Arnold's proof of the nonexistence of a solution to the quintic equation

Identity, Maths Club of IISER Kolkata Indian Institute of Science Education and Research Kolkata November 23, 2022

Indian Statistical Institute Bangalore

Square rooks

Here is a proof that $\sqrt{2}$ is not rational.
Suppose to the contrary that $\sqrt{2}=\frac{p}{q}$ without any common factors. Then $\sqrt{2}=\frac{2 q-p}{p-q}$ but with a smaller denominator leading to a contradiction.

For $n \geqslant 3, \sqrt[n]{2}$ is not rational either. If not, as before, we must have $p^{n}=2 q^{n}=q^{n}+q^{n}$
for a pair of integer p and q. But this contradicts the Fermat's last theorem!
$\sqrt{2}$ and $-\sqrt{2}$ can't be algebraically distinguished, that is, if $\sqrt{2}$ is the solution of a polynomial equation with rational coefficients, then so is $-\sqrt{2}$ and vice-versa. Such pairs are called conjugate.
More generally, two real numbers a and b are conjugate over \mathbb{Q} if for all polynomials p with coefficients in \mathbb{Q},

$$
p(a)=0 \Longleftrightarrow p(b)=0 .
$$

Similarly, two complex numbers z, z 'are said to be conjugate if for all polynomials with coefficients in \mathbb{R}

$$
p(z)=0 \Longleftrightarrow p\left(z^{\prime}\right)=0 .
$$

The two numbers i and $-i$ are indistinguishable.

Definition: Let $k \geq 0$, and let $\left(z_{1}, \ldots, z_{k}\right)$, $\left(z_{1}^{\prime}, \ldots, z_{k}^{\prime}\right)$ be k-tuples of complex numbers. Then $\left(z_{1}, \ldots, z_{k}\right)$ and $\left(z_{1}^{\prime}, \ldots, z_{k}^{\prime}\right)$ are conjugate over \mathbb{Q} if for all polynomials p over \mathbb{Q} in k variables

$$
p\left(z_{1}, \ldots, z_{k}\right)=0 \Longleftrightarrow p\left(z_{1}^{\prime}, \ldots, z_{k}^{\prime}\right)=0 .
$$

The symmetry group of a polynomial: Write $\left(s_{1}, \ldots, s_{k}\right)$ for its distinct solutions in \mathbb{C}. The Galois group of p is

$$
\operatorname{Gal}(p)=\left\{\sigma \in S_{k}:\left(s_{1}, \ldots, s_{k}\right) \text { and }\left(s_{\sigma(1)}, \ldots, s_{\sigma(k)}\right) \text { are conjugate }\right\}
$$

'Distinct solutions' means that we ignore any repetition of roots:
if $p(t)=t^{5}(t-1)^{9}$, then $k=2$ and $\left\{s_{1}, s_{2}\right\}=\{0,1\}$.

Informally, let us say that a complex number is radical if it can be obtained from the rationals using only the usual arithmetic operations
and k th roots. For example, $\frac{\frac{1}{2}+\sqrt[3]{\sqrt[5]{2}-\sqrt[2]{7}}}{\sqrt[4]{6+\sqrt[3]{\frac{2}{3}}}}$ is radical, whichever
square root, cube root, etc., we choose. A polynomial over \mathbb{Q} is solvable (or soluble) by radicals if all of its complex roots are radical.

Every quadratic over \mathbb{Q} is solvable by radicals. This follows from the quadratic formula: $\frac{1}{2 a}\left(-b \pm \sqrt{b^{2}-4 a c}\right)$ is visibly a radical number.

Theorem of Calois

What determines if a polynomial is solvable by radicals? The amazing answer to this question was given by Galois.
Theorem: Suppose that p is a polynomial over \mathbb{Q}. Then p is solvable by radicals if and only if the Galois group $\operatorname{Gal}(p)$ is solvable.

We are going to however, discuss an elementary (by no means, trivial) proof due to Arnold.

Solution of polynomial equations

Let $p(z)=z^{n}+c_{n-1} z^{n-1}+\cdots+c_{1} z+c_{0}$ be a polynomial with complex coefficients c_{n-1}, \ldots, c_{0}. By the fundamental theorem of algebra, there are exactly n solutions to the equation $p(z)=0$, say, $\left\{s_{1}, \ldots, s_{n}\right\}$. What happens to the solutions $\left\{s_{1}, \ldots, s_{n}\right\}$ if we move the coefficients c_{n-1}, \ldots, c_{0} a little and what happens the other way around?

The answer involves permutations, loops, roots (of complex numbers), finally commutators.

