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ABSTRACT. We consider the functions M(n), the maximum exponent of any prime power dividing
n and m(n), the minimum exponent of any prime power dividing n. The sums

∑
n≤xM(n) and

∑
n≤xm(n)

have been well investigated in the literature. In this note, we will improve known estimates of both the above
sums under the assumption of the Riemann hypothesis. We will also obtain Ω-type estimates for these sums
unconditionally.
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1 Introduction

A natural number n ≥ 2 can be written uniquely as a product of prime numbers,

n = pα1
1 pα2

2 · · · p
αk
k , αi ≥ 1.

We define
M(n) = max{α1, α2, · · · , αk}

and
m(n) = min{α1, α2, · · · , αk}.

We also define M(1) = m(1) = 1. The sums
∑

n≤xM(n) and
∑

n≤xm(n) have been well investi-
gated in the literature. In 1969, Ivan Niven [10] proved that∑

n≤x
M(n) ∼ Bx, as x→∞ (1)

where

B = 1 +
∞∑
k=2

(
1− 1

ζ(k)

)
.

B can be evaluated to be 1.705211 approximately. He also showed that∑
n≤x

m(n) = x+
ζ
(

3
2

)
ζ(3)

x
1
2 + o(x

1
2 ). (2)

The aim of this note is to prove the following theorems:
∗Research partially supported by a Queen’s graduate fellowship.
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Theorem 1 Assuming the Riemann hypothesis,∑
n≤x

M(n) = Bx+ O(x
17
54

+ε). (3)

Moreover, unconditionally, we have ∑
n≤x

M(n) = Bx+ Ω(x
1
4 ). (4)

Theorem 2 Assuming the Riemann hypothesis, we have∑
n≤x

m(n) = x+
7∑
i=2

A(i)x
1
i + O(x

12
85

+ε), (5)

where

γi,k =
∏

0≤j≤k−1
j 6=i

ζ

(
k + j

k + i

)∏
p

(
1 +

2k−1∑
m=k+1

p−
m
k+i −

3k∑
m=2k+2

p−
m
k+i

)
,

A(2) = γ0,2, A(3) = γ1,2 + γ0,3, A(4) = γ1,3 + γ0,4,

A(5) = γ2,3 + γ1,4 + γ0,5, A(6) = γ2,4 + γ1,5 + γ0,6,

and
A(7) = γ3,4 + γ2,5 + γ1,6 + γ0,7.

Also, unconditionally, we have∑
n≤x

m(n) = x+
7∑
i=2

A(i)x1/i + Ω(x
1
10 ). (6)

Before proving these theorems, we would like to briefly review what is known about these sums.
Perhaps unaware of Niven’s work, in 1975, C. W. Anderson proposed the following problem in the
American Mathematical Monthly:

Problem: Prove that

lim
x→∞

1
x

∑
n≤x

M(n) = 1 +
∞∑
m=2

µ(m)
m(m− 1)

,

where µ(m) is the Möbius function.

In response, T. Salat pointed out that the above sum had already been investigated by Niven in
his 1969 paper. A solution to Anderson’s problem was also submitted by Ram Murty and Kumar
Murty. In fact, they reported a mistake in the question and showed that the correct term on the
right hand side should be

1−
∞∑
m=2

µ(m)
m(m− 1)

,

but this was not mentioned by the editor when responses to Anderson’s problem were referenced
in a later issue of the Monthly (see [1].) It is not difficult to see that this correct term is indeed
equal to Niven’s constant B. Since(

1− 1
ζ(k)

)
<

1
2k−1

for k ≥ 2,
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the sum defining B in (1) is absolutely convergent. Thus, by interchanging summations, we see
that

∞∑
k=2

(
1− 1

ζ(k)

)
= −

∞∑
k=2

∞∑
m=2

µ(m)
mk

= −
∞∑
m=2

µ(m)
m(m− 1)

.

