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Ethane

Why does C2H6 look like this?
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We think of a molecule as a graph!

Definition of a Graph

A graph G consists of a finite set V of vertices and a collection

E of pairs of vertices called edges.

The vertices are represented by points on the plane, and the edges

by lines (not necessarily straight) joining the vertices.
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Some Terms Related to Graphs :)

• If an edge e joins vertices x and y then x and y are adjacent

and e is incident with both x and y .

• Any edge joining a vertex x to itself is called a loop.

• Note that E is a collection, not necessarily a set. This is to

allow repeated edges. If two or more edges join the same two

vertices, they are called multiple edges.

• A graph is said to be simple if it has no loops or multiple

edges.

• The number of edges incident with a vertex v in a graph

without loops is called the degree or valency of v and is

denoted by d(v).
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The Handshaking Lemma

When a graph contains a loop, the loop is considered to contribute

twice to the degree of its incident vertex.

Handshake!

The sum of the degrees of the vertices of a graph is twice the

number of edges.
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The Handshaking Lemma

When a graph contains a loop, the loop is considered to contribute

twice to the degree of its incident vertex.

Handshake!

The sum of the degrees of the vertices of a graph is twice the

number of edges.

Proof:

Each edge contributes twice to the sum of the degrees, once at

each end.

At a party, the total number of hands shaken is twice the number

of handshakes. It has an immediate corollary: In any graph, the

sum of the vertex degrees is even.
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Connected Graphs

Path: A sequence of edges which joins a sequence of vertices

which are all distinct (and since the vertices are distinct, so are the

edges).

Connectedness

A graph is connected if, for each pair x , y of vertices, there is a

path from x to y . A graph which is not connected is made up of

a number of disconnected pieces, called components.
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Trees and Cycles

A cycle is a sequence of edges sharing one common vertex where

the initial and final vertices coincide.
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Trees and Cycles

A cycle is a sequence of edges sharing one common vertex where

the initial and final vertices coincide.

A tree is a connected simple graph with no cycles.

“Pendant vertices”: Vertex of degree 1.
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Trees and cycles

If T is a tree with p ≥ 2 vertices then T contains at least two

pendant vertices.
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Trees and cycles

If T is a tree with p ≥ 2 vertices then T contains at least two

pendant vertices.

It must have at least one leaf, otherwise we would have a cycle.

Then, let us call that leaf l .

Consider the path that starts at l , and follows to any other vertex

v . If v is a leaf, we are done. Otherwise it must be adjacent to at

least another vertex u. Repeat the reasoning for u.

Thereby, our path can only end in a leaf or in an already visited

vertex creating a cycle (which is not possible by assumption since

the graph we consider is a tree).
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What is a “tree-like” molecule?

Let T be a simple graph with p vertices. Then the following

statements are equivalent:

1. T is a tree.

2. T has p − 1 edges and no cycles.

3. T has p − 1 edges and is connected.
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What is a “tree-like” molecule?

Let T be a simple graph with p vertices. Then the following

statements are equivalent:

1. T is a tree.

2. T has p − 1 edges and no cycles.

3. T has p − 1 edges and is connected.

1 =⇒ 2 =⇒ 3 =⇒ 1
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Proof: All trees with p vertices have p − 1 edges.

• This is certainly true when p = 1.
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Proof: All trees with p vertices have p − 1 edges.

• This is certainly true when p = 1.

• Suppose it is true for all trees with k vertices, and let T be a

tree with k + 1 vertices.

• T has an end vertex w .

• Remove w and its incident edge from T to obtain a tree T ′

with k vertices.

• By the induction hypothesis, T ′ has k − 1 edges; so T has

(k − 1) + 1 = k edges as required.
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Proof: If a simple graph T with p vertices has p − 1 edges and

no cycles then it is connected.

• Suppose T has p − 1 edges and no cycles, and suppose it

consists of t components, T1, . . . ,Tt , each of which has no

cycles and hence must be a tree.
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Proof: If a simple graph T with p vertices has p − 1 edges and

no cycles then it is connected.