It is clear that given a set of complex numbers $S=\left\{s_{1}, \ldots, s_{n}\right\}$, the set of solutions of

$$
p(z)=0, \text { where } p(z)=\left(z-s_{1}\right) \cdots\left(z-s_{n}\right),
$$

is exactly S. It is going the other way round, that is, how to find the solutions of a polynomial equation is not obvious.

Two kinds of permutations

We discuss two kinds of permutations, namely, transpositions and cycle:

- transpositions, denoted (ij), exchanging the position of two solutions, i.e., $s_{i} \rightarrow s_{j}$.
- cycles, denoted ($i j k$), exchanging the position of three solutions cyclically, i.e., $s_{i} \rightarrow s_{j}, s_{j} \rightarrow s_{k}$, and $s_{k} \rightarrow s_{i}$.

Loops and permucacions

Locating the solutions $\left(s_{1}, \ldots, s_{n}\right)$ in \mathbb{C}, we can think of a permutation to be a path traveling from one solution to another.

Paths in the complex plane are just continuous curves that connect two points (we assume that they do not self-intersect, otherwise things get unnecessarily complicated).

A path that closes, i.e., connects a point to itself, is called a loop and denoted γ.

These paths will be represented by arrows in all the figures, and will be used to induce permutations on the solutions $\left(s_{1}, \ldots, s_{n}\right)$.

How complex roots move around in \mathbb{C}

Fixing some complex number z, a root of z is some number ζ in \mathbb{C} such that $\zeta^{k}=z$ for some $k \in \mathbb{N}$. By the fundamental theorem of algebra, there are exactly k such k th root ζ of z; and z. Thus, $\sqrt[k]{z}$ denotes a multivalued function of the complex variable z. With a little abuse of notation, we let $\sqrt[k]{z}$ also denote any of the k th roots of z. Fixing $k \in \mathbb{N}$ and assuming that z itself follows a loop γ, we ask what kind of path $\sqrt[k]{z}$ follows. Notice that with $k=2$, we have

When z follows a loop γ, \sqrt{z} does not always follow a loop.

Set $z=r e^{i \theta}$ with $r=|z|$ and $\theta=\arg z$, and write the k th roots $\zeta_{1}, \ldots, \zeta_{k}$ explicitly as
$\zeta_{\ell}=\sqrt[k]{r} e^{i(\theta+2 \ell \pi) / k}, \ell \in\{1, \ldots, k\}$.

Thus, the argument $\arg \left(\zeta_{\ell}\right)$ of $\zeta_{\ell}=\frac{\theta}{k}+\ell \frac{2 \pi}{k}$. This means that all roots are equally spaced on the circle of radius $\sqrt[k]{r}$, at angle $\frac{2 \pi}{k}$ apart.

As z travels along a path γ, winding once around 0 , its k th roots also move around since the $\arg (z)$ has gone from θ to $\theta+2 \pi$. Each k th root ζ_{ℓ} has moved to its closest, counter clock-wise neighbour $\zeta_{\ell+1}$. In particular, the roots have not completed a loop.

A formula for a solutions of a polynomial equation of the form $p(z)=0$, in general, is of the form $s=R\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$, where R is some function of the coefficients c_{0}, \ldots, c_{n-1} of p obtained by using,,$+- \times, \div, \sqrt{ }$.

A hierarchy of functions: The first ones, say R_{0}, that are made out of the coefficients c_{0}, \ldots, c_{n-1} using only,,$+- \times, \div$. These are polynomial, or more generally, rational functions of the coefficients of the polynomial p.

Therefore, if two or more of these coefficients follow a loop the function of type R_{0} also follows a loop.

This property of R_{0} functions is not shared by R_{1} functions obtained from R_{0} functions by taking roots, as we have seen.

When $\left(c_{0}, \ldots, c_{n-1}\right)$ follow a loop, R_{2}-functions do not necessarily follow a loop.

We can build R_{2}-functions by taking roots of R_{1}-functions building higher order of nesting in the coefficients at each stage. Consider for example:

$$
R_{0}=-\frac{c_{3}}{6}+c_{0}, \text { or } c_{2}^{3}+c_{1}
$$

$$
R_{1}=\sqrt{c_{5}^{2}-3}+\frac{1}{2} c_{4}^{2}-\sqrt[3]{c_{0}}
$$

$$
R_{2}=\sqrt[3]{\frac{2}{3} c_{3}^{2}-c_{1}}+\sqrt{\frac{1}{3} c_{2}+\sqrt[5]{c_{5}^{2}+c_{0}-1}}+c_{4,} \cdots
$$

Quadralic Equalion

First observation: Coefficients $c_{0}, c_{1}, \ldots, c_{n-1}$ are symmetric functions of the solutions $\left\{s_{1}, \ldots, s_{n}\right\}$. This follows since the polynomial $\left(z-s_{1}\right) \cdots\left(z-s_{n}\right)$ is independent of the ordering of the solutions $\left\{s_{1}, \ldots, s_{n}\right\}$.

