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When learning Calculus or Analysis for the first time, it can feel as if the entire subject
is only about computation; one can forget the forest for the trees so to speak, and it all
seems a bit arbitrary. However, there is no subject in mathematics that is an island; and
Analysis is one such branch which is at the heart of nearly all branches of mathematics. For
this particular article, I want to show how basic geometry that one learns before 11th/12th

is connected with the abstract analysis that comes afterwards.(The inspiration comes from
[4])

Geometric Point of View

In school, one usually learns about trigonometry from triangles and circles. Just to recall,
if one has a right angled triangle ∆PDO, then the sine and cosine of ∠POD = θ is given
by:
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Classical Definitions

sin(θ) =
PD

OP

cos(θ) =
OD

OP

These are the fundamental trigonometric definitions from which everything else in the
subject can be derived. However, this definition can only work for angles which are less than
90◦- we can consider them to be functions mapping (0, 90◦) radians to R- so what do we
do for more general triangles, or in mathematical terms, how do we extend the domain of
definition for other angles? Here’s one such example of the extension of the domain (0, 90◦)
:

Extension of domain to [0, 360◦)

Consider a point P (x, y) subtending an angle of θ on the unit circle. Then we have:

x = cos(θ)

y = sin(θ)

In fact a different system of measuring angles on circles is adopted henceforth to allow
greatest simplicity : 1 radian is the angle subtended by an arc of length 1 on the unit circle.



Hence in this system for an arc length l, the angle it subtends is:

θ =
l

1

Hence, the new domain of definition is: [0, 2π). In this system, you can clearly see that both
the sin, cos functions are bounded by 1(exercise: try applying the Pythagorus theorem and
play with the algebraic expression). Also you can prove the following addition theorems for
both sin and cos functions by simple geometry:

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

Analytic Point of View

When one starts learning analysis or calculus, they are usually told to forget about the old
Euclidean viewpoint. ”Look here”, they say; ”We have to be rigorous- we can’t rely on these
pictures for a completely self contained definition! We must have an independent way of
defining the trigonometric functions that only depends on the properties of real numbers...”

Flipping through a textbook, one would usually come across a definition like the follow-
ing:

sin(θ) =
θ

1!
− θ3

3!
+

θ5

5!
+ . . .+ (−1)n+1 θ2n+1

(2n+ 1)!
+ . . . ,∀θ ∈ R

cos(θ) =
1

0!
− θ2

2!
+

θ4

4!
+ . . .+ (−1)n

θ2n

(2n)!
+ . . . ,∀θ ∈ R

Leaving aside the meaning of such infinite sums for the moment, at first sight, this seems
totally different from the definition you saw just before. The earlier definition you saw is
completely geometric, while this definition is completely algebraic. How can there be any
connection between the two?

What we really need is a way to characterize sin : [0, 2π) → R and cos : [0, 2π) → R
which are from the euclidean point of view in terms completely in analysis. A preliminary
idea might be to get a relation between functions that is independent of the pictures used
to get there. One relation which these functions:

x(θ) = cos(θ)

y(θ) = sin(θ)

already satisfy x2(θ) + y2(θ) = 1. But that is not very useful in the direct sense, as there is
no direct path to the analytic definitions. So what do we do now?

It has been found again and again that when dealing with functions/general object which
return numbers, it is sometimes easier to describe ’changes’ in quantities rather than the
actual functions themselves. In a sense, it boils down to asking what happens to the function



when I slightly tweak the input? How it responds to small changes of input(differentiation)
can be used to characterize the entire function by repeatedly ’adding together’ these small
changes(integration)- this is the essence of Calculus. Let us see what happens when we ask
the same question here;(note we use t as the parameter for the angle for an analogy with
time)

From the figure(as an exercise in high school geometry) and the algebraic addition for-
mulae we can see the following:

∆x

∆t
=

x(t+∆t)− x(t)

∆t
= − sin

(
t+

∆t

2

)(
sin
(
∆t
2

)
∆t
2

)
∆y

∆t
=

y(t+∆t)− y(t)

∆t
= cos

(
t+

∆t

2

)(
sin
(
∆t
2

)
∆t
2

)

To proceed further, we need a lemma[1]:



Lemma

lim
∆t→0+

sin(∆t) = 0

lim
∆t→0+

cos(∆t) = 1

lim
∆t→0

sin(∆t)

∆t
= 1

The first two theorems can be proved by noting that both sin, cos are monotonically
increasing and decreasing respectively for small ∆t > 0, and thus they are invertible. Hence
for example, if someone gives an ϵ > 0, we can find a suitable ∆tϵ such that

0 < sin(∆t) < ϵ, 0 < ∆t < ∆tϵ = sin−1(ϵ)

Hence the limit exists for the first equation, and the second equation can be proved by

noting cos(∆t) =
√
1− sin2(∆t).

