 — 3

Following Chen [13], we define inductively the iterated integral of differential forms ¢y, ..., ¢, on [0,1] as

‘A1¢1~-¢m:=‘Al¢1@{ﬁt¢z~-¢m.

With this convention, we define the two differential forms,

dt dt
Wy = —

then the above two formulas can be written as

1
am=/wkmh
0
and
1
<@n=/wwi
0

respectively. More generally, we have the Drinfeld-Kontsevich integral:

1
- -1
C(sl,...,sr)z/ wo' lwl---wg’“ wy.
0

The product of two such integrals is again a linear combination of such integrals given by the “shuffle
product.”
To be precise, we review the notion of the shuffle product. Let X be a finite alphabet and let X* be the
set of words it generates. The length of a word is the number of letters it has. The algebra generated by X*
over Q will be denoted Q(X) and this is just the polynomial algebra in the non-commuting variables of X.
We define the “shuffle product” of two words z1 - - - &, and Tpyq1 - - - Tptn aS

(:L'l :L'm) Hl(wm+1 xm+n) = Z 1-0_(1) _Z-a_(m_"_n)
0EX m n
where X, ,, is the set of all permutations o on {1,2,--- ,m + n} satisfying

c(l)<o(2)<---<o(m) and o(m+1)<o(m+2)<---<o(m+n).

m+n
m
elements. The terminology is suggested by the usual riffle shuffling of a deck of m + n cards cut into two

parts of m cards and n cards. Thus the summation is over all the possible “shuffles.” Here is the formal
definition. If e denotes the empty word, we define the shuffle product inductively:

elllw=wllle=w
for all w € X* and for z,y € X, u,v € X*, we set
(zu) TI(yv) = z(u T yv) + y(zu I v).

This can be thought in the following way. When shuffling xu and yv, either x goes first and we shuffle u and
yv or y goes first and we shuffle zu and v. This rule is extended by linearity to all of Q(X).

Thus, X, , has
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How this relates to MZV’s can be explained as follows. Let X = {z,y} and consider {X). To each
tuple a = (s1, ..., 8-) we associate the word

Wo = m81—1ym82—1y .. ‘.,L,s,«—ly

and define ((wy) to be ((s1,---,5-). We extend the definition of ¢ by linearity to the subalgebra H of Q(X)
generated by all the words of the form wy,.
Then, one can show that for w, and wg (not necessarily of the same length), that
C(wa)((wp) = ((wa T wg).

These are called the shuflle relations among the MZV’s. There are other relations among the MZV’s
that are not included in the shuffle relations described above. These arise from the series representations.
For example, it is not hard to see that

((s1)¢(s2) = ((s1,82) + ((s2,51) + ((s1 + 82),
since the product on the left is a double sum
= w— 1 1
2 &

which can be decomposed according as n; > ns, no > n; and n; = ne. In a similar way, we see that the
product

() (mms) = Y

n1,ng<ng<-m, 1 T2 T
reduces to
4(81,82,83,' - ,ST) + C(82,81,$3,' .- ,87«) +C(82,83,81,' e ,Sr) + -
+¢(s1 + 82,83, ,8) + (82,81 + 83, ,8:) +---((s2,83,- -+ ,81 + Sp)-

It should come as no surprise that this argument can be extended and in fact, the product of two MZV’s
of depth r; and ry is again positive integral linear combination of MZV’s of depth at most r; + r2. These
are called the “stuffle relations” and can be described as follows. In the notation introduced above, let z;
denote the word 27~!y. The “stuffle product” * on Q(X) is defined as follows:

exu=ukxe=1u
for the empty word e and all words u € X*;
zju* Tpv = T (u * Tpv) + g (Tju * v) + Tk (U * V)

which differs from the shuffle relation in the last term. Then, it turns out that

C(wa)G(ws) = C(wa * ws).
In addition to these relations, and the shuffle relations

((wa)¢(ws) = ((wa M wp),
seen earlier, there is one more family of relations. They are all of the form

((z M wy) = ((z % wy).

(We refer the reader to [40] for further details.) It is conjectured (see [43]) that these are the only relations
amongs the MZV’s.

