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Abstract
Here at first I have presented a simple problem related to π and then I have presented

one generalised version of this, and at last presented some ideas and some interesting
series related to π

1 A simple proof related to pi:

The first published statement of this result was in 1971 by Dalzell. It was also
presented as a problem in 1968 Putnam Competition and later it also came in
JEE-Adv. The problem was to compute the integral,∫ 1

0

x4(1 − x)4

1 + x2 dx

I encourage readers to try it at first.
Sol: ∫ 1

0

x4(1 − x)4

1 + x2 dx =
∫ 1

0

(
x6 − 4x5 + 5x4 − 4x2 + 4 − 4

1 + x2

)
dx

=
x7

7 − 2x6

3 + x5 − 4x3

3 + 4x

1

0
− 4

[
tan−1(x)

]1
0

=
x7

7 − 2x6

3 + x5 − 4x3

3 + 4x

1

0
− π

= 1
7 − 2

3 + 1 − 4
3 + 4 − π

= 22
7 − π

Now observe one thing,
x4(1 − x)4

1 + x2 > 0 =⇒
∫ 1

0

x4(1 − x)4

1 + x2 dx > 0 as 1 > 0

Hence,
22
7

> π

1
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Figure 1: Graph of the integrand for various m, n

2 Want more generalised version?

N. Backhouse in [Bac95] presented a more generalised version of this integral.

Im,n =
∫ 1

0

xm(1 − x)n

1 + x2 dx = a + bπ + c log(2)

where a, b, c are rationals that depend on m, n ∈ Z+, and a and b have opposite
sign. Backhouse also showed that if 2m − n ≡ 0( mod 4) then c = 0 and a variety
of approximation to π are obtained. An integral equal to a + bπ leads to a rational
approximation of π as |a

b |,

a + bπ > 0 ⇐⇒ π > −a

b

and the maximum value of the integrand gives an upper bound on the error. As
m, n increase, the integrand becomes increasingly flat(Figure-1) (Backhouse calls
them “pancake functions”) and the approximation to π is improved. In [Luc05],
Lucas, showed that there are various ways to form integrals with positive integrands
that evaluate to 355

113 − π.
Here I am presenting one of those integrals. Here the approach is to multiply the in-
tegrand by a low order polynomial, and adjust the coefficients to return the correct
result.Choosing the simplest case where the polynomial is ≥ 0 on [0, 1] simplest in
the sense of the smallest number of digits in the coefficients. Experimenting with
Im,n leads to the results that can be solved in the similar ways, I encourage readers
to verify this.

∫ 1

0

x7(1 − x)7(192 − 791x + 983x2)
3164(1 + x2) dx = 355

113 − π

∫ 1

0

x8(1 − x)8(25 + 816x2)
3164(1 + x2) dx = 355

113 − π
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3 Another idea to think about

Im,n =
∫ 1

0

xm(1 − x)n

1 + x2 dx = a + bπ + c log(2)

The idea is to multiply the integrands Im,n by α ∈ Q+ so that bα = −1.Observe
that to do this we have to set m, n in such a way that b < 0. hence, RHS becomes
aα − π, we made c = 0 . We then require m, n large enough, so that when we add

β =
(355

113 − aα

)
it is > 0

then finally RHS becomes 355
113 − π. The integral shall look like

∫ 1

0

αxm(1 − x)n

1 + x2 + β

 dx = 355
113 − π

remember, here it’s wise to chhose m, n in such way so that 4|(2m − n).
Try to find such an integral(not very easy!), and then calculate it.As a sample I’m
giving one where

α = 1
4 , m = 10, n = 8, β = 5

138450312
.

