
Natural numbers, integers,

rationals



Equivalence relation on a set

Let A be a set. A binary relation on A is a

subset R of A×A.

We write a ∼ b (a is related to b) if (a, b) ∈ R.

We shall be interested in a special type of

relation called the equivalence relation.

A relation ∼ on A is called an equivalence relation

if the following three conditions hold:

1. x ∼ x for all x ∈ A.

2. For x, y ∈ A, if x ∼ y, then y ∼ x.

3. For x, y, z ∈ A if x ∼ y and y ∼ z hold, then

x ∼ z.
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One of the most important results in this con-
text:

Theorem. Let A be a set. An equivalence re-
lation ∼ on A partitions A into disjoint subsets.
(Converse is also true.)

Proof. For a ∈ A, write

[a] := {x ∈ A |x ∼ a},

called the equivalence class of a.

Clearly,

A =
⋃
a∈A

[a]

Check that the equivalence classes are either
equal or disjoint.

Conversely, let

A =
⋃
α∈I

Aα,
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be a partition of A into disjoint subsets.

Define: a ∼ b if and only if there is some α ∈
I such that a, b ∈ Aα. Check that this is an

equivalence relation.



A construction

For any set A, define S(A) = A ∪ {A}. This

is called the successor operation. Let us now

apply this operation repeatedly, starting from:

∅

The empty set!
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Starting point: ∅.

S(∅) = ∅ ∪ {∅} = {∅}.

S({∅}) = {∅} ∪ {{∅}} = {∅, {∅}}.

S({∅, {∅}}) = {∅, {∅}}∪{{∅, {∅}}} = {∅, {∅}, {∅, {∅}}}.

S(−) = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}.

... and so on...
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Let us give those sets from the last page some

names (rather symbols).

Write:

0 for ∅.

1 for {∅} (= {0}).

2 for {∅, {∅}} (= {0,1}).

3 for {∅, {∅}, {∅, {∅}}} (= {0,1,2}).

4 for {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}} (= {0,1,2,3}).

... and so on ...
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The system of symbols {0,1,2,3,4,5, · · · } thus

obtained is the set of natural numbers, denoted

by N.

Remark 1: Each natural number is a set.

Remark 2: A natural number is the set of its

preceding natural numbers.

The set N satisfies the so called Peano Axioms:

• 0 is a natural number.

• Every natural number has a successor which

is also a natural number.

• 0 is not the successor of any natural num-

ber.
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• If the successor of x equals the successor

of y, then x equals y.

• (Axiom of Induction) If a statement is true

for 0, and if the truth of that statement for

a number implies its truth for the successor

of that number, then the statement is true

for every natural number.



Addition.

Define n+ 0 = n for all n. Then go on recur-

sively as follows:

n+ S(m) = S(n+m)

Illustration:

1 + 1 = 1 + S(0) := S(1 + 0) = S(1) = 2

2 + 1 = 2 + S(0) := S(2 + 0) = S(2) = 3

n+ 1 = n+ S(0) := S(n+ 0) = S(n)

Remark: Note that n+ 1 is the successor of n.
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The set N, together with addition + satisfies:

1. n+(m+p) = (n+m)+p for all m,n, p ∈ N.

2. n+m = m+ n for all m,n ∈ N.

3. n+ 0 = n for all n ∈ N.

Exercise: Prove the above properties!
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In an algebraic system as above we would like

to solve equations.

While the equation X + 1 = 2 has a solution

in N, the following

X + 2 = 1

does not (why?).

Question. Can we embed N in a bigger sys-

tem, retaining all its properties, so that the

equation as above has a solution (in the big-

ger system)?

So we have to bring in the “negatives”. We

only have (N,+) and basic set theory at our

disposal. This will be our focus now.
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Construction of Integers

Consider the set X = N×N. On X, define the
relation:

(a, b) ∼ (c, d) if a+ d = c+ b

Example. (1,3) ∼ (5,7), (11,5) ∼ (100,94)
etc.

Exercise. Check that ∼ is an equivalence re-
lation.

Write Z = set of all equivalence classes.

Notation: [(a, b)] for the equivalence class con-
taining (a, b).