For $n=2$, if the two solutions s_{1}, s_{2} are permuted using the transposition, the coefficients $\left(c_{0}, c_{1}\right)$ each move on some path but they must come back to the original position when s_{0} and s_{1} exchange their position.

Theorem: There is no map $R_{0}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ such that $R_{0}\left(c_{0}, c_{1}\right)$ is always a solution to the quadratic equation $p(z)=0$, where $p(z)=z^{2}+c_{1} z+c_{0}$.

- The transposition (12) swaps the two solutions s_{1} and s_{2}. Pick a continuous path $s_{1}(t)$ starting at $s_{1}:=s_{1}(0)$ and ending at $s_{1}(1)=s_{2}=s_{2}(0)$. Also, choose a path s_{2} starting at $s_{2}=s_{2}(0)$ and ending at $s_{2}(1)=s_{1}=s_{1}(0)$.
- The coefficients $c_{0}(t), c_{1}(t)$ are continuous symmetric functions of the solutions $\left\{s_{1}(t), s_{2}(t)\right\}$, therefore their final positions are the same as the initial positions. Thus, each c_{0}, c_{1} defines a loop. The functions

$$
R_{0 i}\left(c_{0}(t), c_{1}(t)\right)=s_{i}(t), i=1,2
$$

being a continuous function of c_{0}, c_{1}, by hypothesis, will also follow its own loop.

- Consequently, as t runs from 0 to 1 , the solutions s_{1} and s_{2} swap their positions while $R_{01}\left(c_{0}(0), c_{1}(0)\right)$ and $R_{02}\left(c_{0}(1), c_{1}(1)\right)$ coincide leading to a contradiction.

The cubic Equation

- Let $p(z)=0$, where $p(z)=z^{3}+c_{2} z^{2}+c_{1} z+c_{0}$, be the cubic equation.
- Again, assume that we have solutions of the form

$$
s_{i}=R_{1 i}\left(c_{0}, c_{1}, c_{2}\right), i=1,2,3,
$$

involving one level of radicals.

- We still have that each of the coefficients follow a loop as solutions permute.
- However, functions like R_{1} with radicals in them no longer follow a loop.
- We need a new idea!

Commutators

- Consider the transposition (12) that induces a loop γ_{1} on R_{0} and an unclosed path ω_{1} on R_{1}. Consider also (23), inducing a loop γ_{2} on R_{0} and a path ω_{2} on R_{1}. Now perform the following sequence of transpositions, called the commutator of (12) and (23), and denoted

$$
[(12),(23)]=(12)(23)(12)^{-1}(23)^{-1}
$$

- Since $(12)^{-1}$ is (21), and $(23)^{-1}=(32)$, it follows that $[(12),(23)]$ is the cycle (123). Indeed, this is true of any pair of transposition, namely, $[(i j),(j k)]=(i j k)$.
- Therefore, $[(12),(23)]$ permutes the three solutions $\left(s_{1}, s_{2}, s_{3}\right)$.
- Now, R_{0} follows a sequence of loops $\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1}$, which is itself a loop, however, R_{1} follows a sequence of unclosed paths $\omega_{1} \omega_{2} \omega_{1}^{-1} \omega_{2}^{-1}$ (visiting other roots) but closes on itself by construction.

- Suppose that $\left(s_{1}, s_{2}, s_{3}\right)$ undergoes the permutation (123).
- Then both R_{0} and R_{1} follow a loop. Consequently, we can't have equalities: $s_{i}=R_{1 i}\left(c_{0}, c_{1}, c_{2}\right), i=1,2,3$.
- Theorem: There is no map $R_{1}: \mathbb{C}^{3} \rightarrow \mathbb{C}$ such that $R_{1}\left(c_{0}, c_{1}, c_{2}\right)$ is always a solution to the cubic equation

$$
p(z)=0, \text { where } p(z)=z^{3}+c_{2} z^{2}+c_{1} z+c_{0} .
$$

The Quarkic

- We have seen that solutions of a cubic equation, in general, cannot be written using functions of type R_{1} (one level of roots).
- Now, for the quartic equation,

$$
p(z)=0, \text { where } p(z)=z^{4}+c_{3} z^{3}+c_{2} z^{2}+c_{1} z+c_{0}
$$

- Assume that we have a solution of the form:

$$
s_{i}=R_{2 i}\left(c_{0}, c_{1}, c_{2}, c_{3}\right), i=1,2,3,4
$$

with two levels of the nesting of roots.
The proof consists of constructing an appropriate permutation of the solutions $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$.

