From Graphs to Graphite!

Modelling Molecules with Graphs

Abhilash Saha (21MS)
as21ms054@iiserkol.ac.in
July 4, 2022

Ethane

Why does $\mathrm{C}_{2} \mathrm{H}_{6}$ look like this?

We think of a molecule as a graph!

We think of a molecule as a graph!

Definition of a Graph

A graph G consists of a finite set V of vertices and a collection E of pairs of vertices called edges.

We think of a molecule as a graph!

Definition of a Graph

A graph G consists of a finite set V of vertices and a collection E of pairs of vertices called edges.

The vertices are represented by points on the plane, and the edges by lines (not necessarily straight) joining the vertices.

Some Terms Related to Graphs :)

- If an edge e joins vertices x and y then x and y are adjacent and e is incident with both x and y.
- Any edge joining a vertex x to itself is called a loop.
- Note that E is a collection, not necessarily a set. This is to allow repeated edges. If two or more edges join the same two vertices, they are called multiple edges.
- A graph is said to be simple if it has no loops or multiple edges.
- The number of edges incident with a vertex v in a graph without loops is called the degree or valency of v and is denoted by $d(v)$.

The Handshaking Lemma

When a graph contains a loop, the loop is considered to contribute twice to the degree of its incident vertex.

Handshake!

The sum of the degrees of the vertices of a graph is twice the number of edges.

The Handshaking Lemma

When a graph contains a loop, the loop is considered to contribute twice to the degree of its incident vertex.

Handshake!

The sum of the degrees of the vertices of a graph is twice the number of edges.

Proof:

Each edge contributes twice to the sum of the degrees, once at each end.

The Handshaking Lemma

When a graph contains a loop, the loop is considered to contribute twice to the degree of its incident vertex.

Handshake!

The sum of the degrees of the vertices of a graph is twice the number of edges.

Proof:

Each edge contributes twice to the sum of the degrees, once at each end.

At a party, the total number of hands shaken is twice the number of handshakes.

The Handshaking Lemma

When a graph contains a loop, the loop is considered to contribute twice to the degree of its incident vertex.

Handshake!

The sum of the degrees of the vertices of a graph is twice the number of edges.

Proof:

Each edge contributes twice to the sum of the degrees, once at each end.

At a party, the total number of hands shaken is twice the number of handshakes. It has an immediate corollary: In any graph, the sum of the vertex degrees is even.

Connected Graphs

Path: A sequence of edges which joins a sequence of vertices which are all distinct (and since the vertices are distinct, so are the edges).

Connectedness

A graph is connected if, for each pair x, y of vertices, there is a path from x to y. A graph which is not connected is made up of a number of disconnected pieces, called components.

Trees and Cycles

A cycle is a sequence of edges sharing one common vertex where the initial and final vertices coincide.

Trees and Cycles

A cycle is a sequence of edges sharing one common vertex where the initial and final vertices coincide.
A tree is a connected simple graph with no cycles.

Trees and Cycles

A cycle is a sequence of edges sharing one common vertex where the initial and final vertices coincide.
A tree is a connected simple graph with no cycles.

Trees and Cycles

A cycle is a sequence of edges sharing one common vertex where the initial and final vertices coincide.
A tree is a connected simple graph with no cycles.

"Pendant vertices": Vertex of degree 1.

Trees and cycles

If T is a tree with $p \geq 2$ vertices then T contains at least two pendant vertices.

Trees and cycles

If T is a tree with $p \geq 2$ vertices then T contains at least two pendant vertices.

It must have at least one leaf, otherwise we would have a cycle. Then, let us call that leaf I.

Trees and cycles

If T is a tree with $p \geq 2$ vertices then T contains at least two pendant vertices.

It must have at least one leaf, otherwise we would have a cycle.
Then, let us call that leaf I.
Consider the path that starts at I, and follows to any other vertex v. If v is a leaf, we are done. Otherwise it must be adjacent to at least another vertex u. Repeat the reasoning for u.

Trees and cycles

If T is a tree with $p \geq 2$ vertices then T contains at least two pendant vertices.