Now define addition on these equivalence classes:

[(a, b)]⊕ [(m,n)] := [(a+m, b+ n)]

(note that + is from N)
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Remark. What if [(a, b)] = [(c, d)] and [(m,n)] =

[(p, q)]? Do we have

[(a, b)]⊕ [(m,n)] = [(c, d)]⊕ [(p, q)]?

Let us check.

[(a, b)] = [(c, d)]⇒ (a, b) ∼ (c, d)

(a, b) ∼ (c, d)⇒ a+ d = c+ b

[(m,n)] = [(p, q)]⇒ (m,n) ∼ (p, q)

(m,n) ∼ (p, q)⇒ m+ q = p+ n

Then, a+d+m+q = c+b+p+n and therefore,

a+m + d+ q = c+ p + b+ n, implying (a +

m, b+ n) ∼ (c+ p, d+ q). In other words,

[(a, b)]⊕ [(m,n)] = [(c, d)]⊕ [(p, q)],

and the definition is consistent.
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What is the “zero” in Z?

It is the class of (0,0) (which is the same as
[(1,1)], [(2,2)], [(3,3)], · · · ).

The natural numbers are embedded in Z as
follows:

f : N −→ Z by

n 7→ [(n,0)]

Exercise: Prove that f is injective.

Do we have some [(a, b)] ∈ Z such that

[(a, b)]⊕ [(1,0)] = [(0,0)] ?

Yes, [(0,1)]⊕ [(1,0)] = [(1,1)] = [(0,0)].

In general, [(0, n)]⊕[(n,0)] = [(n, n)] = [(0,0)].

Let us call [(n,0)] as n and [(0, n)] as −n.
These are the negatives.
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Let us now drop the ⊕ notation. Also, write n

for [(n,0)] and −n for [(0, n)].

Take any integer [(a, b)] ∈ Z.

Then

[(a, b)] = [(a,0)] + [(0, b)] = a− b

Thus, we realized integers as difference of nat-

ural numbers.
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On N. we can also define multiplication.

Define n× 0 = 0 for all n.

Then,

n× S(m) = n×m+ n

You can easily check the properties of multi-

plication and the distributive law.

You can extend this definition to Z.

14



Now that we have addition and multiplication

on Z, consider the equation:

2x = 3

It has no solution in Z.

Again, can we embed Z into some bigger struc-

ture where we have a solution?

If we can accommodate reciprocals of

n ∈ Z r {0}, we shall be done.
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Almost a similar construction as before.

Take

X = {(a, b) ∈ Z× Z |b 6= 0}

Define a relation ∼ on X by:

(a, b) ∼ (c, d) iff ad = bc

Check that this is an equivalence relation.

Define Q = X/ ∼ (the set of equivlence classes).
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Notation: write [(a, b)] for the equivalence class

of (a, b).

Define:

[(a, b)] + [(c, d)] = [(ad+ bc, bd)]

[(a, b)]× [(c, d)] = [(ac, bd)]

Exercise: Check that the above operations are

well-defined.
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Take any [(a, b)] ∈ Q, with a 6= 0. Then

[(a, b)]× [(b, a)] = [(ab, ab)] = [(1,1)]

Let us keep this in mind.

For convenience, we write [(a, b)] as a
b .

We have an injective map

φ : Z −→ Q

n 7→
n

1

Therefore, we can identify n
1 of Q with n.
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Let n( 6= 0) ∈ Z. Note that, in Q we have

n

1
×

1

n
=

1

1

In other words, n has reciprocal in Q.
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Now consider the equation:

x2 = 2

This has no solution in Q.

One then constructs R to tackle this problem.

But this construction is not an algebraic one

as the above two.

That’s analysis.
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Again, another equation! Consider

x2 + 1 = 0

This has no solution in R.

How do we embed R into a bigger structure?

We shall take

R[X]

〈X2 + 1〉
,

where

〈X2 + 1〉 = {(X2 + 1)f(X) | f(X) ∈ R[X]}

(i.e. all multiples of X2 + 1).

Let us call R[X]
〈X2+1〉 as C.
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We shall see later that:

• there is a natural injection ϕ : R −→ C;

• −1 has a square root in C.

And this construction of C would be the model

for various such general constructions.
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