• Suppose T has p − 1 edges and no cycles, and suppose it

consists of t components, T1, . . . ,Tt , each of which has no

cycles and hence must be a tree.

• Let pi denote the number of vertices in Ti .

• Then
∑

i pi = p, and the number of edges in T is∑
i (pi − 1) = p − t.

• So p − t = p − 1 =⇒ t = 1, so that T is connected.
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Proof: If a simple graph T with p vertices has p − 1 edges and

is connected then it must be a tree.

• Suppose T is connected with p − 1 edges, but is not a tree.

Then T must have a cycle.
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Proof: If a simple graph T with p vertices has p − 1 edges and

is connected then it must be a tree.

• Suppose T is connected with p − 1 edges, but is not a tree.

Then T must have a cycle.

• Removing an edge from a cycle does not destroy

connectedness, so we can remove edges from cycles until no

cycles are left, preserving connectedness .

• The resulting graph must be a tree, with p vertices and

q < p − 1 edges, contradicting the previous result.
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Let’s now apply this to molecules!

• Atoms are represented by vertices of the graph, and chemical

bonds by edges.
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Let’s now apply this to molecules!

• Atoms are represented by vertices of the graph, and chemical

bonds by edges.

• The degree of a vertex is the “valency” of that atom− the

number of atoms that it is connected with.

• In case an atom makes multiple bonds, its valency is reduced

by one, per bond.
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C2H6 (Ethane: All single bonds)

• Number of vertices p = 2 + 6 = 8.
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C3H6 (Propylene: one double bond)

• Number of vertices p = 3 + 6 = 9.
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C3H6 (Propylene: one double bond)

• Number of vertices p = 3 + 6 = 9.

• A carbon atom here might make a double bond.

• Let the number of carbon atoms forming single bonds only be

a, those forming a double bond be b.
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C3H6 (Propylene: one double bond)

• Number of vertices p = 3 + 6 = 9.

• A carbon atom here might make a double bond.

• Let the number of carbon atoms forming single bonds only be

a, those forming a double bond be b.

• a + b = 3. Using the handshaking lemma,

2q = 4a + 3b + 6 =⇒ q = 2a +
3

2
b + 3.

a b q

1 2 8

3 0 9
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C3H6 (Propylene: one double bond)

• In the first case, we see that p = q + 1 and hence the

molecules are tree-like.
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C3H6 (Propylene: one double bond)

• In the first case, we see that p = q + 1 and hence the

molecules are tree-like.

• In the second case, we see that the molecule is still simple and

connected, but p 6= q + 1 which means that it contains a

cycle.

1-propene

cyclopropane
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All molecules of the form CnH2n+2 necessarily have all carbon

atoms single bonded.

Lemma: Every connected graph with n vertices has at least

n − 1 edges.
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All molecules of the form CnH2n+2 necessarily have all carbon

atoms single bonded.

Lemma: Every connected graph with n vertices has at least

n − 1 edges.

Proof:

If possible let G be a connected graph with n vertices and n − 2

edges. Each edge has two vertices (end-points).

Let ei be the edge be an edge connecting vi and vi+1. Then,

en−2 connects vn−2 to vn−1.

There is no edge connecting vn−1 and vn, which means there is

no path from vn−1 to vn. This contradicts the fact that G is

connected.
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All molcules of the form CnH2n+2 necessarily have all carbon

atoms single bonded.

• Note that in the molecule CnH2n+2, the vertex degree of each

H is 1, and that of each C is at most 4.
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All molcules of the form CnH2n+2 necessarily have all carbon

atoms single bonded.

• Note that in the molecule CnH2n+2, the vertex degree of each

H is 1, and that of each C is at most 4.

• Number of vertices p = n + (2n + 2) = 3n + 2. Number of

edges q ≤ 4n+(2n+2)
2 = 1

2(6n + 2) = 3n + 1.

• As the molecule is a connected graph, number of edges

q ≥ 3n + 2− 1 = 3n + 1.

• Thus q = 3n + 1 = p − 1, which means that all our

inequalities must attain the maximum. Thus all carbon atoms

have degree four and the molecule is a tree.
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Thank You!
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