Zagier [41] has made the following more precise conjecture. Let V}, be the Q-vector subspace spanned
by the MZV’s of weight k. Set Vo = Q, V1 = {0}. Using either the shuffle or stuffle relations, we see that

Vi - Vi C Vigyper

If we denote by V' the Q-vector space spanned by all the V}’s, then V is a subalgebra of the reals over Q
graded by the weight. Goncharov conjectures (see [39]) that

V == @ﬁoVk,
and Zagier predicts that if dy = dim Vj, then
dr, = dg—2 + dp_3.
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In other words, the Hilbert series of the graded algebra V' is completely determined:

> 1

k _
D ditt = 1—2—¢3
k=0

This conjecture would imply the algebraic independence of 7, {(3),{(5), .... In a recent paper, Terasoma [37]
as well as Deligne and Goncharov [16] proved using the theory of mixed Tate motives that
dim Vk S dk.

In [16], the authors consider the more general problem of the Q-vector space spanned by all the values

Z S S S
niln;2 . .n‘fﬁ“

ni1>ng>->n,>1
where (; are fixed N-th roots of unity and sy, ..., s, are positive integers with s; # 1.

3. A General Theorem

We begin by proving the following theorem.
THEOREM 3.1. Let

Za
_ n
f(s) = e
n=1
be a Dirichlet series absolutely convergent in Re(s) > 1. Suppose f(s) extends to a meromorphic function

for all s € C. Then,

oo
. . —_— an_
extends to a meromorphic function for all s € C. Furthermore, the possible poles of f(s;x) are contained in
the positive integral translates of the poles of f(s). If f(s) has a simple pole at s = 1 with residue 1, then
f(s;z) also has only a simple pole at s = 1 with residue 1. If f(s) extends to an entire function, then f(s;x)
also extends to an entire function.

Proor. Without loss of generality, we may suppose 0 < |z| < 1. (If not, we may begin our summation
of the Dirichlet series from ng with ng > |z|.) For Re(s) > 1, we write our series as

o0
an ( z ) —s
s;T) = — (14— .
f(s;) ; el Ul
We may expand the summand by using the binomial theorem and then interchange summations to get

ssn =3 () st +ran

=0
The absolute convergence of this series is easily established using any of the standard tests. Indeed, for
sufficiently large , f(s + r) is bounded. Applying the r-th root test together with the observation

-
—s |s|

< I 1+ — I
(T>‘_Zog( + j)<<|s| ogr,

=1

log

shows that the series converges absolutely for |z] < 1 and Re(s) > 1 since f(s) is absolutely convergent there.
In fact, we can say more. The summation from r = 1 to infinity is absolutely convergent for Re(s) > 0. More
generally, the summation from r = M + 1 to infinity is absolutely convergent in the region Re(s) > —M
for any integer > 0. As the sum from r = 0 to M is meromorphic, we deduce that f(s;z) is meromorphic
for Re(s) > —M. Since M is arbitrary, this completes the proof of meromorphic continuation. We note in
this argument, that if f(s) extends to an entire function, so does f(s;x). The second part of the assertion
of theorem is also clear since the possible poles of f(s;xz) can only occur among the integer translates of the
poles of f(s). O

We will refer to the method encoded in Theorem 3.1 as the binomial principle of analytic continuation. In
the next two sections, we apply this theorem to study ((s), {(s; ) and more generally ((s1, ..., 87} &1, --es Tr).
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4. The Hurwitz and Riemann zeta functions revisited
Applying Theorem 3.1 with f(s) equal to ((s), we find that

PropPOSITION 4.1. For0< z < 1,

1 (s
) = 60 =3 (et
r=1
REMARK 4.2. Observe that this identity gives immediately the analytic continuation of ((s,z) in an
inductive way, once we know the continuation of ((s). Our point is that, in fact, the analytic continuation

of ¢(s) can also be derived from it by considering x = %

Notice that

1 e 1
(s3) = 2 Z(2n+1)5

n=0
= (@ - 1)¢().
Therefore, putting x = % in the proposition, we obtain:

THEOREM 4.3.

2 -2)((s) =2+ (‘f) 277((s +1).
r=1

It is to be noted that recursions of this kind were also discovered by Ramaswami [33] in 1934 by a
completely different method. The reader may also consult section 2.14 of [38], as well as [23], [22], and [14].
Thus, the theorem gives the analytic continuation of {(s) by induction. This is first valid in the half-plane
of absolute convergence Re(s) > 1. The formula allows us to inductively obtain a meromorphic continuation
of ¢(s). To be more precise, we first consider Re(s) > 0. Then, the right hand side is analytic there.
Hence, (2° — 2)((s) extends analytically to this region. This gives us a meromorphic continuation of {(s) for
Re(s) > 0, with possible poles at
2mim
s=14+—F,meZ.
log 2
To derive the complete analytic continuation, we observe the following. For any natural number ¢, we have

PROPOSITION 4.4.

