Breaking the Riemann Integral

Rohan Didmishe, 4th Year DMS

September 2023

The Riemann Integral

Given a bounded function $f:[a, b] \rightarrow \mathbb{R}$ we can define the 'signed area' under it by approximating for a partition $\left(x_{i}\right)_{i=0}^{n}$ of $[a, b]$:

$$
\begin{aligned}
& L(f, P)=\sum_{i} m_{i}\left(x_{i}-x_{i-1}\right) \\
& U(f, P)=\sum_{i} M_{i}\left(x_{i}-x_{i-1}\right)
\end{aligned}
$$

Riemann Integral-Contd.

If there is a number such that $I=\inf _{P}\{U(f, P)\}=\sup _{P}\{L(f, P)\}$ then f is Riemann Integrable and $\int_{a}^{b} f=I$

Metric Spaces

Suitable generalisation of spaces like \mathbb{R} where we have a notion of distance/ a function $d: X \times X \rightarrow[0, \infty)$ such that:

- $d(x, y)=0 \Longleftrightarrow x=y$
- $d(x, y)=d(y, x), \forall x, y \in X$
- $d(x, z) \leq d(x, y)+d(y, z), \forall x, y, z \in X$
$\left(x_{n}\right)_{n=1}^{\infty}$ converges to $x \Longleftrightarrow$ Given any $\epsilon>0$, there exists N such that $d\left(x_{n}, x\right)<\epsilon$ when $n \geq N$

Completeness

A Cauchy Sequence is a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that given any $\epsilon>0$, there exists N such that $d\left(x_{n}, x_{m}\right)<\epsilon, \forall n, m \geq N . X$ is called complete if all Cauchy sequences in X converge to some element.

Figure: The space has no 'holes'

Metrics on Spaces of Integrable Functions

- L^{1} and L^{2} form natural metrics on function spaces(after proper identification)
- It is known that under Riemann integration these spaces will not be complete. But how bad can it get?(Can we get away with Improper Integrals?)

Well...

"If this bothers you, you should have been a math major.."
DJ Griffiths, Introduction to Quantum Mechanics

Relevance of Completeness

- Riesz-Fischer Theorem: $L^{2}([0,1]) \longleftrightarrow I^{2}(\mathbb{Z})$ are isometric (there is a distance preserving bijective map)
- The Fourier Transform $\mathcal{F}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ is an isometry
- Weak Solutions of PDEs and convergence of good 'approximations'

Main idea behind the construction - Heuristics

- The fundamental definition itself requires boundedness 'somewhere atleast'
- If we create a sequence of functions that 'blows up' in a 'dense' set, it might not remain Riemann Integrable anywherebut also has to break nearby points- continuity
- 'Total size' has to remain conserved- Cauchyness

Step 1

4ロ〉4司〉4 三

Step 2

And on...

And on...

Making it Precise

- The base of the triangles has been selected in such a way that it becomes smaller and smaller- but the total area stays conserved
- At each stage n, going to rational numbers of the form $m / 2^{n}$ for $m \in\left\{1,2, \ldots 2^{n}-1\right\}$ and adding a triangle of base $\approx 1 / 4^{n}$ and heights going to n
- We can estimate $d\left(f_{n}, f_{m}\right)$ to be less than $\sum_{k=m+1}^{n} k / 2^{k}$ which can be made small if we have n, m large enough.

Breaking Riemann Integration

Suppose there exists $g:[a, b] \rightarrow \mathbb{R}$ such that $[a, b] \subset[0,1]$ such that $d\left(g,\left.f_{n}\right|_{[a, b]}\right) \rightarrow 0$ as $n \rightarrow \infty$ and g is Riemann integrable. We can show there is a subsequence which converges pointwise almost everywhere

But g is bounded and by the construction, we have a segment inside $[a, b]$ such that f_{n} 's are larger than a given integer. So we get a contradiction \square

References and Acknowledgements

[1] Real and Complex Analysis- Walter Rudin
[2] Functional Analysis- Peter Lax

Special thanks to Dr. Soumya Bhattacharya for valuable inputs
More detailed version in article format available upon request.