By considering the figure inscribed in a unit circle above, we can see that:

Area(∆EFO) ≤ Area(ArcEFO) ≤ Area(∆HFO)



Hence we get:

1

2
sin(∆t) ≤ ∆t

2π
∗ π ≤ 1

2

sin(∆t)

cos(∆t)

Dividing by sin(∆t)
2 on both sides:

1 ≤ ∆t

sin(∆t)
≤ 1

cos(∆t)

=⇒ cos(∆t) ≤ sin(∆t)

∆t
≤ 1

Taking the limit ∆t → 0+, we get the last relation by Sandwich Theorem. If ∆t is negative,
then plug in ∆u = −∆t and get the same relation.

Using the addition formulae and taking the limit ∆t → 0 on both sides we obtain the fact
that both x, y are differentiable functions, and we get the following system of equations:

dx

dt
= −y(t)

dy

dt
= x(t)

along with the initial conditions x(0) = 1, y(0) = 0.

Aha! After a long struggle, we have reduced the geometric picture down to relations between
purely functions- now Analysis can come in naturally!

We already know that the sine and cosine functions are characterized by these equations.
But how do we obtain a purely algebraic expression for them from these? If we consider
θ(t) = t =⇒ θ′(t) = 1, as in the θ variable is a function of time and the angular speed is
1, then we have ’equations of motion’ for a particle in analogy with physics.

dx

dt
= −y(t)

dy

dt
= x(t)

Now this looks a bit clumsy, but by writing everything in a vector form we can greatly
compact things; just remember that for a vector function of a real number, we take limits,
derivatives and integrals component-wise.

lim
n→∞

rn =
(
lim
n→∞

xn, lim
n→∞

yn

)
dr

dt
=

(
dx

dt
,
dy

dt

)
∫ b

a

r(t)dt =

(∫ b

a

x(t)dt,

∫ b

a

y(t)dt

)



whenever the quantities on the right hand side exist. In vector form, if we take r(t) =
(x(t), y(t)) as the position vector, the actual trajectory of the particle is:

dr

dt
= f(r(t))

where f : R2 → R2 is defined as:

f(x, y) = (−y, x),∀x, y ∈ R

You can interpret this equation as giving the velocity of the particle for each position and
time. Now if you know the velocity at one point of time, you roughly know where the
particle is going for the next small time. At the next position, you plug that position back
into the equation and find out the new velocity, and from that where you go next and so on
ad infinitum...

(Obviously the idea only works if the functions in our differential equations are ’nice’ enough
in a sense. For more particulars see [2],[3])

As a small exercise, try to compute the dot product of r with dr/dt... you will see that the
velocity of the particle is perpendicular to the position at each point of time, and moreover
the magnitude of this velocity is fixed; this makes sense as we derived these equations from
a particle travelling along a circle with uniform angular speed; so the instantaneous velocity
must be perpendicular to the position.

All this still doesn’t give us the analytic forms that we started our quest for. However,
let us go on with the rough intuitive idea developed above, and let us consider a particle
starting at the point (1, 0):
Then the velocity at this initial point is given as:

dr

dt
(0) = (0, 1)

This means that it tends to go upwards with a unit speed initially. As we discussed earlier,
let us consider as if the particle is actually going in the upward direction for some amount
of time; what is the position of the particle after some time? By the fundamental theorem
of calculus(applied component wise):

r1(t)− r1(0) =

∫ t

0

(0, 1)dt = (0, t) =⇒ r1(t) = (1, t)

The trajectory is plotted below:



