Natural numbers, integers,

rationals



Equivalence relation on a set

Let A be a set. A binary relation on A is a
subset R of A x A.

We write a ~ b (a is related to b) if (a,b) € R.

We shall be interested in a special type of
relation called the equivalence relation.

A relation ~ on A is called an equivalence relation

if the following three conditions hold:

1. z ~x for all x € A.

2. Forz,y € A, if x ~y, then y ~ .

3. Forxz,y,z€ A if x ~y and y ~ z hold, then

Xr ~ Z.



One of the most important results in this con-
text:

Theorem. Let A be a set. An equivalence re-
lation ~ on A partitions A into disjoint subsets.
(Converse is also true.)

Proof. For a € A, write

la] ;= {z € A|lx ~ a},

called the equivalence class of a.

Clearly,
A= [d]

acA

Check that the equivalence classes are either
equal or disjoint.

Conversely, let

A — U Aa,
acl



be a partition of A into disjoint subsets.

Define: a ~ b if and only if there is some o &
I such that a,b € An. Check that this is an
equivalence relation. .



A construction

For any set A, define S(A) = AU {A}. This
IS called the successor operation. Let us now
apply this operation repeatedly, starting from:

The empty set!



Starting point: 0.

S(0) =0u{0} = {0}.

S({03) = {0} U {{0}} = {0, {0} }.

S({0,{0}}) = {0, {0} }U{{0, {0}}} = {0, {0}, {0, {0}}}.
S(=) = {0,{0},{0,{0}},{0, {0}, {0, {0}}}}.

.. and so on...



et us give those sets from the last page some
names (rather symbols).

Write:

0 for 0.

1 for {0} (={0}).

2 for {0,{0}} (=1{0,1}).

3 for {0,{0},{0,{0};} (=1{0,1,2}).

4 for {0,{0},{0,{0}},{0,{0},{0,{0}:}}} (={0,1,2,3}).

.. and so on ...



The system of symbols {0,1,2,3,4,5,---} thus
obtained is the set of natural numbers, denoted
by N.

Remark 1: Each natural number is a set.

Remark 2: A natural number is the set of its
preceding natural numbers.

The set N satisfies the so called Peano Axioms:

e O is a natural number.

e Every natural number has a successor which
IS also a natural number.

e O is not the successor of any natural num-
ber.



e If the successor of & equals the successor
of y, then x equals y.

e (Axiom of Induction) If a statement is true
for O, and if the truth of that statement for
a number implies its truth for the successor
of that number, then the statement is true
for every natural number.



Addition.

Define n 4+ 0 = n for all n. Then go on recur-
sively as follows:

n+S(m) =S(n+m)

Illustration:
1+1=14+S5(0):=5(140)=5(1) =2
24+1=245(0):=502+0)=S5(2)=3
n+1=n+S(0):=5(n+0)=5(n)

Remark: Note that n+ 1 is the successor of n.



The set N, together with addition + satisfies:

1. n+(m+p) = (n+m)-+p forall m,n,p € N.

2. n+m=m-+mn for all m,n € N.

3. n+0=n for all n € N.

Exercise: Prove the above properties!



In an algebraic system as above we would like
to solve equations.

While the equation X + 1 = 2 has a solution
in N, the following

X+2=1

does not (why?).

Question. Can we embed N in a bigger sys-
tem, retaining all its properties, so that the
equation as above has a solution (in the big-
ger system)?

So we have to bring in the “negatives’. We
only have (N,+4) and basic set theory at our
disposal. This will be our focus now.



Construction of Integers

Consider the set X =N x N. On X, define the
relation:

(a,b) ~ (c,d) ifa+d=c+b

Example. (1,3) ~ (5,7), (11,5) ~ (100,94)
etc.

EXxercise. Check that ~ is an equivalence re-
lation.

Write Z = set of all equivalence classes.

Notation: [(a,b)] for the equivalence class con-
taining (a,b).