Niven’s result was made effective by D. Suryanarayana and R. Sitaramachandrarao in 1977. In
[12], they proved that ∑

n≤x
M(n) = Bx+ x

1
2 exp(−c log3/5 x(log log x)−

1
5 ), (7)

where c is an absolute positive constant. The main ingredient in their proof is a result of Walfisz
(proved in [14]), which we will state in the next section. They also prove that∑

n≤x
m(n) = x+ γ0,2x

1
2 + (γ1,2 + γ0,3)x

1
3 + (γ1,3 + γ0,4)x

1
4

+ (γ2,3 + γ1,4 + γ0,5)x
1
5 + O(x

1
6 ),

(8)

where γi,k’s are as defined in Theorem 2.
Unaware of the results of [12], in 1991, Hui Zhong Cao obtained an error estimate of O(x

1
2 log x)

in [4]. This estimate is weaker than that obtained in [12]. Cao also provides an estimate for∑
n≤xm(n), but this is also not as sharp as equation (8). In the next two sections, we will estimate∑
n≤xM(n). We will also refine some known estimates about

∑
n≤xm(n) in the last section. The

two main theorems proved in this note are Theorems 1 and 2.

2 Preliminary results

In this section, we will mention some results which are needed in this paper. For a fixed positive
integer k ≥ 2, we define a k-free integer as a positive integer which is not divisible by the k-th
power of any of its prime factors. Let Sk(x) denote the number of k-free integers less than or equal
to x. It turns out that

∑
n≤xM(n) is directly related to the distribution of k-free numbers. By

elementary number theory we know that for an integer k ≥ 2,

Sk(x) =
x

ζ(k)
+ O(x

1
k ).

The direct connection between the error terms

Ek(x) = Sk(x)− x

ζ(k)

for k ≥ 2 and the error term in the sum
∑

n≤xM(n) is indicated in the following proposition, which
is also mentioned in [10] and [12]:

Proposition 3 ∑
n≤x

M(n) = Bx−
j∑

k=2

Ek(x) + O(1),

where

j =
⌈

log x
log 2

⌉
.
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Proof. We begin by observing that the maximum of {M(1),M(2), · · ·M(n)} is
⌈

log x
log 2

⌉
. Also, for

k ≥ 2, the number of integers less than or equal to x such that M(n) = k − 1 is Sk(x)− Sk−1(x).
Thus, if

j =
⌈

log x
log 2

⌉
,

we get that ∑
n≤x

M(n) =
j+1∑
k=2

(k − 1)(Sk(x)− Sk−1(x)).

Since Sj+1(x) = x, the above sum is equal to

jx+
j∑

k=2

(k − 1)Sk(x)−
j∑

k=1

kSk(x),

which, on further simplification, is equal to

jx−
j∑

k=2

Sk(x)− 1.

Writing
Sk(x) =

x

ζ(k)
+ O(x

1
k ),

the above expression becomes

x+ x

j∑
k=2

(
1− 1

ζ(k)

)
−

j∑
k=2

Ek(x)− 1.

This is equal to

Bx− x
∑
k>j

(
1− 1

ζ(k)

)
−

j∑
k=2

Ek(x)− 1.

Since
1− 1

ζ(k)
<

1
2k−1

,

we get that ∑
k>j

(
1− 1

ζ(k)

)
<
∑
k>j

1
2k−1

=
1

2j−1
= O

(
1
x

)
.

Thus, ∑
n≤x

M(n) = Bx−
j∑

k=2

Ek(x) + O(1).

�

While the trivial estimate for Ek(x) is O(x
1
k ), substantially better estimates can be found, especially

under the assumption of the Riemann hypothesis. We refer the reader to an excellent survey of
Pappalardi [11] on various improvements of this error term. In particular, the following results are
relevant to this note:
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In 1963, Walfisz [14] proved that

Ek(x) = x
1
k exp(−ck−8/5 log3/5 x(log log x)−1/5). (9)

We advise the reader that Walfisz’s theorem has not been recorded correctly in [11]. The exponent
1/5 in the third displayed formula on page 73 should be replaced by −1/5. The authors, in [12],
prove (7) by applying Walfisz’s result (9) for k = 2 and the trivial estimate O(x

1
k ) for k ≥ 3 to the

right hand side of Proposition 3. Clearly, any improvement in the estimates for Ek(x) will give a
better error term for

∑
n≤xM(n). We now state two better estimates for Ek(x) which have been

obtained by assuming the Riemann hypothesis. In 1993, Jia [8] proved the following result:

Proposition 4 Assuming the Riemann hypothesis,

E2(x) = O(x17/54+ε).