- As before, like the method for the quadratic did not work for the cubic, the method for the cubic doesn't really work for the quartic.
- Hunt for a new idea again, this time, we look at a commutator of two cycles (123) and (234) and note that it indeed permutes the four solutions since $[(123),(2,3,4)]=(14)(23)$.
- Applying (123) $=[(12),(23)]$ followed by $(234)=[(23),(34)]$ to functions of type R_{1} produces two closed loops γ_{1} followed by γ_{2} coming back to the original position.
- However, functions of type R_{2} will move along two generally unclosed paths ω_{1} and ω_{2}.
- Second, we apply these two paths backwards, in reverse, that is, $(432)=[(43),(32)]$ and then (321) $=[(32),(21)]$. During these two, R_{1} -functions will follow $\gamma_{2}^{-1} \gamma_{1}^{-1}$, i.e. the previous loops backwards. Similarly, R_{2}-functions will travel along $\omega_{2}^{-1} \omega_{1}^{-1}$.
- Thus, the R_{1}-functions follow the loop $\gamma=\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1}$; and R_{2} functions a sequence of unclosed paths $\omega_{1} \omega_{2} \omega_{1}^{-1} \omega_{2}^{-1}$, which closes on itself by construction.
- Our conclusion has therefore been reached: while $\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ undergoes the permutation (14)(23) written as a commutator of commutators, any R_{2} -function follows a loop.

The quintic

- Let $p(z)=0$, where $p(z)=z^{5}+c_{4} z^{4}+c_{3} z^{3}+c_{2} z^{2}+c_{1} z+c_{0}$ be the quintic equation. Suppose that

$$
s_{\mathrm{i}}=R_{3 i}\left(c_{0}, \ldots, c_{4}\right) \text { for } i \in\{1, \ldots, 5\} \text {, }
$$

where the functions $R_{3 i}$ has three nested levels of roots.

- Following what is done for $n=2,3,4$, note that (1) all R_{k}-functions with $k=0,1,2$, will follow a loop from a commutator of commutators of the solutions (as in the quartic case), but (2) we will need one more level of commutators for the additional root appearing in R_{3}.
- In general, for $n=5$, we have $[(i j k),(k \ell m)]=(j k m)$.
- Thus, any cycle ($j \mathrm{~km}$) can be written as a commutator of two other cycles, namely [(ijk), $(k \ell m)$].
- But notice that this is true for any cycle ($j k m$), including ($i j k$) and (klm) on the left-hand side of the equality: $[(i j k),(\mathrm{klm})]=(j k m)$. In other words, this formula can be applied to itself.
- Hence the cycle ($j \mathrm{~km}$) can be written as a nested commutator of commutators as many as times as we want.
- Since a number $m \in \mathbb{N}$ of commutators allows us to discard precisely m levels of roots in a formula, we can actually discard any number of roots in any proposed formula for the quintic!

A "fifteen minute" proof!

Let \mathscr{C} denote the space of coefficients of the quintic minus those leading to double roots.

Let \mathcal{S} denote the space of solutions to a quintic consisting of five distinct unordered complex numbers $\left\{s_{1}, \ldots, s_{5}\right\}$. Order these, in anyway you like when a fixed but arbitrary quintic is chosen.

- There is a map from the space of loops to the permutation group S_{5}.
- This map is onto.
- Suppose that $\gamma \in \pi_{1}(\mathscr{C})$ induces a cycle $(1,2,3)$. Then $F \circ \gamma(0)=\gamma_{1}=F \circ \gamma(1)$ which is a contradiction!

Paul Ramond, Abel-Ruffini's Theorem: Complex but Not Complicated!
LEO GOLDMAKHER, Arnold's elementary proof of the insolvabilty of the quintic

Akalin F. (2016). Why is the Quintic Unsolvable? - akalin.com/quinticunsolvabilityhttps://www.youtube.com/watch?v=BSHv9EIk1MU

Boaz Katz, https://www.youtube.com/watch?v=zeRXVL6qPk4\&t=530s
Leo Stein, https://duetosymmetry.com/tool/polynomial-roots-toy/
Ramaprasad Saptharisi, https://www.youtube.com/watch?v=O5eH3x3sTNA
Carl Turner(Not all wrong), https://www.youtube.com/watch?v=BSHv9EIk1MU