Proor. We have

q q oo

a 1

¢ ) =D s = (),
a=1 q a=1n=0 (qn + a)s

as the first summation on the right hand side is over a complete set of residue classes (mod ¢) and the inner

sum is

n=a(mod q)

O

By Proposition 4.1, we have an analytic continuation of ((s, ¢) — ((s) for Re(s) > 0, with possible poles at

Taking ¢ = 3 and combining it with our remark before Proposition 4.4, we obtain that ((s) extends analyt-
ically for Re(s) > 0 except for a possible pole at an element of

i oi
{1+ mm;mez}m{H m":nez}.

log 2 log 3
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If s¢ is in the intersection, we must have 2" = 3™ for some m,n € Z. By unique factorization, the only
solution is m = n = 0. Thus, {(s) extends analytically for Re(s) > 0 apart from a possible pole at s = 1.
Now, by Theorem 4.3, we have an analytic continuation of (2° — 2)((s) for Re(s) > 0. Moreover, a simple
calculation shows using Theorem 4.3

lim(2° - 2)¢(s) = 2-) (-1)27" ) nr1+1

s=1 r=1 n=1
o0 1 o0 _1 T
_ o_ ; ! ; (%)

n=1
= 2log2
But,
lim =—— = 2log?2
s—1 § —
Therefore,
. os—=1 _
lim (5 — 1)¢(5) = lim 2 —(2° = 2)((s) = 1

and we deduce that ((s) has a simple pole at s = 1, and is analytic for Re(s) > 0, s # 1. Combining this
with Theorem 4.3 and induction, we immediately deduce:

THEOREM 4.5. ((s) extends analytically for all s € C except for a simple pole at s = 1 where it has
residue 1.

Observe that from Proposition 4.3 and Theorem 4.5,

sC(s+1) (-5 _
e R 3 Gy L
where we see the right hand side is analytic for Re(s) > —1. We may substitute s = 0 in the above formula

and deduce that ((0) = —3.
Using Proposition 4.1 and Theorem 4.5, we also obtain in a similar inductive fashion the analytic

continuation of (s, z).

THEOREM 4.6. ((s,z) extends analytically for all s € C except for a simple pole at s = 1 where it has
residue 1.

5. Analytic continuation of multiple Hurwitz zeta functions

Let us now consider the multiple Hurwitz zeta function. If we fix s, ..., s, and consider it as a function
of sy, then it is not difficult to see that the binomial principle allows us to extend the multiple Hurwitz zeta
function to the entire complex plane as a meromorphic function of s;. Thus,

oo
—81 j .
C(81,82, ey Sp3 X1y ey Tp) = Z ( i ) 1C(81 4 7, 82, oy 8730, T2, ooy ).
j=0

Since the right hand side defines a meromorphic function of s; for Re(s1) > 0, we can inductively derive
the analytic continuation of ((sy, ..., 8y} @1, ..., T) for sa,...; s, fixed. However, we would like to derive the
continuation as a function in C".

For functions of several complex variables, a famous theorem of Hartogs [19] applies. This says that if
we have a function of r complex variables and we fix any 7 — 1 of them and the resulting function is analytic
in an open set D C C", then the function itself is analytic as a function in D. We will apply this fact in
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dealing with the meromorphic continuation of the multiple Hurwitz zeta functions. We proceed by induction
and take for granted that

C(Sl, reey Sr)

admits a meromorphic continuation to C". We state this fact formally for future reference.
THEOREM 5.1. [42], [1] The multiple zeta function
C(Sl, eey Sr)

extends to a meromorphic function in C" and has singularities on the hyperplanes
s1=1, s1+4+s5=2,1,0,—-2,-4,...
and for j =3,...,r,
s1+82+---55 € Zg;
where Z<; is the set of integers less than or equal to j.

A more precise statement of the previous theorem is the following which can be deduced from [1]. In
the region Re(sy + --- + s,) > —M (with M a positive integer), there is a polynomial Pys(s1, ..., s,) which
is a product of distinct linear forms of the form

81+82+"'+Sj—t
with 1 < j <r and t a positive integer < j such that

Ppr(81y ey 87)C(81y ey S1)

is analytic there. Moreover, in this region, there are constants A and B (depending only on M) such that
|Par(81, ey 87)C (81, on, 80)| < (| Tm(s1)| + -+ - + | Im(s,)| + B)A.