The next result was proved in 1981 by Montgomery and Vaughan [9]:

Proposition 5 Assuming the Riemann hypothesis, for k ≥ 2,

Ek(x) = O(x
1
k+1

+ε) for any ε > 0.

In 1989, Graham and Pintz [5] obtained the following better estimate for E3(x):

Proposition 6 Assuming the Riemann hypothesis,

E3(x) = O(x7/30).

3 Proof of Theorem 1

We recall, from Proposition 3, we get that

∑
n≤x

M(n) = Bx−
j∑

k=2

Ek(x) + O(1).

By Proposition 4,
E2(x) = O(x17/54+ε).

Moreover, by Proposition 5, for 3 ≤ k ≤ j,

Ek(x) = O(x
1
4

+ε).

Thus, we get ∑
n≤x

M(n) = Bx+ O(x17/54+ε).

This proves equation (3), the first part of Theorem 1. In order to obtain equation (4), it suffices to
show that

E2(x) + E3(x) = Ω(x
1
4 ). (10)

This is because equation (9) gives us an unconditional estimate for E4(x), which is sharper than
O(x1/4). Substituting the trivial estimate O(x1/k) for k ≥ 5, equation (9) for k = 4 and equation
(10) in Proposition 3, we obtain equation (4). Equation (10) follows as a corollary to the following
general result, which seems not to have been noticed before and is interesting in its own right:
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Proposition 7 Let S(x) be a complex-valued function. Suppose that

f(s) = s

∫ ∞
1

S(x)
xs+1

dx

has a pole at a complex number with real part θ. Then

S(x) = Ω(xθ).

Proof. The main idea of the proof of Proposition 7 is inspired by a technique followed by Vaidya
in [13] to find out an Ω-type estimate for Ek(x) conditional upon either the Riemann hypothesis
or the existence of a simple zero of ζ(ks) on the line Re(s) = k/2 which is not a zero of ζ(s).

Let us assume that S(x) = o(xθ). Then, for every ε > 0, we can find x0 = x0(ε) such that for
x ≥ x0, we have |S(x)| < εxθ. Let |S(x)| ≤ A for 0 < x < x0. Thus, for s = σ + it with σ > θ, we
have

|f(s)| < |s|A
∫ ∞

1
x−1−θdx+ |s|ε

∫ ∞
1

x−σ−1+θdx

= |s|A
θ

+ |s| ε

σ − θ
.

Now, let us first consider the case when f(s) has a simple pole at ρ = θ+ it0 with non-zero residue
c. Then, as σ → θ, (t = t0), we get that

lim
σ→θ
|(σ − θ)f(σ + it0)| = |c|.

Thus, by the above inequality, we get that for every ε > 0,

|c| = lim
σ→θ
|(σ − θ)f(σ + it0)|

≤ lim
σ→θ

{
|σ + it0|(σ − θ)

A

θ
+ |σ + it0|ε

}
= ε|σ + it0|.

This is not possible as c is non-zero. Thus, our assumption that S(x) = o(xθ) is false. Therefore,

S(x) = Ω(xθ).

The case when f(s) has a pole of order ≥ 2 can also be dealt with by a similar analysis. This
proves Proposition 7. �

In particular, if we let
S(x) = E2(x) + E3(x),

then it is not difficult to see that

s

∫ ∞
1

S(x)
xs+1

dx =
ζ(s)
ζ(2s)

+
ζ(s)
ζ(3s)

− ζ(s)
ζ(2)

− ζ(s)
ζ(3)

. (11)

Let % = 1
4 + iγ be a pole of the right hand side of equation (11). We prove the existence of such

a pole by applying some zero-density arguments. A classical result of Selberg tells us that for T
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sufficiently large, the number of zeros of ζ(2s) on the line segment joining 1
4 to 1