It must have at least one leaf, otherwise we would have a cycle. Then, let us call that leaf I.
Consider the path that starts at I, and follows to any other vertex v. If v is a leaf, we are done. Otherwise it must be adjacent to at least another vertex u. Repeat the reasoning for u.
Thereby, our path can only end in a leaf or in an already visited vertex creating a cycle (which is not possible by assumption since the graph we consider is a tree).

What is a "tree-like" molecule?

Let T be a simple graph with p vertices. Then the following statements are equivalent:

1. T is a tree.
2. T has $p-1$ edges and no cycles.
3. T has $p-1$ edges and is connected.

What is a "tree-like" molecule?

Let T be a simple graph with p vertices. Then the following statements are equivalent:

1. T is a tree.
2. T has $p-1$ edges and no cycles.
3. T has $p-1$ edges and is connected.

$$
1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 1
$$

Proof: All trees with p vertices have $p-1$ edges.

- This is certainly true when $p=1$.

Proof: All trees with p vertices have $p-1$ edges.

- This is certainly true when $p=1$.
- Suppose it is true for all trees with k vertices, and let T be a tree with $k+1$ vertices.

Proof: All trees with p vertices have $p-1$ edges.

- This is certainly true when $p=1$.
- Suppose it is true for all trees with k vertices, and let T be a tree with $k+1$ vertices.
- T has an end vertex w.

Proof: All trees with p vertices have $p-1$ edges.

- This is certainly true when $p=1$.
- Suppose it is true for all trees with k vertices, and let T be a tree with $k+1$ vertices.
- T has an end vertex w.
- Remove w and its incident edge from T to obtain a tree T^{\prime} with k vertices.

Proof: All trees with p vertices have $p-1$ edges.

- This is certainly true when $p=1$.
- Suppose it is true for all trees with k vertices, and let T be a tree with $k+1$ vertices.
- T has an end vertex w.
- Remove w and its incident edge from T to obtain a tree T^{\prime} with k vertices.
- By the induction hypothesis, T^{\prime} has $k-1$ edges; so T has $(k-1)+1=k$ edges as required.

Proof: If a simple graph T with p vertices has $p-1$ edges and no cycles then it is connected.

- Suppose T has $p-1$ edges and no cycles, and suppose it consists of t components, T_{1}, \ldots, T_{t}, each of which has no cycles and hence must be a tree.

Proof: If a simple graph T with p vertices has $p-1$ edges and no cycles then it is connected.

- Suppose T has $p-1$ edges and no cycles, and suppose it consists of t components, T_{1}, \ldots, T_{t}, each of which has no cycles and hence must be a tree.
- Let p_{i} denote the number of vertices in T_{i}.

Proof: If a simple graph T with p vertices has $p-1$ edges and no cycles then it is connected.

- Suppose T has $p-1$ edges and no cycles, and suppose it consists of t components, T_{1}, \ldots, T_{t}, each of which has no cycles and hence must be a tree.
- Let p_{i} denote the number of vertices in T_{i}.
- Then $\sum_{i} p_{i}=p$, and the number of edges in T is $\sum_{i}\left(p_{i}-1\right)=p-t$.

Proof: If a simple graph T with p vertices has $p-1$ edges and no cycles then it is connected.

- Suppose T has $p-1$ edges and no cycles, and suppose it consists of t components, T_{1}, \ldots, T_{t}, each of which has no cycles and hence must be a tree.
- Let p_{i} denote the number of vertices in T_{i}.
- Then $\sum_{i} p_{i}=p$, and the number of edges in T is $\sum_{i}\left(p_{i}-1\right)=p-t$.
- So $p-t=p-1 \Longrightarrow t=1$, so that T is connected.

Proof: If a simple graph T with p vertices has $p-1$ edges and is connected then it must be a tree.

- Suppose T is connected with $p-1$ edges, but is not a tree. Then T must have a cycle.

Proof: If a simple graph T with p vertices has $p-1$ edges and is connected then it must be a tree.

- Suppose T is connected with $p-1$ edges, but is not a tree. Then T must have a cycle.
- Removing an edge from a cycle does not destroy connectedness, so we can remove edges from cycles until no cycles are left, preserving connectedness .

Proof: If a simple graph T with p vertices has $p-1$ edges and is connected then it must be a tree.

