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A study on brain cancer
• Navarre is a province in Spain.
• It is divided in 40 health districts.

• A study on the number of deaths due to brain cancer for years 1988-1994 was done
in 2006 (Ugarte et al. (2006)).

• In each district, there is standardized morbidity ratio (SMR). This is calculated based
on the observed data in a district.

• The data is given as Navarre.RData in the statistical software R.

Table: Glimps of the data

NAME SMR

ALLO 1.8709074

ALSASUA 0.0000000

ARTAJONA 5.3980815
...

...
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Visualizing the data
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Spatial diagram
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A study on percentage of population working outside

• It is a study on 56 counties of Scotland.

• The purpose of the study was to find out relationship between Lip cancer and the
percentage of people working out in the sun (Clayton and Kaldor (1987)).

• We just have taken a part which is percentage of population working in the sun from
the complete data set.

• The data is available as LipCancer.RData in the statistical software R.
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Visualization
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Is there anything special about spatial statistics?
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Let us go back to Sir Fisher

• In his seminal work “The Design of Experiments, (1966)”, spatial consideration was
implicit.

• R.A. Fisher was employed at Rothamsted between 1919 and 1933.

• Majority of his time was engaged in developing of methodology for analysis of data
arising from agricultural field trails.

• A data set was collected analyzed by Mercer (1911) that dealt with the wheat
production at Rothamsted.

• Fisher encountered this type of data while working at Rothamsted.
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Mercer’s wheat data
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• Each square denotes a plot of size 3.30
m × 2.59 m.

• Fisher commented: “the widely verified
fact that patches in close proximity are
commonly more alike, . . ., than those
which are farther apart”

• He proposed blocking to tackle spatial
variation: a form of covariate
adjustment under the implicit
assumption that systematic spatial
variation, if it exists at all, is piecewise
constant within blocks.
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Other than blocking

• Long time back, Papadikas (1937) had other idea about agricultural data analysis.

• That essentially leads to Markov Random Field.

• In modern language, his proposal is similar to a conditional model for the distribution
of the yield of the each plot, given the average yield, when the average is taken over
“neighbouring” plots.

• Thus, the moral: “everything is related to everything else, but near things are
more related than distant things”. Tobler (1979)
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Different types of spatial data
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Second type of spatial data
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Third type of spatial data
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Formal definitions

• The spatial observations comes from a spatial process {Xs , s ∈ S};
• Geostatistical Data or Point referenced data: s varies continuously in a fixed
subset S of R2, which contains a two dimensional rectangle of positive volume. Xs is
observed at fixed sites {s1, . . . , sn} ⊂ S.
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Formal definitions

• Geostatistical Data or Point
referenced data: s1, s2, . . . , sn are fixed
and Xs1 ,Xs2 , . . . ,Xsn are random
variables.

• Goal: modeling, identification and
separation of small and large scale
variations, prediction (or kriging) at
unobserved sites.
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Formal definitions

• Geostatistical Data or Point referenced data: s varies continuously in a fixed
subset S, which contains a two dimensional rectangle of positive volume. Xs is
observed at fixed sites {s1, . . . , sn} ⊂ S.

• Lattice data or areal data: S is fixed collection of countably many points.
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Formal definitions

• Lattice data or areal data: Here
s1, s2, . . . , sn denote the blocks and the
observation Xs1 ,Xs2 , . . . ,Xsn are
random observations.

• Goal: Constructing models, quantifying
spatial correlations.
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(0.8,1]
(1,1.2]
(1.2,1.4]
(1.4,2.5]
(2.5,5.5]
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Formal definitions

• The spatial observations comes from a spatial process {Xs , s ∈ S}; Generally, S ⊂ R2.

• Geostatistical Data or Point referenced data: s varies continuously in a fixed
subset S, which contains a two dimensional rectangle of positive volume. Zs is
observed at fixed sites {s1, . . . , sn} ⊂ S.