As you can see, this isn’t quite right; for initial time its a good enough approximation,
but it doesn’t quite curve the way its supposed to. What do we do? Well, we can think
of the following: The particle travels some distance in the direction of this trajectory, but
the velocity is still given by the original differential equation; in effect we have the following
modification:

dr2
dt

= (−t, 1)

for every single instant; as that gives what the next step should be after time t; and you can
make that initial time step as small or as big as you please, so we get the vector for velocity
for each point of time for the ’next’ instant of time. This velocity vector points in a small
direction towards the left after some time passes, so the new trajectory should curve a bit;
again using the fundamental theorem of calculus we get:

r2(t)− r2(0) =

∫ t

0

(−t, 1)dt =

(
− t2

2!
, t

)
=⇒ r2(t) =

(
1− t2

2!
, t

)
The trajectory looks like(for a small time):



Now you have to admit this looks exciting! Just by the idea of approximating the real
trajectory of the particle we are getting a sequence of trajectories which are curving the
correct way the more number of times we iterate the procedure, and the expressions for
the approximations look exactly like the analytic definitons. To actually prove that analytic
definitions hold, we must in essence prove the following:

Finale?

r(t) = lim
n→∞

rn(t) is the unique solution of the differential equation,∀t ∈ [0, 2π)

And wouldn’t you know it, but that is exactly the content of the famous Picard-Lindelof
Theorem[2], which states that under certain conditions on f, the differential equation we
started with has a unique solution atleast on some small interval. Hence the disparate
definitions of sin, cos actually are connected to each other through the medium of differential
equations!- and that is just the beginning! Differential equations connect other disparate
areas and can be used as a way to define special functions of analysis in the most natural
way...so we too can see further from the shoulders of Differential equations...



Appendix(Proofs of convergence)

Consider the series for xn(t), t ∈ [0, 2π). For n > m consider:

|xn(t)− xm(t)| ≤

∣∣∣∣∣
n∑

k=m+1

(−1)k+1 t2k+1

(2k + 1)!

∣∣∣∣∣
≤

n∑
k=m+1

|t|2k+1

(2k + 1)!

≤
n∑

k=m+1

(2π)2k+1

(2k + 1)!

≤
2n+1∑

k=2m+1

(2π)k

k!
b ≤ (2π)2m+1

(2m+ 1)!

2n−2m∑
k=0

(2π)k

(2m+ 1)k

Now for m > 6, 2m+ 1 > 2π and 2π/(2m+ 1) < 1/2 Let c = 2π
7 . Hence we have:

|xn(t)− xm(t)| ≤ (2π)2m+1

(2m+ 1)!

2n−2m∑
k=0

(2π)k

(2m+ 1)k
≤ (2π)2m+1

(2m+ 1)!

∞∑
k=0

(2π)k

(2m+ 1)k
≤ (2π)2m+1

(2m+ 1)!

1

1− 2π
2m+1

≤ Acm

where A ∈ R≥0 is a constant. Hence for any given ϵ > 0, we can always find an N such that
for any n,m > N , we have:

|xn(t)− xm(t)| < ϵ

Note that by the algebra we did previously, this N is the same for any t ∈ [0, 2π); hence
xn : [0, 2π) → R is a Uniformly Cauchy Sequence of Functions. We can write a very similar
proof for yn. Moreover, since we have:

dxn+1

dt
(t) = −yn(t)

yn+1

dt
(t) = xn(t)

it is possible to show that xn, yn and their derivatives all are uniformly converging on [0, 2π).
Referring to Theorem 7.17 from Rudin’s book[3], we have:

dx

dt
(t) = lim

n→∞

dxn+1

dt
(t) = lim

n→∞
−yn(t) = −y(t)

dy

dt
(t) = lim

n→∞

dyn+1

dt
(t) = lim

n→∞
xn(t) = x(t)

Hence we have atleast one solution of the system of differential equations. Now suppose
we have two distinct solutions of this differential equations, (x(t), y(t)) and (x1(t), y1(t)).
Consider the function [5]:

h(t) = (x(t)− x1(t))
2 + (y(t)− y1(t))

2

Then h is differentiable and we have:

h′(t) = −2(x(t)− x1(t))(y(t)− y1(t)) + 2(x(t)− x1(t))(y(t)− y1(t)) = 0



Hence h is constant over [0, 2π). Since the initial conditions are same, h(0) = 0, which
implies that the solution of the differential equations is unique over [0, 2π). It is in this
sense we say that we get back the analytic definitions of sin, cos from the geometric ones,
since we made the differential equations from the geometric sin, cos.
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