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Square roots
Here is a proof that  is not rational. 

Suppose to the contrary that  without any common factors. 

Then  but with a smaller denominator leading to a 

contradiction. 

For ,  is not rational either. If not, as before, we must have 

 

for a pair of integer  and . But this contradicts the Fermat’s last 
theorem!
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and can’t be algebraically distinguished, that is, if 
 is the solution of a polynomial equation with rational 

coefficients, then so is  and vice-versa. Such pairs are 
called conjugate. 

More generally, two real numbers  and  are conjugate 
over  if for all polynomials  with coefficients in , 


.

Similarly, two complex numbers are said to be conjugate 
if for all polynomials with coefficients in 




The two numbers  and  are indistinguishable.  
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p(z) = 0 ⟺ p(z′￼) = 0.
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Definition: Let , and let , be tuples 

of complex numbers. Then  and are 

conjugate over  if for all polynomials  over  in  variables

.

The symmetry group of a polynomial: Write  for its 

distinct solutions in . The Galois group of  is

‘Distinct solutions' means that we ignore any repetition of roots: 
if , then  and .

k ≥ 0 (z1, …, zk) (z′￼1, …, z′￼k) k−
(z1, …, zk) (z′￼1, …, z′￼k)

ℚ p ℚ k

p (z1, …, zk) = 0 ⟺ p (z′￼1, …, z′￼k) = 0

(s1, …, sk)
ℂ p

Gal(p) = {σ ∈ Sk : (s1, …, sk) and (sσ(1), …, sσ(k)) are conjugate}

p(t) = t5(t − 1)9 k = 2 {s1, s2} = {0,1}



Informally, let us say that a complex number is radical if it can be 
obtained from the rationals using only the usual arithmetic operations 

and th roots. For example,  is radical, whichever 

square root, cube root, etc., we choose. A polynomial over  is solvable 
(or soluble) by radicals if all of its complex roots are radical.


Every quadratic over  is solvable by radicals. This follows from the 
quadratic formula:  is visibly a radical number.
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Theorem of Galois

Theorem: Suppose that  is a polynomial over . Then 
 is solvable by radicals if and only if the Galois group 

 is solvable. 

p ℚ
p
Gal(p)

What determines if a polynomial is solvable by radicals? 

The amazing answer to this question was given by 
Galois. 

We are going to however, discuss an elementary (by no 
means, trivial) proof due to Arnold.  



Let  be a polynomial with complex coefficients 
By the fundamental theorem of algebra, there are exactly  solutions to 

the equation , say, . What happens to the solutions  if we 
move the coefficients   a little and what happens the other way around? 


The answer involves permutations, loops, roots (of complex numbers), finally 
commutators. 


It is clear that given a set of complex numbers , the set of solutions of 


 


is exactly . It is going the other way round, that is, how to find the solutions of a 
polynomial equation is not obvious.  

p(z) = zn + cn−1zn−1 + ⋯ + c1z + c0
cn−1, …, c0 . n

p(z) = 0 {s1, …, sn} {s1, …, sn}
cn−1, …, c0

S = {s1, …, sn}

p(z) = 0, where p(z) = (z − s1)⋯(z − sn),

S

Solution of polynomial equations

https://duetosymmetry.com/tool/polynomial-roots-toy/


Two kinds of permutations
We discuss two kinds of permutations, namely, transpositions and cycle:


- transpositions, denoted , exchanging the position of two solutions, 
i.e., . 


- cycles, denoted , exchanging the position of three solutions 
cyclically, i.e., and . 

(ij)
si → sj

(ijk)
si → sj, sj → sk, sk → si

ω1

ω2

γ
s1s2

s1
s3 s2s3



Loops and permutations
Locating the solutions  in , we can think of a permutation 
to be a path traveling from one solution to another.  


Paths in the complex plane are just continuous curves that connect 
two points (we assume that they do not self-intersect, otherwise 
things get unnecessarily complicated). 


A path that closes, i.e., connects a point to itself, is called a loop and 
denoted .


These paths will be represented by arrows in all the figures, and will 
be used to induce permutations on the solutions .


(s1, …, sn) ℂ

γ

(s1, …, sn)



How complex roots move around in ℂ
Fixing some complex number , a root of  is some number  in  such that for 
some . By the fundamental theorem of algebra, there are exactly  such 𝑘th root  

of ; and 𝑧. Thus,  denotes a multivalued function of the complex variable . With a 

little abuse of notation, we let  also denote any of the 𝑘th roots of 𝑧.  Fixing  

and assuming that 𝑧 itself follows a loop , we ask what kind of path  follows. Notice 

that with , we have 


When  follows a loop ,  does not always follow a loop.

z z ζ ℂ ζk = z
k ∈ ℕ k ζ

z k z z
k z k ∈ ℕ

γ k z
k = 2

z γ z

z

z2
11-1 -1



γ

γ
z

ζ1

ζ2

ζ5ζ4

ζ3

Set  with and , and write the th roots  
explicitly as 


. 