• Lattice data or areal data: S is fixed and partitioned into a finite number of blocks
with clearly defined boundaries.

• Point pattern data: Here the observation sites {s1, . . . , sn} is random and the
number of observation site n is also random. Xs can simply be equal to 1 indicating
the occurrence of an event. Additionally, we may have some covariate information at
these locations.
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Formal definitions

• Point pattern data: Here the
observation sites {s1, . . . , sn} is random
and the number of observation site n is
also random. Zs can simply be equal to
1 indicating the occurrence of an event.
Additionally, we may have some
covariate information at these locations.

• Goal: Decide whether distribution of
points are regular or completely random
or aggregated?
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Exploratory analysis on point referenced data
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• Part of river Meuse in Netherlands

• Zinc concentration measurements

• Collected in a flood plain

• The concentration seems to be
decreasing as distance increases from
the river
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Scatter plot and simple linear regression
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• Clearly correlated.

• A simple linear regression can be tested.

• y = a0 + a1 x + ϵ
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Fitted and the residuals

fitted.s residuals

[−1.283,−0.7073]
(−0.7073,−0.1312]
(−0.1312,0.4448]
(0.4448,1.021]
(1.021,1.597]

• A large part of variability is being taken
care of.

• However, the residuals do not seems to
be spatially uncorrelated.

• More analysis, taking the spatial
structure into the account, required.
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Covariogram

• Stationarity (weak stationarity) of the
process {X (s), s ∈ S}.

• Weak stationary essentially mean that
the covariance relationship between the
values of the process at any two
locations can be summarized by a
function C (h), depending on the
separation vector h = s2 − s1.

• E (X (s)) = µ, ∀s ∈ S
• Cov(X (s1),X (s2)) = C (s2 − s1) = C (h)

• If C (h) = ψ(||h||), then the covariance
function is called isotropic.

Covariance function is also known as covariogram.

51 / 103



Covariogram

• Stationarity (weak stationarity) of the
process {X (s), s ∈ S}.

• Weak stationary essentially mean that
the covariance relationship between the
values of the process at any two
locations can be summarized by a
function C (h), depending on the
separation vector h = s2 − s1.

• E (X (s)) = µ, ∀s ∈ S
• Cov(X (s1),X (s2)) = C (s2 − s1) = C (h)

• If C (h) = ψ(||h||), then the covariance
function is called isotropic.

Covariance function is also known as covariogram.

52 / 103



Covariogram

• Stationarity (weak stationarity) of the
process {X (s), s ∈ S}.

• Weak stationary essentially mean that
the covariance relationship between the
values of the process at any two
locations can be summarized by a
function C (h), depending on the
separation vector h = s2 − s1.

• E (X (s)) = µ, ∀s ∈ S
• Cov(X (s1),X (s2)) = C (s2 − s1) = C (h)

• If C (h) = ψ(||h||), then the covariance
function is called isotropic.

Covariance function is also known as covariogram.

53 / 103



Important Properties

• |C (h)| ≤ C (0).

• C (h) is positive semidefinite.

• If C (h) is continuous at the origin then it is continuous everywhere.
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Intrinsic stationarity (Mathéron (1962))

• E (X (si )− X (sj)) = 0 and

• E (X (si )− X (sj))
2 = 2γ(sj − si ) = 2γ(h)

• Then the process is said to be intrinsic stationary.

• γ(h) is called semivariogram.

• If the process is stationary, then γ(h) = C (0)− C (h).

• If γ(h) = ϕ(||h||), then the semivariogram is called isotropic.
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Important Properties

• γ(h) ≥ 0

• γ(h) = γ(−h)

• γ(h) is conditionally negative definite.
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Reminder: γ(h) is property of difference

• Let X (s) = Z (s) + V , where Z (s) iid normal variables and V is Cauchy.