This understanding will be implicit in our induction argument below where we derive the meromorphic
continuation of the multiple Hurwitz zeta functions. The case r = 1 is the classical theory of the Riemann
and Hurwitz zeta functions discussed in the previous section. We therefore begin with the two variable case.

Let us consider the series .

ni' (ng + z2)*

((s1,82;0,m2) = )

n1>n2>1
and applying the binomial expansion as before shows that this is equal to

> s
—S2\ .
N U EEIS)
=0 ™Y
and the summands on the right are the usual multiple zeta functions. Fixing s;, and applying Theorem 5.1,
we deduce that ((s1,$2;0,z2) is a meromorphic function of s by an application of Theorem 5.1. Fixing

s2, we see that it is a meromorphic function of s;. Applying Hartogs’ theorem, we get the meromorphic
continuation of ((s1, $2;0,22). A similar reasoning applies to

((s1,89;21,0) = D

ni>nz>1

1
(n1 +z1)%1n3?"

If we fix so and apply our binomial principle, we get the sum is
> s

—S1 i .
> () eleter + o)
=0~ 7
and the right hand side is meromorphic for all s;. If we fix s1, and consider it as a function of s2, we obtain

1 1
((s1,82521,0) = Y —5 Y .
na>1 e ni1>na (’I’L1 + ;1;1)81

Upon writing the inner sum as

1
((s1321) — Z m

n1§n2
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we deduce that
(o]

C(s1,82;71,0) = ((s1;21)((s2) — ((52,51;0,21) Z ny*(ng + x1)°

ne=1

The last series may be written

> (71) w{((s1 + 52 + )
=0

which again is analytic by our binomial principle.
Now we are ready to consider ((sy,s2;%1,22). Let us fix so. Then,

1 > —81 j .
Z (ny + 1) (ny + )% = Z ( j ) x1C(s1 + 4, 52; 0, x2).

ni1>n2>1 7=0

By our preceding discussion, the right hand side is a meromorphic function of s;. If we fix s;, then a similar
analysis gives the meromorphic continuation of {(s1, s2; 1, Z2)-

If we call the z-length of ((s1,..., $¢; %1, ..., ;) to be the number of z; which are non-zero, then we may
apply induction on the z-length to deduce the meromorphic continuation of {(s1, ..., $7; 1, ..., 2,). Indeed,
fixing one of the variables and applying the binomial principle, we immediately deduce by induction the
desired meromorphic continuation. For example,

o0

_s .
C(81y ey 83 T1y ey Tp) = Z ( jT> C(81, ey Sr + J;T15 ooy Tr—1, 0).

=0
THEOREM 5.2. The multiple Hurwitz zeta function,
C(81,82, vy Sp; L1, T2, ory Ty

extends to a meromorphic function in C".

The inductive principle applied in the proof of the above theorem also shows that for any positive integer
M and for Re(s; + -+ +s-) > —M, there is a polynomial Pys(s1, ..., s;) which is a product of linear forms
such that

Par(81y ey 87)C(81y eeey Sr3 X1y ey Tyr)
is analytic in this region. Moreover, as before, a polynomial growth estimate of the form
[Pt (81, 000y 87) (515 o0y 875 81,5 oy 27)| < (| Tm(51)] + -+ + [ Im(s,)| + B)*

also holds in this region.

By a more careful analysis, it is possible to identify the pole set of the multiple Hurwitz zeta function.
This has been done by Akiyama and Ishikawa and we state it for future reference.