- Suppose T is connected with $p-1$ edges, but is not a tree. Then T must have a cycle.
- Removing an edge from a cycle does not destroy connectedness, so we can remove edges from cycles until no cycles are left, preserving connectedness .

- The resulting graph must be a tree, with p vertices and $q<p-1$ edges, contradicting the previous result.

Let's now apply this to molecules!

- Atoms are represented by vertices of the graph, and chemical bonds by edges.

Let's now apply this to molecules!

- Atoms are represented by vertices of the graph, and chemical bonds by edges.
- The degree of a vertex is the "valency" of that atom- the number of atoms that it is connected with.

Let's now apply this to molecules!

- Atoms are represented by vertices of the graph, and chemical bonds by edges.
- The degree of a vertex is the "valency" of that atom- the number of atoms that it is connected with.
- In case an atom makes multiple bonds, its valency is reduced by one, per bond.

$\mathrm{C}_{2} \mathrm{H}_{6}$ (Ethane: All single bonds)

- Number of vertices $p=2+6=8$.

$\mathrm{C}_{2} \mathrm{H}_{6}$ (Ethane: All single bonds)

- Number of vertices $p=2+6=8$.
- Of these, 2 carbons have degree 4 and 6 hydrogens have degree 1 . Thus, $2 q=2 \times 4+6=14$, where q is the number of edges.

$\mathrm{C}_{2} \mathrm{H}_{6}$ (Ethane: All single bonds)

- Number of vertices $p=2+6=8$.
- Of these, 2 carbons have degree 4 and 6 hydrogens have degree 1 . Thus, $2 q=2 \times 4+6=14$, where q is the number of edges.
- $q=7$. As $p=q+1$, the molecules is a tree.

$\mathrm{C}_{2} \mathrm{H}_{6}$ (Ethane: All single bonds)

- Number of vertices $p=2+6=8$.
- Of these, 2 carbons have degree 4 and 6 hydrogens have degree 1 . Thus, $2 q=2 \times 4+6=14$, where q is the number of edges.
- $q=7$. As $p=q+1$, the molecules is a tree.

Pendant vertices are all hydrogen atoms.

$\mathrm{C}_{2} \mathrm{H}_{6}$ (Ethane: All single bonds)

- Number of vertices $p=2+6=8$.
- Of these, 2 carbons have degree 4 and 6 hydrogens have degree 1 . Thus, $2 q=2 \times 4+6=14$, where q is the number of edges.
- $q=7$. As $p=q+1$, the molecules is a tree.

Pendant vertices are all hydrogen atoms.

$\mathrm{C}_{3} \mathrm{H}_{6}$ (Propylene: one double bond)

- Number of vertices $p=3+6=9$.

$\mathrm{C}_{3} \mathrm{H}_{6}$ (Propylene: one double bond)

- Number of vertices $p=3+6=9$.
- A carbon atom here might make a double bond.

$\mathrm{C}_{3} \mathrm{H}_{6}$ (Propylene: one double bond)

- Number of vertices $p=3+6=9$.
- A carbon atom here might make a double bond.
- Let the number of carbon atoms forming single bonds only be a, those forming a double bond be b.

$\mathrm{C}_{3} \mathrm{H}_{6}$ (Propylene: one double bond)

- Number of vertices $p=3+6=9$.
- A carbon atom here might make a double bond.
- Let the number of carbon atoms forming single bonds only be a, those forming a double bond be b.
- $a+b=3$. Using the handshaking lemma,

$$
2 q=4 a+3 b+6 \Longrightarrow q=2 a+\frac{3}{2} b+3 .
$$

$\mathrm{C}_{3} \mathrm{H}_{6}$ (Propylene: one double bond)

- Number of vertices $p=3+6=9$.
- A carbon atom here might make a double bond.
- Let the number of carbon atoms forming single bonds only be a, those forming a double bond be b.
- $a+b=3$. Using the handshaking lemma,

$$
2 q=4 a+3 b+6 \Longrightarrow q=2 a+\frac{3}{2} b+3
$$

a	b	q
1	2	8
3	0	9

$\mathrm{C}_{3} \mathrm{H}_{6}$ (Propylene: one double bond)

- In the first case, we see that $p=q+1$ and hence the molecules are tree-like.