• Importantly, we may have situation where
• the difference X (s)− X (s ′) has a proper density
• even the X (s)|X (s ′) and X (s ′)|X (s) have proper density
• but (X (s),X (s ′)) does not have one.
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Examples of γ(h)

• Linear:

γ(||h||) =

{
τ2 + σ2||h|| if ||h|| > 0

0 otherwise.
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Examples of γ(h)

• Spherical: γ(||h||) =


τ2 + σ2 if ||h|| > 1/ϕ
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Examples of γ(h)

• Exponential: γ(||h||) =

{
τ2 + σ2(1− exp(−ϕ||h||)) if ||h|| > 0

0 otherwise
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Examples of γ(h)

• Gaussian: γ(||h||) =

{
τ2 + σ2(1− exp(−ϕ2||h||2)) if ||h|| > 0

0 otherwise
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Examples of γ(h)

• Matérn: γ(||h||) =
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{
τ2 + σ2 (1− (1 + ϕ||h||) exp(−ϕ||h||)) if ||h|| > 0

0 otherwise
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Data again

• γ̂(d) =
1

2|(N(d))|
∑

(si ,sj )∈N(d)

[x(si )− x(sj)]
2

• N(d): set of pairs of points such that
||si − sj || = d

• |N(d)|: Cardinality of N(d).

• Problem: The distances between the
pairs can be all different. So it is of no
use.

• Replace the N(d) by N(dk) =
{(si , sj) : dk−1 < ||si − sj || < dk}, for
k = 1, . . . ,K .

• d0 = 0 and dk−1 < dk
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Semivariogram fitting

• Try with spherical semivariogram.

• Fit can be done using weighted least square technique:
K∑

k=1

wk (γ̂(hk)− γ(hk))
2

• Generally, weights ∝ the # of samples available in a particular distance interval, i.e.,
|N(hk)|.
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Spatial prediction: kriging

• Task: Given observations of X = (X (s1), . . . ,X (sn))
T , predict X (s0) at a location s0,

where it is not observed.

• There are different kinds of kriging: ordinary kriging, simple kriging, universal kriging
etc.

• Ordinary kriging: X (s0) is predicted using a linear combination of elements of X:∑
i ℓiX (si ).

• How to choose ℓ’s?

• Two requirements: E (X (s0)−
∑

i ℓiX (si )) = 0 and E (X (s0)−
∑

i ℓiX (si ))
2 gets

minimized w.r.t. ℓ’s.

• Defining a0 = 1, ai = −ℓi ,∀i = 1, . . . , n, the above criteria become
E (

∑n
i=0 aiX (si ))

2 with
∑n

i=0 ai = 0.
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Ordinary kriging contd.

• Expansion of E (
∑n

i=0 aiX (si ))
2 with the assumption of intrinsic stationarity, and

with
∑

i ai = 0, leads to −
∑

i

∑
j ai ajγ(si − sj).

• Now defining γij = γ(si − sj), for i , j ∈ {1, . . . , n} and γ0j = γ(s0− sj), differentiating
E (X (s0)−

∑
i ℓiX (si ))

2 w.r.t. ℓ, equating to zero will lead to the solution for ℓ’s.

• However, the so obtained ℓs are dependent on the unknown γ and hence to be
estimated from the data.
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Universal kriging

• Task: Given observations of X = (X (s1), . . . ,X (sn))
T , predict X (s0) at a location s0,

where it is not observed.

• Assume that X (s) is related to p-dimensional covariates z(s1), z(s2), . . . , z(sn) by
the model: X = Zβ + ϵ, ϵ ∼ N(0,Σ).

• Σ = σ2H(ϕ) + τ2In, H(ϕ)i ,j = ρ(ϕ; di ,j).

• di ,j = ||si − sj ||, τ2 can be 0 if we assume there is not nugget effect.

• Then the predicted value of X (·) at s0, will be

E (X (s0)|X = x) = zT
0 β + γTΣ−1(x− Zβ), with

• Var(X (s0)|X = x) = σ2 + τ2 − γTΣ−1γ.