THEOREM 5.3. (Akiyama and Ishikawa) The multiple Hurwitz zeta function
C(sh sy S Ty ey ‘CET)
extends to a meromorphic function in C" with possible singularities on
s1=1, si+ss+---+s;€ZL<j, j=2,3,..,7
If the z; are all rational, and x5 — x1 # 0 or 1/2, then the above set coincides with the complete set of
singularities. If xo —x1 = 1/2, then
s1=1, s1+s8=2,0,—-2,—-4,-6,...

and for3<j<r,

S1+s2+ -+ 8; EZSJ'
forms the complete set of singularities. If o — x1 =0, then

s1=1, s1+s=2,1,0,—-2,-4,-6,---

and for3<j<r,

S1+s2+ -+ 8, GZSJ'
forms the complete set of singularities.
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We want to make some remarks concerning what we call quasi-multiple Hurwitz zeta functions. The
summation condition on multiple zeta functions are of the form

Ny >MNg > - > Ny

Instead of considering the strict inequality condition, we may replace the condition with any of the possible
27—1 variations, where equality is also allowed. A multiple Hurwitz zeta function with any of the possible
271 such variations on the summation condition will be referred to as a quasi-multiple Hurwitz zeta function.
Our point is that Theorem 5.2 allows us to deduce the meromorphic continuation of these cognate multiple
Hurwitz zeta functions also. To see this, let us consider the simple case of the series corresponding to the
condition

ny>Mng > > Ny

It is clear that the series corresponding to this condition is the sum of the usual multiple Hurwitz zeta
function and a series of the form

1
Z (n1 +z1)51 (N1 + 22)%2 -+~ (N + T) 57

ni1>ng>:>np

This sum can be expanded as a double binomial series as

0o oo _s _s ] '
ZZ( Jl)( k2>x{xl2‘:<—(51+52+]+k7537737'707'7:377'777')

=0 k=0

and the summands involve multiple zeta functions of depth r — 1. One needs to apply growth estimates
to establish convergence. Thus, we can derive the meromorphic continuation of the quasi-multiple Hurwitz
zeta functions using a similar inductive principle as before. This remark will be used in the next section to
derive the meromorphy of multiple L-functions.

As the referee has pointed out to us, the quasi-multiple Hurwitz zeta functions discussed above are a
special case of a general multiple zeta function discussed by Matsumoto [26].

6. Multiple L-functions

As in [2], we can deduce the meromorphic continuation of multiple L-functions. However, it does not
seem to be a simple matter to clearly describe the location of singularities. For characters xi,...,x, of

modulus ¢, we begin by writing L(sy,- - , 87} X1, - Xr) 88
Ey 1 1
a’ z x1(a1)xz(az) - - - xr(ar) Z o )
a1,02,...,ap=1 qnit+ai>qnatas>->qnetan (n1 +a1/q)” (nr +ar/q)*

where s = s + 89 + -- - + s,. The condition of summation in the inner sum can be rewritten as

as — ay Apr — Ap_1
>"'>nr+¥-
q

If each of the differences a; — a;—1 are non-negative, then, the summation condition is the same as

ny > ng +

ny>mng >--->np,

so that the inner sum is the multiple Hurwitz zeta function

C(Sla "'7ST;a1/q7 oo 7aT‘/Q)'

If any of the differences a; — a;_; are negative, then the inner sum is a quasi-multiple Hurwitz zeta function.
By our remarks in the previous section, these admit a meromorphic continuation to C" and thus, we obtain
the desired meromorphic continuation of the multiple L-functions.

The precise location of the singularities of the multiple L-functions seems to be an open problem worthy
of further research. The r = 1 case is classical. The r = 2 case was worked out in complete detail by Akiyama
and Ishikawa [2]. We also point out that the problem of locating the singularities of L(s, ..., $; X1, -, Xr) 18
studied in [21].
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7. Special values of ((s,z)

In this section, we want to show that Theorems 4.3 and 4.1 can be used to derive the following classical
results:

THEOREM 7.1. For any positive integer k > 1, we have
B
C1—k) = (- =E,
k
More generally, we have:
THEOREM 7.2.
By, ()
k
We begin with the proof of Theorem 7.1. For k = 1, we have already noted ¢((0) = —%. We proceed by

induction on k. We put s =1 — k in Theorem 4.3 and take into account that ((s + r) has a simple pole at
s =1 —r. Thus, we obtain the recurrence

C(]-_krz):_ , k> 2.

k-1 1 1
1-k _ ol—k _ -
2" —-2¢1-k)=2 +T§:1( , >2T§(1 k+7) s

Then, by induction, we see that the right hand side becomes

k—1
kE—1\1 By_ 1
21—k — (-1 k—r—1-"k—T .
+;( r )2T( ) k—r 2k
This can be re-written as

k—1 k

1 k\ 1 1 1

21—k - — (-1 k—r—lB - — 21—k -
+k§<r)2r( ) kor T kg >

Thus, we get

1— _ 9l— 1Bk 1 :
@ =01 - k) =27 - ()R - 2y

k
=0
To determine what the right hand side is, we consider
k
Doy = D g 2LV Bug
k=0 k=0 k=0