4 + iT is at least
AT log T for some A > 0. Such zeroes are the singularities of

ζ(s)
ζ(2s)

+
ζ(s)
ζ(3s)

− ζ(s)
ζ(2)

− ζ(s)
ζ(3)

unless possibly they are also zeros of ζ(s) or ζ(3s). Since the real part of % is 1/4, by the functional
equation, we get a zero of ζ(s) where the real part of s is equal to 3/4. However, by a theorem of
Carlson, (see ([6], Theorem 10.1) we know that the number of zeros of ζ(s) up to height T with
real part 3/4 is O(T 3/4 log T ). Therefore, not every zero of ζ(2s) is a zero of ζ(s) or ζ(3s). Thus,
the function

s

∫ ∞
1

E2(x) + E3(x)
xs+1

dx

will have at least one pole with real part 1/4. Thus, by applying Proposition 7 to the function
S(x) = E2(x) + E3(x), we deduce equation (10). This concludes the proof of Theorem 1.

4 Proof of Theorem 2

In this section, we refine known estimates of the sum
∑

n≤xm(n). We recall that equation (8)
has been proved unconditionally in [12]. Once again, this estimate can be improved by assuming
the Riemann hypothesis. Analogous to a k-free integer, a k-full integer is defined as a positive
integer which is divisible by the k-th power of all its prime factors. We observe that (analogous to
Proposition 3), if Lk(x) denotes the number of k-full integers less than or equal to x, then∑

n≤x
m(n) = x+ L2(x) + · · ·L7(x) + O(x

1
8 ), (12)

since j = O(log x) and
∑

k≥8 Lk(x) = O(x1/8) + O(x1/9 log x). We now state some known results
about the distribution of k-full integers. The following result has been proved in [7]:

Proposition 8 For every k ≥ 1,

Lk(x) = γ0,kx
1/k + · · ·+ γk−1,kx

1/(2k−1) + ∆k(x),

where the γi,k’s are as given after equation (8). Moreover,

∆3(x) = O(x
263
2052 ), ∆4(x) = O(x

3091
25981 ), ∆5(x) = O(x

1
10 ) and ∆6(x) = O(x

1
12 ).

The following conditional result proved in [15] in 2001 gives an estimate for ∆2(x) :

Proposition 9 Assuming the Riemann hypothesis,

∆2(x) = O(x
12
85

+ε) for any ε > 0.

We also recall the following unconditional Ω-type result of Balasubramanian, Ramachandra and
Subbarao proved in [3]:

Proposition 10
∆2(x) = Ω(x1/10).
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We are now ready to prove Theorem 2:
We had observed above in equation (12) that∑

n≤x
m(n) = x+ L2(x) + · · ·+ L7(x) + O(x

1
8 ).

Thus, by using Proposition 9 for k = 2, Proposition 8 for 3 ≤ k ≤ 6, and the elementary estimate

∆k(x) = O(x
1
k+1 )

for k = 7, we get that ∑
n≤x

m(n) = x+
7∑
i=2

A(i)x
1
i + O(x

12
85

+ε),

where the A(i)’s are as given above. We also observe that by applying equation (8), Proposition 8
and Proposition 10 to the right hand side of equation (12), we get that

∑
n≤x

m(n) = x+
7∑
i=2

A(i)x1/i + Ω(x
1
10 ).

This proves Theorem 2.

5 Concluding remarks

Thus, in this paper, we saw how closely the Riemann hypothesis is linked to the averages of
exponents in factoring integers. The key ingredients in the proofs of Theorems 1 and 2, as we
saw in the last two sections, are the refined estimates of Ek(x) for k ≥ 2 obtained by assuming
this ubiquitous conjecture of Riemann. We should note that these estimates were not available to
Suryanarayana and Sitaramachandrarao when they wrote their paper [12] in 1977. One would also
like to know if the estimates for ∆k(x) for k ≥ 3 can be further improved under the assumption of
the Riemann hypothesis or even some quasi-Riemann hypothesis. Could one also obtain optimal
error terms for the sums

∑
n≤xM(n) and

∑
n≤xm(n)? We relegate these questions to future

research.
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