4 Madhava-Leibniz series:

The Leibniz’s formula for π, states that
π

4 = 1 − 1
3 + 1

5 − 1
7 + 1

9 · · ·

It is also called the Madhava-Leibniz series as it is a special case of a more general
series expansion for the inverse tangent function, first discovered by the Indian
mathematician Madhava of Sangamagrama in the 14th century, the specific case
that I have written was first published by Leibniz around 1676.We shall look at
one of the proofs of this series:
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Proof.
π

4 = arctan (1)

=
∫ 1

0

1
1 + x2dx

=
∫ 1

0

(
1 − x2 + x4 − x6 · · ·

)
dx

=
∫ 1

0

(
(1 − x2 + · · · x2n) + (−1)n+1x2n+2(1 − x2 + x4 · · · )

)
dx

=
∫ 1

0

 n∑
k=0

(−1)kx2k + (−1)n+1 x2n+2

1 + x2

 dx

=
 n∑

k=0

(−1)k

2k + 1

 + (−1)k+1
∫ 1

0

x2n+2

1 + x2dx



(1)

Let’s look at the integral at the end part. Observe that in (0, 1), 0 ≤ 1
1+x2 ≤ 1

hence,
0 ≤

∫ 1

0

x2n+2

1 + x2dx ≤
∫ 1

0
x2n+2dx = 1

2n + 3
Now, we shall use Sandwich Theorem

0 ≤ lim
n→∞

∫ 1

0

x2n+2

1 + x2dx ≤ lim
n→∞

1
2n + 3 = 0

=⇒ lim
n→∞

∫ 1

0

x2n+2

1 + x2dx = 0 (2)

Now, from (1) and using (2)

π

4 = lim
n→∞

π

4 = lim
n→∞

 n∑
k=0

(−1)k

2k + 1

 + (−1)k+1 lim
n→∞

∫ 1

0

x2n+2

1 + x2dx


= lim

n→∞

 n∑
k=0

(−1)k

2k + 1


=

∞∑
k=0

(−1)k

2k + 1

= 1 − 1
3 + 1

5 − 1
7 + 1

9 · · ·

Observe that
π

4 = 1 − 1(3
1
) + 1(5

1
) · · ·

Visualise the binomial coefficients in Pascal’s triangle!
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5 Nilakantha Series

π = 3 + 4
2 · 3 · 4 − 4

4 · 5 · 6 + 4
6 · 7 · 8 − · · ·

The formulae to calculate π had been found in India already in the fourteenth or
fifteenth century. It first appeared in Sanskrit verse in the book Tantrasangraha
from about 1500BC the Indian mathematician, astronomer and universal genius
Nilakantha Somayaji (1444 − 1544). unfortunately I don’t know any proof of this,
so I shall discuss some interesting things which relates this to inverse binomial
coefficients. the modification below is Daniel Hardisky’s modification of the series:

π = 3 + 4
2 · 3 · 4 − 4

4 · 5 · 6 + 4
6 · 7 · 8 − · · ·

= 3 + 4
6

1 · 2 · 3
2 · 3 · 4 − 1 · 2 · 3

4 · 5 · 6 + 1 · 2 · 3
6 · 7 · 8 − · · ·


= 3 + 2

3

 1(4
3
) − 1(6

3
) + 1(8

3
) − · · ·



Figure 2: Pascal’s triangle and Nilakantha series

Observe, how the inverse of binomial co-
efficients are behaving and giving a for-
mat of aπ + b.

6 Cherry on the top:

Some other series giving π

• This series is given by our Srinivasa
Ramanujan.This is one of the sev-
eral rapidly converging infinite se-
ries of π he found in 1910
1
π

= 2
√

2
9801

∞∑
k=0

(4k)!(1103 + 26390k)
(k!)43964k

which computes a further eight decimal places of π with each term in the series.
His series are now the basis for the fastest algorithms currently used to calculate
π. Even using just the first term gives

π ≈ 9801
2206

√
2

≈ 3.14159273

There is a generalization of this called Ramanujan-Sato series.
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• want to count π upto crazy high
decimal places? Extremely long dec-
imal expansions of π are typically
computed with iterative formulae like
the Gauss–Legendre algorithm and
Borwein’s algorithm.

• Want to count ta particular number
digit of π here .
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