Thus, the argument  of . This means that all roots are 

equally spaced on the circle of radius , at angle  apart.


As  travels along a path , winding once around , its th roots also move 
around since the  has gone from  to . Each th root  has 
moved to its closest, counter clock-wise neighbour . In particular, the 
roots have not completed a loop. 

c

z = reiθ r = |z | θ = arg z k ζ1, …, ζk

ζℓ = k rei(θ+2ℓπ)/k, ℓ ∈ {1,…, k}

arg(ζℓ) ζℓ =
θ
k

+ ℓ
2π
k

k r 2π
k

z γ 0 k
arg(z) θ θ + 2π k ζℓ

ζℓ+1
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ζ5
ζ4

ζ3



A formula for a solution  of a polynomial equation of the form , in 
general, is of the form , where  is some function of 
the coefficients  of  obtained by using . 


A hierarchy of functions: The first ones, say ,that are made out of the 
coefficients  using only . These are polynomial, or 
more generally, rational functions of the coefficients of the polynomial . 


Therefore,  if two or more of these coefficients follow a loop the function 
of type  also follows a loop. 


This property of  functions is not shared by  functions obtained from 
functions by taking roots, as we have seen.

s p(z) = 0
s = R(c0, c1, …, cn−1) R

c0, …, cn−1 p +, − , × , ÷ ,

R0
c0, …, cn−1 +, − , × , ÷

p

R0

R0 R1
R0



When follow a loop, -functions do not necessarily follow a 
loop.


We can build -functions by taking roots of -functions building higher 
order of nesting in the coefficients at each stage. Consider for example: 


, 


,


,  

(c0, …, cn−1) R2

R2 R1

R0 = −
c3

6 +c0,  or c3
2 + c1

R1 = c2
5 − 3+ 1

2 c2
4 − 3 c0

R2 = 3 2
3 c2

3 − c1 + 1
3 c2 + 5 c2

5 + c0 − 1 + c4 …



Quadratic Equation

First observation: Coefficients are symmetric functions of 
the solutions . This follows since the polynomial

 is independent of the ordering of the solutions 
. 


For , if the two solutions  are permuted using the 
transposition , the coefficients  each move on some path but they 
must come back to the original position when  and  exchange their 
position. 


Theorem: There is no map  such that  is always a 
solution to the quadratic equation . 

c0, c1, …, cn−1
{s1, …, sn}

(z − s1)⋯(z − sn)
{s1, …, sn}

n = 2 s1, s2
(c0, c1)

s0 s1

R0 : ℂ2 → ℂ R0(c0, c1)
p(z) = 0, where p(z) = z2 + c1z + c0



- The transposition  swaps the two solutions  and . Pick a continuous path 
 starting at  and ending at . Also, choose a 

path  starting at  and ending at .  


- The coefficients  are continuous symmetric functions of the solutions 
, therefore their final positions are the same as the initial positions. 

Thus, each  defines a loop. The functions





being a continuous function of , by hypothesis, will also follow its own 
loop. 


- Consequently, as  runs from  to , the solutions  and  swap their positions 
while  and  coincide leading to a contradiction.  

(12) s1 s2
s1(t) s1 := s1(0) s1(1) = s2 = s2(0)

s2 s2 = s2(0) s2(1) = s1 = s1(0)

c0(t), c1(t)
{s1(t), s2(t)}

c0, c1

R0i(c0(t), c1(t)) = si(t), i = 1,2,

c0, c1

t 0 1 s1 s2
R01(c0(0), c1(0)) R02(c0(1), c1(1))



s1

s2

c1

c0

c1

c0

R00(c0, c1)

R01(c0, c1)



The cubic Equation
- Let , where , be the cubic equation. 


- Again, assume that we have solutions of the form 


, 


involving one level of radicals. 


- We still have that each of the coefficients follow a loop as solutions 
permute.


- However, functions like with radicals in them no longer follow a loop.


- We need a new idea!

p(z) = 0 p(z) = z3 + c2z2 + c1z + c0

si = R1i(c0, c1, c2), i = 1,2,3

R1



Commutators
- Consider the transposition  that induces a loop on  and an unclosed path 

 on . Consider also , inducing a loop  on  and a path  on . Now 
perform the following sequence of transpositions, called the commutator of  
and , and denoted


.


- Since  is , and , it follows that  is the cycle 
. Indeed, this is true of any pair of transposition, namely, . 


- Therefore,  permutes the three solutions . 


- Now, follows a sequence of loops , which is itself a loop, however, 
follows a sequence of unclosed paths  (visiting other roots) but closes 
on itself by construction.