$\mathrm{C}_{3} \mathrm{H}_{6}$ (Propylene: one double bond)

- In the first case, we see that $p=q+1$ and hence the molecules are tree-like.
- In the second case, we see that the molecule is still simple and connected, but $p \neq q+1$ which means that it contains a cycle.

$\mathrm{C}_{3} \mathrm{H}_{6}$ (Propylene: one double bond)

- In the first case, we see that $p=q+1$ and hence the molecules are tree-like.
- In the second case, we see that the molecule is still simple and connected, but $p \neq q+1$ which means that it contains a cycle.

1-propene

cyclopropane

All molecules of the form $C_{n} H_{2 n+2}$ necessarily have all carbon atoms single bonded.

Lemma: Every connected graph with n vertices has at least $n-1$ edges.

All molecules of the form $C_{n} H_{2 n+2}$ necessarily have all carbon atoms single bonded.

Lemma: Every connected graph with n vertices has at least $n-1$ edges.
Proof:
If possible let G be a connected graph with n vertices and $n-2$
edges. Each edge has two vertices (end-points).

All molecules of the form $C_{n} H_{2 n+2}$ necessarily have all carbon atoms single bonded.

Lemma: Every connected graph with n vertices has at least $n-1$ edges.
Proof:
If possible let G be a connected graph with n vertices and $n-2$
edges. Each edge has two vertices (end-points).
Let e_{i} be the edge be an edge connecting v_{i} and v_{i+1}. Then, e_{n-2} connects v_{n-2} to v_{n-1}.

All molecules of the form $C_{n} H_{2 n+2}$ necessarily have all carbon atoms single bonded.

Lemma: Every connected graph with n vertices has at least $n-1$ edges.
Proof:
If possible let G be a connected graph with n vertices and $n-2$ edges. Each edge has two vertices (end-points).
Let e_{i} be the edge be an edge connecting v_{i} and v_{i+1}. Then, e_{n-2} connects v_{n-2} to v_{n-1}.
There is no edge connecting v_{n-1} and v_{n}, which means there is no path from v_{n-1} to v_{n}. This contradicts the fact that G is connected.

All molcules of the form $C_{n} H_{2 n+2}$ necessarily have all carbon atoms single bonded.

- Note that in the molecule $C_{n} H_{2 n+2}$, the vertex degree of each H is 1 , and that of each C is at most 4 .

All molcules of the form $C_{n} H_{2 n+2}$ necessarily have all carbon atoms single bonded.

- Note that in the molecule $C_{n} H_{2 n+2}$, the vertex degree of each H is 1 , and that of each C is at most 4 .
- Number of vertices $p=n+(2 n+2)=3 n+2$. Number of edges $q \leq \frac{4 n+(2 n+2)}{2}=\frac{1}{2}(6 n+2)=3 n+1$.

All molcules of the form $C_{n} H_{2 n+2}$ necessarily have all carbon atoms single bonded.

- Note that in the molecule $C_{n} H_{2 n+2}$, the vertex degree of each H is 1 , and that of each C is at most 4 .
- Number of vertices $p=n+(2 n+2)=3 n+2$. Number of edges $q \leq \frac{4 n+(2 n+2)}{2}=\frac{1}{2}(6 n+2)=3 n+1$.
- As the molecule is a connected graph, number of edges

$$
q \geq 3 n+2-1=3 n+1
$$

All molcules of the form $C_{n} H_{2 n+2}$ necessarily have all carbon atoms single bonded.

- Note that in the molecule $C_{n} H_{2 n+2}$, the vertex degree of each H is 1 , and that of each C is at most 4 .
- Number of vertices $p=n+(2 n+2)=3 n+2$. Number of edges $q \leq \frac{4 n+(2 n+2)}{2}=\frac{1}{2}(6 n+2)=3 n+1$.
- As the molecule is a connected graph, number of edges $q \geq 3 n+2-1=3 n+1$.
- Thus $q=3 n+1=p-1$, which means that all our inequalities must attain the maximum. Thus all carbon atoms have degree four and the molecule is a tree.

References

- A First Course in Discrete Mathematics, Ian Anderson.
- Introduction to Graph Theory, Douglas B. West.

Thank You!