Then,

r=0
for every k > 1. Note that
< ¢ z/2
Skt =
! —_ p—
k=0 1 €
This can be rewritten as
z/2 T
xe +

etr/2 _ g—x/2°
The coefficient of z*/k! in the first term is k/2*. To determine the corresponding coefficient in the second
term, we write it as '
iz
2sin(iz/2)
The power series expression for the last term is well-known. Recall from [15] (page 88)that
1 2m—1

—1 B -1 m+1 22m —92 T

sinx
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Using this formula, we can deduce that

Thus, if k is even,

As a result,

(21—k _

That is, (1 — k)

Thus

In particular, if £ = 1, then ((0)
now follows from the different cases considered above. The completes the proof of Theorem 7.1.

iz/2 o 2k 1
el A By (2 —
sin(iz/2) Z 24 ( ( ) (2k)!

k 2k —2
Cp = ok—1 — Bk ok .

2)C(1— k) = 2'F

E k| 261

= —By/k. If k is odd,

kB

(k= 2)((1— k) = (~DF=E,

( 1)k lﬂ_l{ k _Bk(2k_2)}=(2_21—k)_

13

= —% = B;. If k > 3, and k is odd, then (1 — k) = 0 = By. The result

To prove Theorem 7.2, we have by Proposition 4.1

;_81 ¥ ((s,2) — ((s) = i(_l)rs(s+1)..7.«!(s+r— I)C(8+r):cT

In the above equation, put s = 1 — k and observe that if » > k, then the sum vanishes, since {(1 — k +r) is
analytic and the binomial coefficient vanishes.
At r =k, {(1 — k + r) has a simple pole. Thus,

This implies that

_ _ _1_ _ _1\k
Tli_rf}c(_l)r(l k)(2 k)...r(!r 1-k)(r k)C(l—k+r):(k1!) (—l)k_l(k—l)!:—%.
So,
k—1 k
e A= kw) — (1 k) = (kr1>§(1—k+r) =
Thus, .
k—1
CA—kz) = " +¢A-k)+ k_l)g(l—k+r)xr—%

lim (r = K)C(1 — k +7) = 1.

k % &
k
1 k .
_E;(T)Bk_Tx
_Bk .’L')
k

The idea of this proof originates in [31]. For a related derivation, see [36].
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8. Poly-Hurwitz Zeta Functions

The series, which we met in the analysis of the previous sections,

o0
1
Z(81,82;%1,%2) i=
( 1,92, 41 2) ngl (n+$1)51(n+$2)52

already arises in several works (see for example, [24]). Our method of analytic continuation of ((s) will also
apply to poly-Hurwitz zeta functions which we define as follows:

o0

Z(81,82, -y 80381, L2y vy Tp) = Z(n—}—xl)_sl co-n+ )70,

n=1
for 0 < z; < 1. This series absolutely converges when Re(s1 + s2 + - -+ + s,) > 1. Then, using our binomial
principle,

—S —S —S8 : ; . .
Z(S]_,S2,.-.,S7-;.'E1,.Z’2,...,-'L'T-): Z < 1)( 2)( _T>$']7_1....$‘Z.TC(S]_ +.71++ST+.77‘)

droemie N /2 Ir

Using methods similar to those used in previous sections, we can obtain a meromorphic continuation of
this function to C".
The values
Z(]. —kl,]. —kz,...,l —k,«;.'lfl,.’l,'g,...,xr)
can also be expressed as a polynomial in zy,..., 2, with rational coefficients involving Bernoulli numbers.
For example, let r = 2. We will try to find the value of
Z(81752;$1am2)

when s; =1 —k;, k; € Z, k; > 1. By the above calculation,
k1—1ko—1

ki —1 -1 L
Z(1—ky,1 —ky;21,22) = Z Z ( ! )( in )${1$%2C(1—k1+1—k2+j1 + J2)
j1=0 j2=0
k1—1ko—1
_ Z Z <k1 _1) (kQ ) J1 12 Bi(jy,52)
J2 e 2 1(j1,42)"

Jj1=0 j2=0

where [(j1,72) = k1 + k2 — 1 — j1 — ja. More generally, the above argument shows
Z(]. —kl,]. —kz,...,l —k,«;.'lfl,.’l,'g,...,xr)
is a polynomial in z1, 2, ..., z, with rational coefficients given by Bernoulli numbers.
9. Multiple Hurwitz zeta functions at complex arguments