• γ: a vector containing the covariance between X (s0) and the other X ’s.

88 / 103



Universal kriging

• Task: Given observations of X = (X (s1), . . . ,X (sn))
T , predict X (s0) at a location s0,

where it is not observed.

• Assume that X (s) is related to p-dimensional covariates z(s1), z(s2), . . . , z(sn) by
the model: X = Zβ + ϵ, ϵ ∼ N(0,Σ).

• Σ = σ2H(ϕ) + τ2In, H(ϕ)i ,j = ρ(ϕ; di ,j).

• di ,j = ||si − sj ||, τ2 can be 0 if we assume there is not nugget effect.

• Then the predicted value of X (·) at s0, will be

E (X (s0)|X = x) = zT
0 β + γTΣ−1(x− Zβ), with

• Var(X (s0)|X = x) = σ2 + τ2 − γTΣ−1γ.

• γ: a vector containing the covariance between X (s0) and the other X ’s.

89 / 103



Universal kriging

• Task: Given observations of X = (X (s1), . . . ,X (sn))
T , predict X (s0) at a location s0,

where it is not observed.

• Assume that X (s) is related to p-dimensional covariates z(s1), z(s2), . . . , z(sn) by
the model: X = Zβ + ϵ, ϵ ∼ N(0,Σ).

• Σ = σ2H(ϕ) + τ2In, H(ϕ)i ,j = ρ(ϕ; di ,j).

• di ,j = ||si − sj ||, τ2 can be 0 if we assume there is not nugget effect.

• Then the predicted value of X (·) at s0, will be

E (X (s0)|X = x) = zT
0 β + γTΣ−1(x− Zβ), with

• Var(X (s0)|X = x) = σ2 + τ2 − γTΣ−1γ.

• γ: a vector containing the covariance between X (s0) and the other X ’s.

90 / 103



Universal kriging

• Task: Given observations of X = (X (s1), . . . ,X (sn))
T , predict X (s0) at a location s0,

where it is not observed.

• Assume that X (s) is related to p-dimensional covariates z(s1), z(s2), . . . , z(sn) by
the model: X = Zβ + ϵ, ϵ ∼ N(0,Σ).

• Σ = σ2H(ϕ) + τ2In, H(ϕ)i ,j = ρ(ϕ; di ,j).

• di ,j = ||si − sj ||, τ2 can be 0 if we assume there is not nugget effect.

• Then the predicted value of X (·) at s0, will be

E (X (s0)|X = x) = zT
0 β + γTΣ−1(x− Zβ), with

• Var(X (s0)|X = x) = σ2 + τ2 − γTΣ−1γ.

• γ: a vector containing the covariance between X (s0) and the other X ’s.

91 / 103



Kriging contd

• β, γ and Σ have to be estimated.

• β̂ =
(
ZT Σ̂−1Z

)−1
ZT Σ̂−1x , Σ̂ = τ̂2In + σ̂2H(ϕ̂).

• X̂ (s0) = zT
0 β̂ + γ̂T Σ̂−1(x− Z β̂)

• Prediction error variance σ2(s0) = σ2 + τ2 − γTΣ−1γ + δT (XTΣ−1X )−1δ,

• δ = z(s0)
T − ZTΣ−1γ

Question: What if z(·) is not known at s0?
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Kriging contd.

X̂ (s0) = zT
0 β̂ + γ̂T Σ̂−1(x− Z β̂) can also be written as λTx , where

• λ = Σ̂−1γ̂ + Σ̂−1Z (ZT Σ̂−1Z )−1
(
z(s0)− ZT Σ̂−1γ̂

)

• Multiplying λ with ZT from the left, we get

z(s0) = ZTλ

• Iterative procedure will lead us estimates of z(s0) and X (s0).
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Meuse data kriging
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