Now define addition on these equivalence classes:

[(a,0)] ® [(m,n)] := [(a +m, b+ n)]
(note that 4+ is from N)
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Remark. What if [(a,b)] = [(¢,d)] and [(m,n)] =
[(p,q)]? Do we have

[(a,b)] & [(m,n)] = [(c,d)] & [(p,q)]?

Let us check.

[(a,0)] = [(¢,d)] = (a,b) ~ (¢, d)
(a,b) ~(¢,d) = a+d=c+b

[((m,n)] = [(p,9)] = (m,n) ~ (p,q)
(m,n) ~(p,q) =>m-+qg=p+n

Then, a+d+m-+q = c+b+p+n and therefore,
a+m-+d+qg =c+p+b+n, implying (a +
m,b+n) ~ (c+ p,d+ g). In other words,

[(a, )] & [(m,n)] = [(¢,d)] & [(p, q)],

and the definition is consistent.
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What is the ‘“zero” in Z7

It is the class of (0,0) (which is the same as

The natural numbers are embedded in Z as
follows:

f:N— Z by

n +— [(n,0)]

Exercise: Prove that f is injective.
Do we have some [(a,b)] € Z such that
[(a,0)] @ [(1,0)] = [(0,0)] 7
Yes, [(0,1)] ® [(1,0)] = [(1,1)] = [(0,0)].
In general, [(0,n)]®[(n,0)] = [(n,n)] = [(0,0)].

Let us call [(n,0)] as n and [(0,n)] as —n.
These are the negatives.
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Let us now drop the ¢ notation. Also, write n
for [(n,0)] and —n for [(0,n)].

Take any integer [(a,b)] € Z.

Then
[(a,b)] = [(a,0)] +[(0,b)] =a—b

Thus, we realized integers as difference of nat-
ural numbers.

13



On N. we can also define multiplication.
Define n x O = 0 for all n.

Then,

nxS(m)=nxm-+mn

You can easily check the properties of multi-
plication and the distributive law.

You can extend this definition to Z.
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Now that we have addition and multiplication
on 7, consider the equation:

20 = 3
It has no solution in %Z.

Again, can we embed Z into some bigger struc-
ture where we have a solution?

If we can accommodate reciprocals of
n € Z ~ {0}, we shall be done.
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Almost a similar construction as before.

Take
X ={(a,b) € Z X Z|b#* 0}

Define a relation ~ on X by:

(a,b) ~ (c,d) iff ad = bc

Check that this is an equivalence relation.

Define Q = X/ ~ (the set of equivlence classes).
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Notation: write [(a, b)] for the equivalence class
of (a,b).

Define:
[(a, )] + [(c,d)] = [(ad + be, bd)]
[(a,b)] x [(c,d)] = [(ac, bd)]

Exercise: Check that the above operations are
well-defined.
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Take any [(a,b)] € Q, with a = 0. Then
[(a,b)] x [(b,a)] = [(ab,ab)] = [(1,1)]
Let us keep this in mind.

For convenience, we write [(a,b)] as 7.

We have an injective map

¢ .7 — Q

n
n— —
1

Therefore, we can identify % of Q with n.
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Let n(# 0) € Z. Note that, in Q we have
n 1 1

_X_:_
1 n 1

In other words, n has reciprocal in Q.
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Now consider the equation:

2 =2

This has no solution in Q.
One then constructs R to tackle this problem.

But this construction is not an algebraic one
as the above two.

That's analysis.
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Again, another equation! Consider

2 4+1=0

This has no solution in R.
How do we embed R into a bigger structure?

We shall take
R[X]
(X2 4 1)

where

(X2 4+ 1) = {(X*+ 1) f(X) | f(X) e RIX]}
(i.e. all multiples of X2 4+ 1).

R[X]

X241) as C.

Let us call
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We shall see later that:

e there is a natural injection ¢ : R — C;

e —1 has a square root in C.

And this construction of C would be the model
for various such general constructions.
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