We now make a few final remarks about how ((s,z) and more generally, ((s1, ..., $,; %1, ..., ;) can be
studied for complex values of z;. We begin with

> 1
C(8,2) = ) ———
s,z ;)(nﬂ)s

where z is a complex number. The summand is to be interpreted as
exp(—slog(n + 2))

and therefore, for the logarithm to be defined, we need to have z not lie on the negative real axis. Analogous
to the proof of Theorem 4.1 , we note that

;_81+g(s,z)—C(8) Zi <m_%>

Writing the summand as



MULTIPLE HURWITZ ZETA FUNCTIONS 15

and observing that the binomial theorem holds for all complex numbers with absolute value less than 1, we
obtain the following theorem.

THEOREM 9.1. Consider the cut unit disc
D={z:|2|<1}\{z€R:-1<2<0}.
The function ((s,z) for z € D is analytic in the whole complex plane except for a simple pole at s = 1.

Hence, by induction, we can derive the analytic continuation of (s, z) for z € D to the whole complex
plane apart from a simple pole at s = 1. This analysis can be extended to a wider region of z-values. For
given any non-zero complex number z not lying in the negative real axis, we can find a positive intger m
such that |z| < m. Now,

1 ’”111 Ve L (1L
e ) - ;ln—((+ 2 —>+n§mﬁ((+;) -1)
For |z| < m, we have |z/n| < 1, for all n > m. Thus, applying binomial theorem to the second term on the

right hand side and by a change in the order of summation, we obtain a modification of Theorem 9.1.

THEOREM 9.2. Let
D ={2eC}\{z€R: 2<0}.
Then, given z € IV, 3m € N such that

L= L ((+3)” —1)+Z( ) (”’“) m2n1+>

n=1 n=1

Since the right hand side is analytic for Re(s) > 0, we obtain an analytic continuation of ((s,z) in this
region. Thus, by induction, we can derive that the function ((s,z), for z € IV is analytic in the whole
complex plane except for a simple pole at s = 1.

It is now natural to inquire with this extended definition of the Hurwitz zeta function for complex values
whether the analogue of Theorem 7.2 holds. This is indeed the case. We now prove the following result:

THEOREM 9.3. For z € I/,

C(1—k,z) = _B’“k(z), keZ, k>2

PROOF. The result is clear for z € D since the argument is identical to the proof of Theorem 7.2. More
generally, let z € IV. We have

—i+§(s, :i:lni(( 5)_ —1>+Z(> ((s+7)

1

()7 (E+)

In the above equation, we put s = 1 — k where k € Z, k > 2. Then, we get the following equation :

—z’“*+<(1—k,z)—<<1—k)=mzlﬁ ((1+§)’”—1) +kzl (k;1>C(1—k+r)zT

Now, the first term on the right hand side is

SaslE (0] - Bl @]

n=1 r=0 n=1 r=1
k—1 m—1
k-1, 1
= z T—ktr
r=1 T n=1 n
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Thus, this is cancelled by the last term and the proof is complete.
O

As the referee remarks, the last theorem is also clear by analytic continuation in the variable z. The
same technique can be applied to study Z(sy, ..., 8¢;21,...,2:) and (81, ..., 8r; 21, ..., 2r) With z; € IV. This
topic has also been studied by Matsumoto [27].

10. Concluding Remarks

The arithmetic nature of multiple L-values as well as conjectures concerning their algebraic independence
seems to not have been investigated in the literature. Clearly, things become more subtle in this realm. For
one thing, many of these multiple L-values make sense with s; = 1. In the r = 1 case, these values involve
regulator terms such as logarithms of fundamental units. It seems difficult at this point to make precise
conjectures in the spirit of Zagier or Goncharov.

The question of precise determination of the singularities of multiple L-functions is still unresolved for
r > 3. This looks like a very delicate problem requiring further analysis.

There is also one more point worth noting. The shuffle identities seem to apply only to multiple zeta
values whereas the stuffle identities hold for multiple zeta functions also.

Acknowledgments. We would like to thank Professors David Bradley and Pierre Deligne for their comments
on an earlier version of this paper. We are also grateful to the referee for providing us with additional
references relevant to the topics discussed in this paper.
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