(12) γ1 R0
ω1 R1 (23) γ2 R0 ω2 R1

(12)
(23)

[(12), (23)] = (12)(23)(12)−1(23)−1

(12)−1 (21) (23)−1 = (32) [(12), (23)]
(123) [(ij), ( jk)] = (ijk)

[(12), (23)] (s1, s2, s3)
R0 γ1γ2γ−1

1 γ−1
2 R1

ω1ω2ω−1
1 ω−1

2



C R0 R1

(12)

(21)
(21)

(12)

(12)

(21)
(23)

(32)

(32)

(23)
(23)

(32)



- Suppose that undergoes the permutation . 


- Then both  and follow a loop. Consequently, we can’t have 
equalities: . 


- Theorem: There is no map  such that  is 
always a solution to the cubic equation


. 

(s1, s2, s3) (123)

R0 R1
si = R1i(c0, c1, c2), i = 1,2,3

R1 : ℂ3 → ℂ R1(c0, c1, c2)

p(z) = 0, where p(z) = z3 + c2z2 + c1z + c0



The Quartic
- We have seen that solutions of a cubic equation, in general, cannot be 

written using functions of type  (one level of roots). 


- Now, for the quartic equation,


, 


- Assume that we have a solution of the form: 


,


with two levels of the nesting of roots.


The proof consists of constructing an appropriate permutation of the solutions 
. 

R1

p(z) = 0, where p(z) = z4 + c3z3 + c2z2 + c!z + c0

si = R2i(c0, c1, c2, c3), i = 1,2,3,4

{s1, s2, s3, s4}



- As before, like the method for the quadratic did not work for the 
cubic, the method for the cubic doesn’t really work for the quartic. 


- Hunt for a new idea again, this time, we look at a commutator of 
two cycles  and note that it indeed permutes the 
four solutions since .  


- Applying  followed by  to 
functions of type   produces two closed loops followed by  
coming back to the original position. 


- However, functions of type  will move along two generally 
unclosed paths  and . 

(123) and (234)
[(123), (2,3,4)] = (14)(23)

(123) = [(12), (23)] (234) = [(23), (34)]
R1 γ1 γ2

R2
ω1 ω2



- Second, we apply these two paths backwards, in reverse, that is, 
 and then . During these two, 

-functions will follow , i.e. the previous loops backwards. Similarly,
-functions will travel along .


- Thus, the -functions follow the loop ; and functions a 
sequence of unclosed paths , which closes on itself by 
construction.  


- Our conclusion has therefore been reached: while  undergoes 
the permutation  written as a commutator of commutators, any 
-function follows a loop.

(432) = [(43), (32)] (321) = [(32), (21)] R1
γ−1

2 γ−1
1

R2 ω−1
2 ω−1

1

R1 γ = γ1γ2γ−1
1 γ−1

2 R2
ω1ω2ω−1

1 ω−1
2

(s1, s2, s3, s4)
(14)(23) R2



The quintic
- Let  be the 

quintic equation. Suppose that 





where the functions  has three nested levels of roots. 


- Following what is done for  note that (1) all -functions 
with , will follow a loop from a commutator of commutators 
of the solutions (as in the quartic case), but (2) we will need one more 
level of commutators for the additional root appearing in . 


- In general, for  we have 

p(z) = 0, where p(z) = z5 + c4z4 + c3z3 + c2z2 + c1z + c0

si = R3i (c0, …, c4)  for i ∈ {1,…,5},

R3i

n = 2,3,4, Rk
k = 0,1,2

R3

n = 5, [(ijk), (kℓm)] = ( jkm) .



- Thus, any cycle  can be written as a commutator of two other 
cycles, namely . 


- But notice that this is true for any cycle , including  and 
 on the left-hand side of the equality: . 

In other words, this formula can be applied to itself. 


- Hence the cycle  can be written as a nested commutator of 
commutators as many as times as we want.   


- Since a number  of commutators allows us to discard precisely 
 levels of roots in a formula, we can actually discard any number 

of roots in any proposed formula for the quintic!

( jkm)
[(ijk), (kℓm)]

( jkm) (ijk)
(kℓm) [(ijk), (kℓm)] = ( jkm)

( jkm)

m ∈ ℕ
m



A “fifteen minute” proof!
Let  denote the space of coefficients of the quintic minus those leading 
to double roots. 


Let  denote the space of solutions to a quintic consisting of five distinct 
unordered complex numbers . Order these, in anyway you like 
when a fixed but arbitrary quintic is chosen. 


- There is a map from the space of loops to the permutation group . 


- This map is onto. 


- Suppose that  induces a cycle . Then 
 which is a contradiction!

𝒞

𝒮
{s1, …, s5}

S5

γ ∈ π1(𝒞) (1,2,3)
F ∘ γ(0) = γ1 = F ∘ γ(1)
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